The OEIS, Mathematical Discovery, and Insomnia

Neil J.A. Sloane
The OEIS Foundation and Rutgers University

ACMES Conference, May 2016

Outline

- Introduction
- Coincidences
- Low-hanging fruit from new sequences
- Strange recurrences
- Sequences from number theory
- Music and videos

Introduction

oeis.org

Facts about the OEIS

- Accurate information about 272000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, music!
- 50 new entries, 50 updates every day
- Traffic: $155 \mathrm{~GB} /$ month, 9 million hits/month
- 5000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Maintained by NJAS and a dedicated group of unpaid editors. More editors are badly needed.

The new poster, on the OEIS
Foundation web site,
http://oeisf.org

OEIS.org

Pictures from the OEIS oeis.org/OEIS_pics.html (Michael De Vlieger)

Coincidences

- Nolan Wallach, Variety of commuting matrices
- A.S. Fraenkel, From enmity to amity
- P. Aluffi, Degrees of projections of rank loci
- Ping Sun, Enumeration of standard Young tableaux of shifted strips with constant width
- Sandpiles and Dominoes

Nolan Wallach, A029729, I999

Degree of the variety of commuting nXn matrices

1, 3, 31, 1145 (10 workstations running for 5 hours, 1993)
Also, ratio of vector elements of the ground state in the loop representation of the braid-monoid Hamiltonian
$\mathrm{H}=$ Sum_i $\left(3-2 \mathrm{e} _\mathrm{i}-\mathrm{b} _\right.$i) with size 2 n and periodic boundary conditions. (B. Nienhuis and J. de Gier, 2005)

Martins, Nienhuis, Rietman, An intersecting loop model as a solvable super spin chain, Phys. Rev. Lett. 1998.
di Francesco, Zinn-Justin, Inhomogeneous model of crossing loops and multidegrees of some algebraic varieties, 2004.
Razumov, Stroganov, Combinatorial nature of ground state vector of $\mathrm{O}(\mathrm{I})$ loop model, Theor. Math. Phys. 2004.

1, 3, 31, 1145, 154881, 77899563, 147226330175, 1053765855157617, 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463

Aviezri Fraenkel

From Enmity to Amity, Am. Math. Monthly, 2010

Sloane's influential On-Line Encyclopedia of Integer Sequences is an indispensable research tool in the service of the mathematical community. The sequence A0016II listing the "Fibonacci numbers + I" contains a very large number of references and links. The sequence A00007I for the "Fibonacci numbers - I" contains an even larger number. Strangely, resentment seems to prevail between the two sequences; they do not acknowledge each other's existence, ... Using an elegant result of Kimberling, we prove a theorem that links the two sequences amicably. We relate the theorem to a result about iterations of the floor function, which introduces a new game.

P. Aluffi, Degrees of projections of rank loci, arXiv:I 408.1702

"After compiling the results of many explicit computations, we noticed that many of the numbers d_\{n,r,S\} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slol4]."

Ping Sun (Shenyang, China), Enumeration of standard Young tableaux of shifted strips with constant width, arXiv 2015, finds same sequences as enumerated by R. H. Hardin when counting $\mathrm{n} \times \mathrm{k}$ matrices containing a permutation of $\mathrm{I}, \ldots, \mathrm{nk}$ in increasing order rowwise, columnwise, diagonally and (downwards) antidiagonally, with empirical recurrences.

It has long been a conviction of mine that the effortreducing forces we have seen so far are just the beginning. One w From Tim Gowers's Blog, May 102016 d more fully is in the creation of amazing new databases, something I once asked a Mathoverflow question about. I recently had cause (while working on a research project with a student of mine, Jason Long) to use Sloane's database in a serious way. That is, a sequence of numbers came out of some calculations we did, we found it in the OEIS, that gave us a formula, and we could prove that the formula was right. The great thing about the OEIS was that it solved an NP-ish problem for us: once the formula was given to us, it wasn't
that hard to prove that it was correct for our sequence, but finding it in the first place would have been extremely hard without the OEIS.

Tiling a Square with Dominoes

36 ways to tile a 4X4 square

$$
a(2)=36
$$

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000 , ..
(A4003)

$$
a(n)=\prod_{j=1}^{n} \prod_{k=1}^{n}\left(4 \cos ^{2} \frac{j \pi}{2 n+1}+4 \cos ^{2} \frac{k \pi}{2 n+1}\right)
$$

(Kastelyn, 1961)

Last year:

Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, Tianyuan Xu, Sandpiles and Dominoes, 2015
$1,2,36,6728,12988816,258584046368$,
$53060477521960000 / 5, \ldots!!$
(A256043)

$$
\begin{gathered}
\text { \# grains } \\
\boldsymbol{\square}=0 \\
\square=1 \\
\square=2 \\
\square=3
\end{gathered}
$$

$$
\begin{aligned}
& \text { Two Sequences That Agree For } \\
& \text { a Long Time } \\
& \left\lfloor\frac{2 n}{\log 2}\right\rfloor=\text { A078608 } \\
& \left.\left\lvert\, \frac{2}{2^{1 / n}-1}\right.\right] \quad \begin{array}{l}
\text { Differs for first time at } \mathrm{n}= \\
77745 \text { I915729368 }
\end{array} \\
& \text { (see AI29935) }
\end{aligned}
$$

Low-Hanging Fruit from the OEIS

Some new problems for the ghosts of Fermat, Gauss, Euler, ...

Strange Recurrences

- Modified Fibonacci
- Reed Kelley
- A recurrence that looks ahead
- Van Eck's sequence

Modified Fibonacci

$$
a(n)=a(n-1)+a(a(n-1) \bmod n) \text { with } a(0)=0, a(1)=1
$$

Al25204, Leroy Quet, 2007

Explain!

Log plot of 5000 terms
Similar to A268176, January 2016, also not analyzed

Reed Kelley's Sequence A2I455I

14th century Narayana cows sequence A930:

$$
\begin{aligned}
& a(n)=a(n-1)+ a(n-3) \\
& \\
& \text { I, I, I, 2, 3, 4, 6, 9, I3, I9, 28, } \ldots
\end{aligned}
$$

Reed Kelley, 2012:

$$
a(n)=\frac{a(n-1)+a(n-3)}{\operatorname{gcd}\{a(n-1), a(n-3)\}}
$$

A recurrence that looks ahead $\mathrm{a}(2 \mathrm{k})=\mathrm{k}+\mathrm{a}(\mathrm{k}), \mathrm{a}(2 \mathrm{k}+1)=\mathrm{k}+\mathrm{a}(6 \mathrm{k}+4)$ with $\mathrm{a}(1)=0$.

A271473, suggested by $3 x+1$ sequence $A 6370$ and new A266569

Explain!

Jan Ritsema van Eck's Sequence

$0,0,1,0,2,0,2,2,1,6,0,5$, $0,2,6,5,4,0,5,3,0,3,2,9$, $0,4,9,3,6,14,0,6,3,5,15,0$, $5,3,5,2,17,0,6,11,0,3,8,0, \ldots$
$a(n)$: how far back did we last see $a(n-I)$? or 0 if $\mathrm{a}(\mathrm{n}-\mathrm{I})$ never appeared before.

Van Eck: Al8I39|

A181391 as a graph:

Pin plot of A181391

Scatterplot of $\log ($ A181391(n)+1)

Thm. (Van Eck) There are infinitely many zeros.

Proof: (i) If not, no new terms, so bounded. Let $M=$ max term.
Any block of length M determines the sequence.
Only M^M blocks of length M.
So a block repeats.
So sequence becomes periodic.
Period contains no 0's.

Van Eck: Al8I39|

Proof (ii). Suppose period has length p and starts at term r.

Therefore period really began at term r-I.
Therefore period began at start of sequence. But first term was 0 , contradiction.

Van Eck: Al8I39|

It seems that:

$$
\lim \sup a(n) / n=1
$$

Gaps between 0's roughly log_10 n
Every number eventually appears

Proofs are lacking!
Van Eck: Al8I39|

Conjecture:

There is no nontrivial cycle

(David Applegate: Only trivial cycles of length up through 14)

Number Theory

- Sum of primes in sum of previous terms
- Yosemite graph?
- Leroy Quet's prime-producing sequence
- 999999000000
- A memorable prime
- When is 12345 ...n a prime?
- The Fouriest transform

New sequence related to potency of n

"Potency" of $n=$ "Integer log" of $n=$ sum of primes dividing n (with repetition) MacMahon 1923

$$
0,2,3,4,5,5,7,6,6,7,11,7,13, \ldots
$$

$a(n)=$ sum of prime factors of sum of all previous terms

(with repetition, starting I, I)

$1,1,2,4,6,9,23,25,71,73,48,263,265,120,911,913,552,192,85,27,35,53,296,66$, $455,289,48,188,5021,5023,159,190,379,946,900,600,97,204,118,512,87,148,3886$, 23291, 23293, 71, 896, 11812, 60, 41359,

$$
\begin{gathered}
1+1+2+4+6=14=2 \times 7 \text { gives } 2+7=9 \\
\text { A268868, David Sycamore, Feb } 2016
\end{gathered}
$$

Explain!

Generalize!

Yosemite Graph??

Numbers n such that sum of divisors (A203(n)) is a Fibonacci number (in A45)

Random combination of 2 sequences, except look at the graph:

Scatterplot of A272412(n)
Altug Alkan, Apr 292016

Have 10000 terms but need a lot more

Hostadter's Q-sequence A5I85

Leroy Quet's Primegenerating sequence AI 34204

Franklin Adams-Watters Al66I33

"About your cat, Mr. Schrödinger-I have
good news and bad news."
(The New Yorker, March 2015)

Leroy Quet's Prime-Producing Sequence

0	1	2	3	4	5	6	7	8	9	10
2	3	5	7	13	17	19	23	41	31	29

$\mathrm{q}=$ smallest missing prime such that n divides $\mathrm{p}+\mathrm{q}$
10 divides $3 \mid+29$

$$
\begin{aligned}
& p+q=k n \\
& q=-p+k n
\end{aligned}
$$

Dirichlet: OK unless p divides n

> Does the sequence exist?

999999000000

Max Alekseyev, A26I206, Aug II 2015

If $\left\lceil n^{1 / k}\right\rceil \mid n$ for all k then $\mathrm{n} \leq 999999000000$ (conj.)
$1,2,4,6,12,36,132,144,156,900,3600,4032,7140,18360,44100,46440,4062240$, 9147600, 999999000000

No more terms below $10^{\wedge} 16$

999999000000 (cont.)

Th. I

$$
\lceil\sqrt{n}\rceil \left\lvert\, n \Leftrightarrow n=\left\lfloor\frac{M}{2}\right\rfloor\left\lceil\frac{M}{2}\right\rceil \quad\right. \text { for some } M
$$

(the quarter-squares, A002620)
Pf.

$$
\begin{gathered}
\lceil\sqrt{n}\rceil=m+1 \Leftrightarrow m^{2}+1 \leq n \leq(m+1)^{2} \\
\text { Say } n=m^{2}+1+i \\
\text { So } i=m-1 \text { or } 2 m, \quad n=m(m+1) \text { or }(m+1)^{2} \\
\mathrm{M}=2 m+1 \text { or } 2 m+2
\end{gathered}
$$

Example:

$$
999999000000=\left\lfloor\frac{1999999}{2}\right\rfloor\left\lceil\frac{1999999}{2}\right\rceil
$$

999999000000 (cont.)

Th. 2

$$
\left\lceil n^{1 / 3}\right\rceil \mid n \Leftrightarrow n=m^{3}+1+\lambda(m+1), 0 \leq \lambda \leq 3 m
$$

Example: With $m=9999, \lambda=29897$,

$$
m^{3}+1+\lambda(m+1)=999999000000
$$

If both Th I and Th 2 apply, get A2614I7:
$1,2,4,6,9,12,36,56,64,90,100,110,132,144,156,210,400,576,702,729,870, \ldots$

And so on ?

A Memorable Prime 12345678910987654321

When is $123 \ldots \mathrm{n}$ I n n-I.... 321 prime?
It is a square: $\mathrm{II} . . .\left.\right|^{2}$ for $\mathrm{n} \leq 9$.
Prime for $n=10,2446$ (Shyam Gupta, PRP only), ... NOT IN OEIS!

Or, in base b, when is I23...b-। b b-l... 32 I prime?
Prime for $b=$

$$
\begin{array}{r}
2,3,4,6,9,10,16,40,104,8840 \text { (PRP) } \\
\text { (David Broadhurst, Aug 2015, A260343) }
\end{array}
$$

When is 12345...n a prime?

Concatenate I through n in base I . When is the first prime? $\mathrm{n}=19$ fails:

12345678910111213141516171819
$=(13)(43)(79)(281)(1193)(833929457045867563)$
All $\mathrm{n}<344870$ fail.
Sequence is surely infinite.
See A7908 for progress of the search

The Fouriest Transform of n

IT'S CALLED A FOURIER TRANSFORM WHEN YOU TAKE A NUMBER AND CONVERT IT TO THE BASE SYSTEM WHERE IT WILL HAVE MORE FOURS, THUS MAKING IT "FOURIER." IF YOU 'PICK THE BASE WITH THE MOST FOURS, THE NUMBER IS SAID TO BE "FOURIEST."

Write n in that base $\mathrm{b}>=4$ where you get the most 4's

$$
a(10)=14 \text { (use base 6) }
$$

A268236
$0, I, 2,3,4, I I, I 2, I 3,20$,
I4, I4, I4, I4, I4, 24, I4, 24,..

[^0]
"Music" and Videos

Reminder: New keywords "hear" and "look"

Pascal's triangle
 A7318

Hofstadter Q sequence A5I85

$$
\mathrm{a}(1)=\mathrm{a}(2)=1 ; \mathrm{a}(\mathrm{n})=\mathrm{a}(\mathrm{n}-\mathrm{a}(\mathrm{n}-1))+\mathrm{a}(\mathrm{n}-\mathrm{a}(\mathrm{n}-2)) \text { for } \mathrm{n}>2 \text {. }
$$

$\mathrm{wt}(\mathrm{n})$ and $4^{\wedge} \mathrm{wt}(\mathrm{n})$ together

(AI20 and AI02376, Taiko drum and xylophone)

Martin Paech's arrangement of A242353

Recaman's sequence A5I32

(Midi "instrument" FX-7)

Samuel Vriezen, Toccata III (200I)

Faure, Prelude, Op. I03, \#3

(in G Minor)

Videos about sequences

Charles McKeague, Fibonacci numbers
Dale Gerdemann, Fibonacci tree
Christobal Vila, Nature by numbers
Robert Walker, Golden Rhythmicon
Gordon Hamilton, Wrecker ball sequence (Recaman's sequence)

There are nearly 200 videos, movies, animations in the OEIS - we need more!

The OEIS needs more editors!

Lovely new problems every day
https://oeis.org/draft has the queue
Contact njasloane@gmail.com if interested

[^0]: Zach Weinersmith, Saturday Morning Breakfast Cereal

