## N. J. A. Sloane: Papers on Covering Radius of Codes

I plan to update the tables in the first paper one of these days.
Contributions welcomed!
**On the Covering Radius of Codes**,
[note:
Fig. 1 ,
Fig. 2 ,
Fig. 3 ,
Fig. 4 ,
Fig. 5 ,
Fig. 6
are in separate files]
R. L. Graham and N. J. A. Sloane, * IEEE Trans. Information Theory*, IT-31 (1985), pp. 385-401.

**The Covering Radius of Cyclic Codes of Length Up To 31**, D. E. Downie and N. J. A. Sloane, * IEEE Trans. Information Theory*, IT-31 (1985), pp. 446-447.

**Recouvrements d'Espaces de Hamming Binaires**, A. Lobstein, G. Cohen and N. J. A. Sloane, * C. R. Acad. Sci. Paris, S\*'erie I*, 301 (1985), pp. 135-138.

**Further Results on the Covering Radius of Codes**, G. D. Cohen, A. C. Lobstein and N. J. A. Sloane, * IEEE Trans. Information Theory*, IT-32 (1986), pp. 680-694.

**On a Conjecture Concerning Coverings of Hamming Space**, G. D. Cohen, A. C. Lobstein and N. J. A. Sloane, in * Applied Algebra, Algorithmics and Error-Correcting Codes, Lecture Notes in Computer Science*, A. Poli (editor), Springer-Verlag, NY, 228 (1986), pp. 79-90.

**A New Approach to the Covering Radius of Codes**,
N. J. A. Sloane, * J. Combinatorial Theory, Series A*, 42 (1986), pp. 61-86.

**Unsolved Problems Related to
the Covering Radius of Codes**,
[note:
Fig. 1
is in a in separate file]
N. J. A. Sloane, in * Open Problems in Communication and Computation*, T. M. Cover and B. Gopinath (editors), Springer-Verlag, NY, 1987, pp. 51-56.

**On the Covering Radius Problem for Codes: (I) Bounds on Normalized Covering Radius**,
K. E. Kilby and N. J. A. Sloane, * SIAM J. Algebraic Discrete Methods*, 8 (1987), pp. 604-618.

**On the Covering Radius Problem for Codes: (II) Codes of Low Dimension; Normal and Abnormal Codes**,
K. E. Kilby and N. J. A. Sloane, * SIAM J. Algebraic Discrete Methods*, 8 (1987), pp. 619-627.

**Inequalities for Covering Codes**,
A. R. Calderbank and N. J. A. Sloane, * IEEE Trans. Information Theory*, 34 (1988), pp. 1276-1280.

** Up ** [
Full publication list |
Return to my home page
]