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Abstract

The recent history of The On-Line Encyclopedia of Integer Sequences (or OEIS), describ-
ing developments since 2009, and discussing recent sequences involving interesting unsolved
problems and in many cases spectacular illustrations. These include: Peaceable Queens,
circles in the plane, the earliest cube-free binary sequence, the EKG and Yellowstone permu-
tations, other lexicographically earliest sequences, iteration of number-theoretic functions,
home primes and power trains, a memorable prime, a missing prime, Post’s tag system, and
coordination sequences.

1 Introduction
The OEIS (or On-Line Encyclopedia of Integer Sequences2) is a freely accessible database
of number sequences, now in its 54th year, and online since 1995. It contains over 300, 000
entries, and for each one gives a definition, properties, references, computer programs, tables,
etc., as appropriate. It is widely referenced: a web page3 lists over 6000 works that cite it,
and often say things like “this theorem would not exist without the help of the OEIS”. It has
been called one of the most useful mathematical sites in the web.

The main use is to serve as a dictionary or fingerprint file for identifying number sequences
(and when you find the sequence you are looking for, you will understand why the OEIS is so
popular). If your sequence is not recognized, you see a message saying that if the sequence is
of general interest, you should submit it for inclusion in the database. The resulting queue
of new submissions is a continual source of lovely problems.

I described the OEIS in a short article in the September 2003 issue of these Notices. The
most significant changes since then took place in 2009, when a non-profit foundation4 was
set up to own and maintain the OEIS, and in 2010 when the OEIS was moved off my home
page at AT&T Labs to a commercial host. The format has also changed: since 2010 the
OEIS has been a refereed “wiki”. Four people played a crucial role in the transition: Harvey
P. Dale and Nancy C. Eberhardt helped set up the Foundation, Russell S. Cox wrote the
software, and David L. Applegate helped move the OEIS. The OEIS would probably not
exist today but for their help.

1Neil J. A. Sloane is president of the OEIS Foundation and a visiting scientist at Rutgers Univerity. His
email address is njasloane@gmail.com.

2http://oeis.org.
3http://oeis.org/wiki/Works_Citing_OEIS.
4The OEIS Foundation, Inc., http://oeisf.org.
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All submissions, of new sequences and updates, are now refereed by volunteer editors.
One of the rewards of being an editor is that you see a constant flow of new problems, often
submitted by non-mathematicians, which frequently contain juicy-looking questions that are
begging to be investigated.

This article will describe a selection of recent sequences, mostly connected with unsolved
problems.

Sequences in the OEIS are identified by a 6-digit number prefixed by A. A000001 is the
number of groups of order n, A000002 is Kolakoski’s sequence, and so on. When we were
approaching a quarter of a million entries, the editors voted to decide which sequence would
become A250000. The winner was the Peaceable Queens sequence, described in the next
section, and the runner-up was the “circles in the plane” sequence A250001 discussed in §3.
The nth term of the sequence under discussion is usually denoted by a(n).

Figure 1: One of three solutions to the Peaceable Queens problem on a 5 × 5 board, illus-
trating a(5) = 4.

Figure 2: A solution to the Peaceable Queens problem on an 8×8 board, illustrating a(8) = 9.
(There are actually 10 white queens here but only 9 count since the numbers of white and
black queens must be equal. Any one of the white queens could be omitted.)
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2 Peaceable Queens
In A250000, a(n) is the maximal number m such that it is possible to place m white queens
and m black queens on an n×n chess board so that no queen attacks a queen of the opposite
color. These are peaceable queens. This is a fairly new problem with some striking pictures,
an interesting conjecture, and a satisfactorily non-violent theme. It was posed by Robert A.
Bosch in 1999, as a variation on the classical problem of finding the number of ways to place
n queens on an n× n board so that they do not attack each other (A000170). It was added
to the OEIS in 2014 by Donald E. Knuth, and a number of people have contributed to the
entry since then. Only thirteen terms are known:

n : 1 2 3 4 5 6 7 8 9 10 11 12 13
a(n) : 0 0 1 2 4 5 7 9 12 14 17 21 24

Figures 1-4 show examples of solutions for n = 5, 8, 11 and (conjecturally) 20.

Figure 3: A solution to the Peaceable Queens problem on an 11 × 11 board, illustrating
a(11) = 17.

For larger values of n, the best solutions presently known were found by Benoît Jubin and
concentrate the queens into four pentagonal regions, as shown in Figure 5 (and generalize
the arrangement shown in Figure 4). This construction gives a lower bound of ⌊7n2/48⌋, a
formula which in fact matches all the best arrangements known so far except n = 5 and 9.
It would be nice to know if this construction really does solve the problem!
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Figure 4: A conjectured solution to the Peaceable Queens problem on a 20×20 board, found
by Bob Selcoe, showing that a(20) ≥ 58.

Figure 5: A general construction for the Peaceable Queens problem found by Benoît Jubin,
showing that for large n, a(n) ≥ ⌊7n2/48⌋, a formula which might be exact for all n > 9.

Figure 6: The fourteen ways to draw three circles in the affine plane.
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3 Circles in the Plane
The runner-up in the competition for A250000 is now A250001: here a(n) is the number
of ways to draw n circles in the affine plane. Two circles must be disjoint or meet in two
distinct points (tangential contacts are not permitted), and three circles may not meet at
a point.5 The sequence was proposed by Jonathan Wild, a professor of music at McGill
University, who found the values a(1) = 1, a(2) = 3, a(3) = 14, a(4) = 173, and, jointly
with Christopher Jones, a(5) = 16951 (see Figures 6-8).

Figure 7: Eight of the 173 ways to draw four circles. For the full set of 173 drawings, see
A250001.

Wild and Jones have found that there are complications which first appear when five
circles are being considered: here there are arrangements which theoretically could exist if
one considered only the intersections between circles, but which cannot actually be drawn
using circles. For example, start with four circles arranged in a chain, each one overlapping
its two neighbors, and label the overlaps a, b, c, d (see Figure 9). Suppose we try to add a
fifth circle that meets all four circles but avoids their overlaps, encloses overlaps b and d, but
does not enclose overlaps a or c. This can be drawn if the fifth circle is flattened to an ellipse,
but it can be shown that the arrangement cannot be realized with five circles. There are 26
such unrealizable arrangements of five circles, which can be ruled out by ad hoc arguments.

The delicate configurations like those in Figure 8 are very appealing. It would be inter-
esting to see all 17142 arrangements of five or fewer circles displayed along the Great Wall

5The circles may have different radii. Two arrangements are considered the same if one can be continuously
changed to the other while keeping all circles circular (although the radii may be continuously changed),
without changing the multiplicity of intersection points, and without a circle passing through an intersection
point. Turning the whole configuration over is allowed.
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Figure 8: Seven further ways (out of 173) to draw four circles.

Figure 9: A hypothetical arrangement of five circles that can only be realized if one or more
of the circles is distorted.

of China.
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4 Earliest Cube-Free Binary Sequence
There is an obvious way to sort integer sequences a(1), a(2), a(3), a(4), ... into lexicographic
order. A number of recent entries in the OEIS are defined to be the lexicographically earliest
sequence of nonnegative or positive integers satisfying certain conditions.

For example, one of the first results in the subject now called “Combinatorics on Words”
was Axel Thue’s 1912 theorem that the “Thue-Morse sequence”

T = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, . . .

(A010060) contains no substring of the form XXX, that is, T is cube-free. T can be defined
as a fixed point of the mapping 0 → 01, 1 → 10; alternatively, by taking a(n) to be the
parity of the number of 1s in the binary expansion of n. 105 years later, David W. Wilson
asked for the lexicographically earliest cube-free sequence of 0s and 1s. Using a back-tracking
algorithm, he found what appear to be the first 10000 terms, which begin

0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, . . . . (1)
This is now A282317.

There is no difficulty in showing that the sequence exists.6 To see this, make the set S
of all infinite binary sequences a = (a(1), a(2), . . .) into a metric space by defining d(a, b) to
be 0 if a = b, or 2−i if a and b first differ at position i. This identifies S with the Cantor set
in [0, 1). The subset F ⊂ S of infinite cube-free sequences is nonempty and has an infimum
c say. It is easy to show that the complement S \ F , sequences that contain a cube, is an
open set in this topology, so F is closed and c ∈ F .

So far only the first 999 terms of A282317 have been verified to be correct (by showing
that there is at least one infinite cube-free sequence with that beginning). The rest of the
10000 terms are only conjectural. It would be nice to know more. In particular, does this
sequence have an alternative construction? There is no apparent formula or recurrence,
which seems surprising.

5 The EKG and Yellowstone Sequences
To continue the “lexicographically earliest” theme, many recent entries in the OEIS are
defined to be the lexicographically earliest sequence a(1), a(2), . . . of distinct positive integers
satisfying certain divisibility conditions.

The first task here is usually to show that there are no missing numbers, i.e., that the
sequence is a permutation of the positive integers. Sequences of this type were studied in a
1983 paper by Erdős, Freud, and Hegyvári, which included the examples A036552 (a(2n) =
smallest missing number, a(2n + 1) = 2a(2n)) and A064736 (a(2n + 2) = smallest missing
number, a(2n + 1) = a(2n) · a(2n + 2)). For these two it is clear that there are no missing
numbers. This is less obvious, but still true, for Jonathan Ayres’s EKG sequence, A064413,
defined to be the lexicographically earliest sequence of distinct positive integers such that

gcd(a(n− 1), a(n)) > 1 for all n ≥ 3 .

6Thanks to Jean-Paul Allouche for this argument.
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Figure 10: The first 10000 terms of the EKG sequence, so named because locally this graph
resembles an EKG. Every number appears exactly once.

This begins

1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20, 22, 11, 33, 27, . . . .

The proof that it is a permutation is omitted–it is similar to the proof for the Yellowstone
sequence given below.

Next, one can investigate the rate of growth. In the case of A064413, the points appear to
lie roughly on three curved lines (Figure 10), although the following conjecture of Lagarias,
Rains, and Sloane (2002) is still open.

Conjecture 1. In the EKG sequence A064413, if a(n) is neither a prime nor three times a
prime then

a(n) ∼ n

(
1 +

1

3 log n

)
;

if a(n) is a prime then

a(n) ∼ 1

2
n

(
1 +

1

3 log n

)
;

and if a(n) is 3 times a prime then

a(n) ∼ 3

2
n

(
1 +

1

3 log n

)
.

Furthermore, if the sequence is a permutation, one can also try to study its cycle struc-
ture. However, this often leads to very difficult questions, similar to those encountered in
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studying the Collatz conjecture, and we can’t do much more than collect experimental data.
Typically there is a set of finite cycles, and one or more apparently infinite cycles, but we
can’t prove that the apparently infinite cycles really are infinite, nor that they are distinct.
See the entries for A064413 and A098550 for examples.

Figure 11: Plot of terms a(101) through a(200) of the Yellowstone sequence. The sequence
has a downward spike to a(n) when a(n) is a prime, and larger upward spikes (the “geysers”,
which suggests the name for this sequence) two steps later.

The definition of the Yellowstone sequence (Reinhard Zumkeller, 2004, A098550, [1]) is
similar to that of the EKG sequence, but now the requirement is that, for n > 3,

gcd(a(n− 2), a(n)) > 1 and gcd(a(n− 1), a(n)) = 1 .

This begins

1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7, 10, 21, 20, 27, 22, 39, 11, . . . .

Figure 11 shows terms a(101) = 47 through a(200) = 279, with successive points joined by
lines.

Theorem 2. The Yellowstone sequence A098550 is a permutation of the positive integers.

The proof is typical of the arguments used to prove that several similar sequences are
permutations, including the EKG sequence above.

Proof. There are several steps.
(i) The sequence is infinite. (For p a(n−2) is always a candidate for a(n), where p is a prime
larger than any divisor of a(i), i < n.)
(ii) There are infinitely many different primes that divide the terms of the sequence. (If
not, there is a prime p such that all terms are products of primes less than p. Using (i),
find a term a(n) > p2, and let q be a common prime factor of a(n − 2) and a(n). But now
pq < p2 < a(n) is a smaller candidate for a(n), a contradiction.)
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Figure 12: Scatterplot of the first 300,000 terms of the Yellowstone sequence. The primes
lie on the lowest line (labeled “p”), the even numbers on the second line (“E”), the majority
of the odd composite numbers on the third line (“C”), and the 3p, 5p, 7p, 11p, . . . points on
the higher lines. The lines are not actually straight, except for the red line f(x) = x, which
is included for reference.

(iii) For any prime p, some term is divisible by p. (For if not, no prime q > p can divide any
a(n): if a(n) = kq is the first multiple of q to appear, kp would be a smaller candidate for
a(n). This contradicts (ii).)
(iv) For any prime p, p divides infinitely many terms. (If not, let pi be larger than any
multiple of p in the sequence, and choose a prime q > pi. Again we obtain a contradiction.)
(v) Every prime p is a term in the sequence. (Suppose not, and using (i), choose n0 such
that a(n) > p for all n > n0. Using (iv), find a(n) = kp, k > 1, for some n > n0. But then
a(n+ 2) = p, a contradiction.)
(vi) All numbers appear. For if not, let k be the smallest missing number, and choose n0 so
that all of 1, . . . , k−1 have occurred in a(1), . . . , a(n0). Let p be a prime dividing k. Since, by
(iv), p divides infinitely many terms, there is a number n1 > n0 such that gcd(a(n1), k) > 1.
This forces

gcd(a(n), k) > 1 for all n ≥ n1. (2)
(If not, there would be some j ≥ n1 where gcd(a(j), k) > 1 and gcd(a(j + 1), k) = 1, which
would lead to a(j +2) = k.) But (2) is impossible, because we know from (v) that infinitely
many of the a(n) are primes.
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The growth of this sequence is more complicated than that of the EKG sequence. Fig-
ure 12 shows the first 300,000 terms, without lines connecting the points. The points appear
to fall on or close to a number of distinct curves. There is a conjecture in [1, p. 5] that would
explain these curves.

6 Three Further Lexicographically Earliest Sequences
Here are three further examples of this type, all of which are surely permutations of the
positive integers. For the first there is a proof, for the second there is “almost” a proof, but
the third may be beyond reach.

The first (Leroy Quet, 2007, A127202) is the lexicographically earliest sequence of distinct
positive integers such that

gcd(a(n− 1), a(n)) ̸= gcd(a(n− 2), a(n− 1)) for n ≥ 3 .

It begins

1, 2, 4, 3, 6, 5, 10, 7, 14, 8, 9, 12, 11, 22, 13, 26, 15, 18, 16, 17, 34, 19, . . . .

For the second (Rémy Sigrist, 2017, A280864), the definition is

if a prime p divides a(n), then it divides exactly one of a(n− 1) and a(n+ 1), for n ≥ 2 ,

and the initial terms are

1, 2, 4, 3, 6, 8, 5, 10, 12, 9, 7, 14, 16, 11, 22, 18, 15, 20, 24, 21, 28, 26, . . . .

The proof that the first is a permutation is similar to that for the Yellowstone sequence,
although a bit more involved (see A127202). The second struck me as one of those “drop
everything and work on this” problems that are common hazards when editing new sub-
missions to the OEIS. However, after several months, I could prove that every prime and
every even number appears, and that if p is an odd prime then there are infinitely many
odd multiples of p (see A280864 for details), but I could not prove that every odd number
appears. The missing step feels like it is only a couple of cups of coffee away, and I’m hoping
that some reader of this article will complete the proof.

The third example (Henry Bottomley, 2000, A055265) is the lexicographically earliest
sequence of distinct positive integers such that a(n− 1) + a(n) is a prime for n ≥ 2:

1, 2, 3, 4, 7, 6, 5, 8, 9, 10, 13, 16, 15, 14, 17, 12, 11, 18, 19, 22, 21, 20, . . . , .

The terms appear to lie on or near the line a(n) = n, but the proof that every number
appears may be difficult because it involves the gaps between the primes.
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7 Two-Dimensional Lexicographically Earliest Arrays
The OEIS is primarily a database of sequences (an, n ≥ n0). However, triangles of numbers
are included by reading them by rows. Pascal’s triangle becomes 1, 1, 1, 1, 2, 1, 1, 3, 3, 1,
1, 4, 6, 4, 1, . . ., which (without the extra spaces) is A007318. Doubly-indexed arrays (Tm,n,
m ≥ m0, n ≥ n0) are converted to sequences by reading them by antidiagonals (in either the
upwards or downwards directions, or both). So an array (Tm,n,m ≥ 0, n ≥ 0) might become
T0,0, T1,0, T0,1, T2,0, T1.1, T0,2, . . .. For example, the table of Nim-sums m⊕ n:

0 1 2 3 4 5 6 7 · · ·
1 0 3 2 5 4 7 6 · · ·
2 3 0 1 6 7 4 5 · · ·
3 2 1 0 7 6 5 4 · · ·
4 5 6 7 0 1 2 3 · · ·
5 4 7 6 1 0 3 2 · · ·
6 7 4 5 2 3 0 1 · · ·
7 6 5 4 3 2 1 0 · · ·
· · · · · · · · · · ·

(3)

produces the sequence A003987:

0, 1, 1, 2, 0, 2, 3, 3, 3, 3, 4, 2, 0, 2, 4, 5, 5, 1, 1, 5, 5, 6, 4, 6, 0, 6, 4, 6, . . . .

Doubly-indexed doubly-infinite arrays (Tm,n,m ∈ Z, n ∈ Z) can become sequences by reading
them in a spiral around the origin, in say a counter-clockwise direction: T0,0, T1,0, T1,1, T0,1,
T−1,1, T−1,0, T−1,−1, T0,−1, . . . (cf. Figure 13).

There are many “lexicographically earliest” versions of these arrays. For example, the
Nim-sum array (3) has an equivalent definition: scan along upwards antidiagonals, filling in
each cell with the smallest nonnegative number that is neither in the row to the left of that
cell nor in the column above it.

A variation on the Nim-sum array was proposed by Alec Jones in 2016, as a kind of
“infinite Sudoku array”. This array (Tm,n,m ≥ 0, n ≥ 0) is to be filled in by upwards antidi-
agonals, always choosing the smallest positive integer such that no row, column, diagonal,
or antidiagonal contains a repeated term. The top left corner of the array is:

1 3 2 6 4 5 10 11 · · ·
2 4 5 1 8 3 6 12 · · ·
3 1 6 2 9 7 5 4 · · ·
4 2 3 5 1 8 9 7 · · ·
5 7 1 4 2 6 3 15 · · ·
6 8 9 7 5 10 4 16 · · ·
7 5 4 3 6 14 8 9 · · ·
8 6 7 9 11 4 13 3 · · ·
· · · · · · · · · · ·

(4)

The resulting sequence (A269526) is

1, 2, 3, 3, 4, 2, 4, 1, 5, 6, 5, 2, 6, 1, 4, 6, 7, 3, 2, 8, 5, 7, 8, 1, 5, 9, 3, 10, . . . .

12

http://oeis.org/A007318
http://oeis.org/A003987
http://oeis.org/A269526


This array has many interesting properties. If we subtract 1 from each entry, the entries
are the Nim-values for a game played with two piles of counters, of sizes m and n, and
reminiscent of Wythoff’s game (see A004481, A274528).

But the main question about the array (4) is, are the individual rows, columns, and
diagonals of this array permutations of N? (The antidiagonals are obviously not, since they
are finite sequences.) It is easy to see that each column is a permutation. In column c ≥ 0,
a number k will eventually be the smallest missing number and will appear in some cell in
that column, unless there is a copy of k to the North-West, West, or South-West of that cell.
But there are at most c copies of k in all the earlier columns, so eventually k will appear.

The rows are also permutations, although the proof is less obvious. Consider row r ≥ 0,
and suppose k never appears. There are at most r copies of k in the earlier rows, and these
can affect only a bounded portion of row r. Consider a cell (r, n), n ≥ 0 large. If k is not to
appear in that cell, there must be a copy of k in the antidiagonal to the South-West. So in
the triangle bounded by row r, column 0, and the antidiagonal through (r, n), there must be
at least n + 1 − r copies of k. Imagine these ks replaced by chess queens. By construction
they are mutually non-attacking. But it is known ([6, Problem 252], or A274616) that on a
triangular half-chessboard of side n, there can be at most 2n/3 + 1 mutually non-attacking
queens, which for large n leads to a contradiction.

As to the diagonals, although they appear to be permutations, this is an open question.
The argument using non-attacking queens breaks down because the diagonal of the half-
chessboard contains only half as many squares as the sides. Even the main diagonal, A274318,

1, 4, 6, 5, 2, 10, 8, 3, 7, 9, 16, 26, 29, 22, 20, 23, 28, 38, 12, 32, 46, 13, 14, 11, 15, . . . ,

is not presently known to be a permutation of N.
The spiral version of this array is even more frustrating. This array ((T (m,n),m ∈ Z, n ∈

Z), A274640, proposed by Zak Seidov and Kerry Mitchell in June 2016), is constructed in
a counterclockwise spiral, filling in each cell with the smallest positive number such that no
row, column, or diagonal contains a repeated term (Figures 13, 14). (“Diagonal” now means
any line of cells of slope ±1.)

Although it seems very plausible that every row, column, and diagonal is a permutation
of N, now there are no proofs at all. The eight spokes through the center are sequences
A274924–A274931. For example, the row through the central cell is

. . . , 14, 25, 13, 17, 10, 15, 7, 6, 5, 3, 1, 2, 4, 8, 11, 12, 16, 9, 19, 24, 22, . . . ,

which is A274928 reversed followed by A274924. Is it a permutation of N? We do not know.

8 Fun With Digits
Functions of the digits of numbers have always fascinated people,7 and one such function
was in the news in 2017. The idea underlying this story and several related sequences is to

7Although in A Mathematician’s Apology, G. H. Hardy, referring to the fact that 1089 and 2178 are
the smallest numbers which when written backwards are nontrivial multiples of themselves (cf. A008919),
remarked that this fact was “likely to amuse amateurs”, but was not of interest to mathematicians.
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Figure 13: A274640: choose smallest positive number so that no row, column, or diagonal
contains a repeat. Are the rows, columns, diagonals permutations of N?

start with some simple function f(n) of the digits of n in some base, iterate it, and watch
what happens.

For the first example we write n as a product of prime powers, n = pe11 pe22 · · · with the pi
in increasing order, and define f(n) to be the decimal concatenation p1e1p2e2 . . ., where we
omit any exponents ei that are equal to 1. So f(7) = f(71) = 7, f(8) = f(23) = 23.

The initial values of f(n) (A080670) are

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .
f(n) : 1 2 3 22 5 23 7 23 32 25 11 223 13 27 35 24 17 232 . . .

If we start with a positive number n and repeatedly apply f , in many small cases we rapidly
reach a prime (or 1).8 For example, 9 = 32 → 32 = 25 → 25 = 52 → 52 = 2213 → 2213, a
prime. Define F (n) to be the prime that is eventually reached, or −1 if the iteration never
reaches a prime. The value −1 will occur if the iterates are unbounded or if they enter a
cycle of composite numbers. The initial values of F (n) (A195264) are

1, 2, 3, 211, 5, 23, 7, 23, 2213, 2213, 11, 223, 13, 311, 1129, 233, 17, 17137, 19, . . . .

F (20) is currently unknown (after 110 steps the trajectory of 20 has stalled at a 192-digit
number which has not yet been factored). At a DIMACS conference in October 2014 to
celebrate the 50th anniversary of the start of what is now the OEIS, John H. Conway offered
$1000 for a proof or disproof of his conjecture that the iteration of f will always reach a
prime.

However, in June 2017 James Davis found a number D0 = 13532385396179 whose prime
factorization is 13 · 532 · 3853 · 96179, and so clearly f(D0) = D0 and F (D0) = −1.

8In what follows we will tacitly assume n ≥ 2, to avoid having to repeatedly say “(or 1)”.
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Figure 14: Colored representation of central 200×200 portion of the spiral in Figure 13: the
colors represent the values, ranging from black (smallest) to white (largest).

The method used by James Davis to find D0 is quite simple. Suppose n = m · p is fixed
by f , where p is a prime greater than all the prime factors of m. Then f(n) = f(m)10y + p,
where y is the number of digits in p. From f(n) = n we have p = f(m)10y

m−1
. Assuming p ̸= 2, 5,

this implies that p divides f(m), and setting x = f(m)/p, we find that m = x10y + 1 with
p = f(m)

x
prime. A computer easily finds the solution x = 1407, y = 5, m = 140700001,

p = 96179, and so n = D0.
No other composite fixed points are known, and David J. Seal has recently shown that

there is no composite fixed point less than D0. It is easy, however, to find numbers whose
trajectory under f ends at D0, by repeatedly finding a prime prefix of the previous number,
as shown by the example9 D1 = 13532385396179 with f(D1) = D0. So presumably there are
infinitely many n with F (n) = −1.

Consideration of the analogous questions in other bases might have suggested that coun-
terexamples to Conway’s question could exist. We will use subscripts to indicate the base

9Found by Hans Havermann.
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(so 410 = 1002). The base-2 analog of f , f2 (say), is defined by taking f2(p
e1
1 pe22 · · · ) to be

the concatenation p1e1p2e2 . . ., as before (again omitting any ei that are 1), except that now
we write the pi and ei in base 2 and interpret the concatenation as a base-2 number. For
example, f2(8) = f2(2

3) = 10112 = 1110.
The initial values of f2(n) (A230625) are

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .
f2(n) : 1 2 3 10 5 11 7 11 14 21 11 43 13 23 29 20 17 46 . . .

and the base-2 analog of F , F2 (A230627) is the prime (or 1) that is reached when f2 is
repeatedly applied to n, or −1 if no prime (or 1) is reached:

1, 2, 3, 31, 5, 11, 7, 11, 23, 31, 11, 43, 13, 23, 29, 251, 17, 23, . . . .

Now there is a fairly small composite fixed point, namely 255987, found by David J. Seal.
Sean A. Irvine and Chai Wah Wu have also studied this sequence, and the present status is
that F2(n) is known for all n less than 12388. All numbers in this range reach 1, a prime, the
composite number 255987, or one of the two cycles 1007 ←→ 1269 or 1503 ←→ 3751. The
numbers for which F2(n) = −1 are 217, 255, 446, 558, . . . (A288847). Initially it appeared
that 234 might be on this list, but Irvine found that after 104 steps the trajectory reaches
the 51-digit prime

350743229748317519260857777660944018966290406786641 .

9 Home Primes
A rather older problem arises if we change the definition of f(n) slightly, making f(8) = 222
rather than 23. So if n = p1 · p2 · p3 · . . ., where p1 ≤ p2 ≤ p3 ≤ . . ., then f(n) is the decimal
concatenation p1p2p3 . . . (A037276). In 1990, Jeffrey Heleen studied the analog of F (n) for
this function: that is, F (n) is the prime reached if we start with n and repeatedly apply f ,
or −1 if no prime is ever reached (A037274).

The trajectory of 8 now takes 14 steps to reach a prime (the individual prime factors
here have been separated by spaces):

8→ 2 2 2→ 2 3 37→ 3 19 41→ 3 3 3 7 13 13→ 3 11123771→ 7 149 317 941→
→ 229 31219729→ 11 2084656339→ 3 347 911 118189→ 11 613 496501723→
→ 97 130517 917327→ 53 1832651281459→ 3 3 3 11 139 653 3863 5107

→ 3331113965338635107 ,

the last number being a prime.
Since f(n) > n if n is composite, now there cannot be any composite fixed points nor

any cycles of length greater than 1. The only way for F (n) to be −1 is for the trajectory
of n to be unbounded. This appears to be a harder problem than the one in the previous
section, since so far no trajectory has been proved to be unbounded. The first open case is
n = 49, which after 119 iterations has reached a 251-digit composite number (see A056938).
The completion of the factorization for step 117 took 765 days by the general number field
sieve, and at the time (December 2014) was one of the hardest factorizations ever completed.
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10 Power Trains
A third choice for f(n) was proposed by John H. Conway in 2007: he called it the power
train map. If the decimal expansion of n is d1d2d3 . . . dk (with 0 ≤ di ≤ 9, 0 < d1), then
f(n) = dd21 · dd43 · · · , ending with . . . · dk if k is odd, or with . . . · ddkk−1 if k is even (A133500)..
We take 00 to be 1. For example, f(39) = 39 = 19683, f(623) = 62 · 3 = 108. Conway
observed that 2592 = 2592 is a non-trivial fixed point, and asked me if there were any
others. I found one more: n = 246 · 36 · 510 · 72 = 24547284284866560000000000, for which
f(n) = 24 · 54 · 72 · 84 · 28 · 48 · 66 · 56 · 00 · 00 · 00 · 00 · 00 = n. The eleven known fixed points
(including the trivial values 1, . . . , 9) form A135385, and it is known that there are no further
terms below 10100. Maybe this is a hint that for all of the functions f(n) that have just been
mentioned, there may be only a handful of genuinely exceptional values?

11 A Memorable Prime
If you happen to need an explicit 20-digit prime in a hurry, it is useful to remember that
although 1, 121 = 112, 12321 = 1112, 1234321 = 11112, . . . , and 12345678987654321 =
1111111112 are not primes, the next term in A173426 is a prime,

12345678910987654321 .

As David Broadhurst remarked on the Number Theory Mailing List in August 2015, this
is a memorable prime! He also pointed out that on probabilistic grounds, there should be
infinitely many values of n such that the decimal concatenation of the numbers 1 up through
n followed by n − 1 down through 1 is a prime. Shortly afterwards, Shyam Sunder Gupta
found what is presumably the next prime in the sequence, corresponding to n = 2446, the
17350-digit probable prime 1234567..244524462445..7654321. Serge Batalov has shown that
there are no further terms with n < 60000. What is the next term? The values 10, 2446 are
not enough to create an OEIS entry.

12 A Missing Prime
The previous question naturally led me to wonder what the first prime is in the simpler
sequence (A007908):

1, 12, 123, 1234, . . . , 12345678910, 1234567891011, . . . ,

formed by the decimal concatenation of the numbers 1 through n. In Unsolved Problems in
Number Theory, Richard K. Guy reports that this question was already asked by Charles
Nicol and John Selfridge. However, although the same probabilistic argument suggests that
there should be an infinite number of primes of this type, not a single one is known. I asked
several friends to help with the search, and as a result this task was taken up by the folks who
run the GIMP (or Great Internet Mersenne Prime) search, and there is now a web page10

10http://mersenneforum.org/showthread.php?t=20527.
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that shows the current status of the search for the first prime. As of August 2017 the search
seems to have stalled, the present status being that all the potential values of n through
344869 failed (obviously many values of n can be ruled out by congruence conditions). In
this range the candidates have about two million digits. One estimate suggests that there is
a probability of about 0.5 that a prime will be found with n < 106, so it would be good to
resume this search.

13 Post’s Tag System
In his recent book Elements of Mathematics: From Euclid to Gödel11, John Stillwell mentions
that Emil L. Post’s tag system from the 1930s is still not understood. Post asked the following
question. Take a finite string, or word, S of 0s and 1s, and if it begins with 0, append 00 to
the end of S and delete the first three symbols, or if it begins with 1, append 1101 to the
end of S and delete the first three symbols. When this process is iterated, eventually one of
three things will happen: either S will reach the empty word (S dies), S will enter a loop
(S cycles), or S will keep growing for ever (S blows up). For example, S = 1000 reaches the
empty word ϵ at the 7th step:

1000→ 01101→ 0100→ 000→ 00→ 0→ ϵ ,

whereas 100100 enters a cycle of length six (indicated by parentheses) after 15 steps:

100100→ 1001101→ 11011101→ 111011101→ 0111011101→ 101110100→ 1101001101

→ 10011011101→ 110111011101→ 1110111011101→ 01110111011101

→ 1011101110100→ 11011101001101→ 111010011011101→ 0100110111011101

→ (011011101110100→ 01110111010000→ 1011101000000→ 11010000001101

→ 100000011011101→ 0000110111011101) . (5)

Post was hoping to find an algorithm which, given S, would determine which of these out-
comes would occur. He did not succeed.

Post called this process a ‘tag system.’ It can be generalized by considering initial words
over an alphabet of size M (rather than 2), allowing any fixed set A of M tag words to be
appended (rather than 00 and 1101), and deleting some fixed number P of initial symbols
at each step (not necessarily 3). In 1961, Marvin Minsky showed that such a generalized
tag system could simulate a Turing machine. By choosing an appropriate alphabet, an
appropriate set A of tag words to be appended, and an appropriate value of P (in fact
P = 2 will do), any computable function can be simulated. So, because of the undecidability
of the Halting Problem, for general tag systems it is impossible to predict which initial words
will blow up.

But what about Post’s original tag system? Could this simulate a Turing machine (by
encoding the problem in the initial word S)? At first this seems very unlikely, but the
Cook-Wolfram theorem that the one-dimensional cellular automaton defined by Rule 110

11A superb successor to Felix Klein’s 1908 Elementary Mathematics from an Advanced Standpoint.
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can simulate a Turing machine (by encoding the problem in the starting state) suggests that
it might be possible. If it is possible, there must be some initial words that blow up (again
because of the Halting Problem).

In early 2017, when I read Stillwell’s book„ the OEIS contained three sequences related
to the original tag system, based on the work of Peter Asveld and submitted by Jeffrey
Shallit: A284116, giving the maximal number of words in the ‘trajectory’ of any initial
word S of length n (18 terms were known), and two sequences connected with the especially
interesting starting word σn of length 3n consisting of n copies of 100. A284119(n) is defined
to be the number of words in the trajectory of σn before it enters a cycle or dies, or −1 if
the trajectory blows up, and A284121(n) is the length of the cycle, or 1 if the trajectory
dies, or −1 if the trajectory blows up. For example, from (5) we see that A284119(2) = 15
and A284121(2) = 6. Shallit had extended Asveld’s work and had found 43 terms of the two
last-mentioned sequences.

I then added many further sequences based on tag systems discussed by Asveld, Liesbeth
De Mol, Shigeru Watanabe, and others, and appealed to contributors to the OEIS to extend
them.

The most interesting response came from Lars Blomberg, who investigated the trajectory
of σn for n ≤ 110. On September 9 2017 he reported that every σn for n ≤ 110 had either
died or cycled after at most 13 million terms, except for σ110, which after 38.1011 steps had
reached a word of length 107 and was still growing. This was exciting news! Could σ110 be
the first word to be discovered that blew up?12 Sadly, on October 4 2017, Blomberg reported
that after 43913328040672 steps σ110 had terminated in the empty word.

Figure 15 displays the remarkable graph (technically, a pin plot) of the number of steps
for σn to either die or cycle for n ≤ 200. Figure 16 shows the lengths of the successive words
in the trajectory of σ110.

In the past six months Blomberg has continued this investigation and has determined
the fate of σn for all n ≤ 6075. The new record-holder for the number of steps before the
trajectory dies is now held by σ4974, which takes 57042251906801 steps, while σ110 is in second
place.

Of course it is still possible that some initial word S, not necessarily of the form σn,
will blow up, but this seems increasingly unlikely. So Post’s tag system probably does not
simulate a Turing machine.

The question as to which σn die and which cycle remains a mystery. Up to n = 6075,
Blomberg’s results show that about one-sixth of the values of n die and five-sixths cycle.
The precise values can be found in A291792. It would be nice to understand this sequence
better.

14 Coordination Sequences
This final section is concerned with coordination sequences, which arise in crystallography
and in studying tiling problems, have beautiful illustrations, and lead to many unsolved

12Of course the fact that the same number 110 was involved could not possibly be anything more than a
coincidence.
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Figure 15: Pin plot illustrating Lars Blomberg’s remarkable discovery that the Post tag
system started at the word (100)110 takes an exceptionally long time (43913328040672 steps)
to converge.

Figure 16: Lengths of successive words in trajectory of (100)110 under the Post tag system.
The numbers on the horizontal axis are spaced at multiples of 1012.

mathematical questions.
The “Cairo” tiling, so called because it is said to be used on many streets in that city, is
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shown in Figure 17. Let G denote the corresponding infinite graph (with vertices for points
where three or more tiles meet, and edges between two vertices where two tiles meet). The
figure is also a picture of the graph.

The distance between vertices P,Q ∈ G is defined to be the number of edges in the
shortest path joining them. The coordination sequence of G with respect to a vertex P ∈ G
is then the sequence a(n) (n ≥ 0) giving the number of vertices Q at distance n from P .
Coordination sequences have been studied by crystallographers for many years [5].

Figure 17: A portion of the Cairo tiling.

The graph of the Cairo tiling has two kinds of vertices, trivalent (where three edges meet)
and tetravalent. As can be seen from Figure 17, the coordination sequence with respect to
a tetravalent vertex begins 1, 4, 8, 12, 16, 20, 24, . . ., which appears to be the same as the
coordination sequence A008574 for a vertex in the familiar square grid. This observation
seemed to be new. Chaim Goodman-Strauss and I thought that such a simple fact should
have a simple proof, and we developed an elementary “coloring book” procedure [4] which not
only proved this result but also established a number of conjectured formulas for coordination
sequences of other tilings mentioned in entries in the OEIS. The “coloring book” drawing of
the Cairo graph of the Cairo graph centered at a tetravalent vertex is shown in Figure 18.
This coloring makes it easy to prove that the coordination sequence is given by a(n) = 4n
for n ≥ 1 (see [4] for details).

For a trivalent vertex in the Cairo tiling, the coordination sequence is

1, 3, 8, 12, 15, 20, 25, 28, 31, 36, 41, 44, 47, 52, 57, 60, 63, 68, . . .

(this is now A296368), and we [4] show that for n ≥ 3, a(n) = 4n if n is odd, 4n− 1 if n ≡ 0
(mod 4), and 4n+ 1 if n ≡ 2 (mod 4).

One can similarly define coordination sequences for other two- and higher-dimensional
structures, and the OEIS presently contains over 1300 such sequences. Many more could be
added. There are many excellent web sites with lists of tilings and crystals. Brian Galebach’s
web site13 is especially important, as it includes pictures of all “k-uniform” tilings with k ≤ 6,
with over 1000 tilings. Darrah Chavey’s article [2] and the Michael Hartley and Printable

13http://probabilitysports.com/tilings.html.
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Figure 18: The “coloring book” method applied to a tetravalent vertex (the red dot) in the
Cairo tiling, used to prove that the coordination sequence is the same as that for the square
grid.

Paper web sites14 have many further pictures, and the RCSR and ToposPro databases15 have
thousands more.

Only last week (on May 4, 2018), Rémy Sigrist investigated the Ammann-Beenker (or
“octagonal”) tiling shown in Figure 19, an aperiodic tiling with eight-fold rotational symme-
try about the central point.

Sigrist determined the initial terms of the coordination sequence with respect to the
central vertex (A303981):

1, 8, 16, 32, 32, 40, 48, 72, 64, 96, 80, 104, 112, 112, 128, 152, . . . (6)

Figure 20 shows the vertices at distances 0, 1, 2, . . . , 6 from the center.
No formula or growth estimate is presently known for this sequence. However, earlier

this year Anton Shutov and Andrey Maleev determined the asymptotic behavior of the
coordination sequence (A302176) with respect to a vertex with five-fold rotational symmetry
in a certain Penrose tiling. So we end with a question: Can the Shutov-Maleev approach
be used to find the asymptotic growth of (6)? Of course an explicit formula would be even
nicer.
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Figure 19: The Ammann-Beenker or “octahedral” tiling.

Reble, Jon E. Schoenfield, and Allan C. Wechsler for their help. (Many other names could
be added to this list.)
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