New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences

Experimental Math Seminar, Rutgers, September 142022

Neil J. A. Sloane, Visiting Scholar, Math. Dept., Rutgers University; and The OEIS Foundation, Highland Park, NJ (njasloane@gmail.com)

Outline of talk

Scott Shannon's circle counting problems
Dissecting regular polygons into rectangles (with Gavin Theobald)
New Gilbreath Conjectures
Éric Angelini's Sum and Erase sequence Report on Status of OEIS
[Sequences with No 3-Term Arithmetic Progressions]

Circle Counting Problems (Scott Shannon)

Scott Shannon's Circle Counting Problems BACKGROUND

Lars Blomberg, Scott Shannon, N. J. A. Sloane, A long-running project, counting regions in "Stained Glass Windows"

Typical problem:

$\mathrm{n} \times \mathrm{n}$ grid of points
Join each pair of boundary points by a chord

In resulting graph, count vertices, edges, regions.

A331452 + many more

See: Blomberg, Shannon, NJAS, Graphical enumeration and stained glass windows I, Integers, 2022.

$B C(1,4)$

104 cells (70 triangles, 34 quadrilaterals) but no pentagons or hexagons - why?!

Blomberg, Shannon, NJAS, Graphical enumeration and stained glass windows I, Integers, 2022.

Farey Trees (Scott Shannon \& N.J.A.S., Dec 2022)

Farey Tree of Order 6 (Scott Shannon \& N.J.A.S., A358949(6) = 23770 vertices Dec 2022)

Image: Scott Shannon
$-=16$ ngons $\times 60$
-18 ngons $\times 6$

- $=20$ ngons $\times 12$
-24 ngons $\times 34$ tral vertices $=23770$

Scott Shannon's First Circle Counting Problem (1)

Take n x n grid of points. For every pair of points, draw a circle with that diameter.

In resulting graph, count circles (C), vertices (V), edges (E), regions (R)

2×2 grid

\mathbf{n}	\mathbf{C}	\mathbf{V}	\mathbf{R}
$\mathbf{2}$	5	5	12
$\mathbf{3}$	26	77	168
$\mathbf{4}$	79	1045	1536
$\mathbf{5}$	185	6885	8904
$\mathbf{A} 360350$	A360351	A360352	

Have 9 terms for each sequence. No formulas are known.

Scott Shannon's Circle Counting Problem (2)

3×3 grid
26 circles, 77 vertices, 168 regions

A360352
(regions)

Scott Shannon's Circle Counting Problem (3)

4×4 grid
79 circles 1045 vertices 1536 regions

A36035 (vertices)

5×5 grid 185 circles 6885 vertices 8904 regions

An astronomer's nightmare

Scott Shannon's Second Circle Counting Problem (1)

Given two points A and B, draw 2 circles of radius $|A B|$ centered at A and B, creating 2 new intersection points C and D :

A
\bullet
\bullet
-

C

Iterate!
How many vertices (V), circles (C), regions (R)?

Need more terms! Need formulas.
Basic combinatorial question.

stage	\mathbf{V}	\mathbf{C}	\mathbf{R}
$\mathbf{0}$	2	0	0
$\mathbf{1}$	4	2	3
$\mathbf{2}$	14	6	21
$\mathbf{3}$	6562	$\boldsymbol{?}$	7169
	A359569		A359570

Scott Shannon's
Second Circle
Counting Problem (2)

Stage 2
14 vertices
6 circles
21 regions

A359569
(vertices)

Scott Shannon's Second Circle Counting Problem (3)

Stage 3 6562 vertices
? circles
7169 regions

A359569 (vertices)

Dissecting Regular Polygons Into Rectangles (With Gavin Theobald)

Dissecting polygons into squares and rectangles

Joint work with Gavin Theobald, plus contributions from others
Classical problem: $s(n)=$ min number of pieces needed to dissect regular n-gon to a square.
Open for 100+ years: show $s(3)=4$

"Oh, we're not bouncers. We just can't fit through the door."

Theorem s(3) > 2

Each piece can contain at most one vertex, so at least 3 pieces!
Oh, we're not bouncers. We just can't fit through the door.

New problem: $r(n)=\min$ number of pieces needed to dissect regular $n-g o n$ to a rectangle (any rectangle will do)

Rules same for $\mathrm{s}(\mathrm{n})$ and $\mathrm{r}(\mathrm{n})$; cuts are simple curves, turning over is allowed

$$
r(3)=2
$$

$r(6) \leq 3 \quad$ (surely $r(6)=2$ is impossible?)

$n=$	3	4	5	6	7	8	9	10	11	12
$s(n)$ $<=$	4	1	6	5	7	5	9	7	10	6
$r(n)$ $<=$	2	1	4	3	5	4	7	4	9	5

Best dissections known for 5-gon and 7-gon to rectangle

$$
r(5)<=4
$$

Pentagon to square: $s(5)<=6$

$$
r(7)<=5
$$

Proof: By giving explicit straightedge and compass consruction starting with the 7-gon.

7 goo (red) dissected into strip element (green)

Best dissections known for octagon to square and rectangle

$$
s(8)<=5
$$

$r(8)<=4$
circa 1400 AD Persian MS

Beautiful! But can be improved if only need a rectangle.

Best dissections known for 12-gon to square and rectangle

Lindgren: $s(12)<=6$

Astonishing! But can be improved if only need a rectangle.

7-Piece dissection of 9-gon to rectangle

Straightedge and compass construction

7-Piece dissection of 9-gon to rectangle (continued)

This is a straightedge and compass construction.
Start with 9-gon P1 P2 ... P9, edge length 1.
Draw chords P2 P4, P3 P7, P4 P9.
Q2 = intersection, $\mathbf{Q} 3=$ midpoint, $\mathrm{Q} 7=$ midpoint, Q7 Q6 length 1/2,
Q4 = intersection Q3 Q6 and perpendicular from P8 to midpoint of P3 P4.
Finally Q5 is on P1 P2 at distance lQ4Q6| from P1, and Q5 Q1 is perpendicular to P5 P6.

7-Piece dissection of 9-gon to rectangle (continued)

$$
\begin{array}{lr}
\theta=\pi / 11 & \mathrm{C} 1=\cos \theta \text { satisfies } \\
8 x^{\wedge} 3-6 x-1=0 .
\end{array}
$$

The amazing coincidence:

$$
\begin{gathered}
\mid \text { Q2 P7| }=\mid \text { Q4 Q6 }|=| P 1 \text { Q5 }|=| \text { Q2 Q3 }-1 / 2 \\
\left.=\cos \theta /(2 \cos \theta+1)=0.3263 \ldots . . \text { (*) }^{*}\right)
\end{gathered}
$$

To prove (*). Straightedge and compass gives exact expressions and 20 dec places.
E.g. Q2 = ($0.65270364466613930216,-0.50771330594287249271$)

Ask WolframAlpha to express each number in terms of

$$
\begin{aligned}
\mathbf{C 1} & =\boldsymbol{\operatorname { c o s }} \theta \text { and } \mathbf{S 1}=\boldsymbol{\operatorname { s i n }} \theta: \quad \text { The result: } \\
Q_{2} & =\left(\frac{2 C_{1}}{2 C_{1}+1},-\left(2 S_{1}-\frac{1}{S_{1}}+\sqrt{3}\right)\right)
\end{aligned}
$$

Given exact expressions for points, and using minimal polynomial for C1, (*) follows easily

The rectangle has width $2 \cos \theta$, height $9 /(8 \sin \theta)$

Another fundamental sequence!

$\mathrm{q}(\mathrm{n})=$ min number of pieces needed to dissect regular n -gon to a monotile
n-gon to square
n-gon to rectangle
n-gon to monotile

$n=$	3	4	5	6	7	8	9	10	11	12
$\mathrm{s}(\mathrm{n})$ $<=$	4	1	6	5	7	5	9	7	10	6
$\mathrm{r}(\mathrm{n})$ $<=$	2	1	4	3	5	4	7	4	9	5
$\mathrm{q}(\mathrm{n})$ $<=$	1	1	2	1	3	2	3	2	4	3

OEIS
A110312
A362939
A362938

$$
q(5)=2
$$

$q(10)=2$

New Gilbreath Conjectures

New Gilbreath Conjectures

Norman L. Gilbreath, Magician and Mathematician, 1958:
(François Proth, 1878)

$\mathbf{2}$	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{1 7}$	$\mathbf{1 9}$	$\mathbf{2 3}$	$\mathbf{2 9}$	$\mathbf{3 1}$	$\mathbf{3 7}$	$\mathbf{4 1}$	$\mathbf{4 3}$	$\mathbf{4 7}$	$\mathbf{5 3}$	$\mathbf{5}$	$\mathbf{6 1}$	$\mathbf{6 7}$	$\mathbf{7 1}$	$\mathbf{7 3}$	$\mathbf{7 9}$	$\mathbf{8 3}$	$\mathbf{8 9}$	$\mathbf{9 7}$	$\mathbf{1 0 1}$
$\mathbf{1}$	2	2	4	2	4	2	4	6	2	6	4	2	4	6	6	2	6	4	2	6	4	6	8	4
$\mathbf{1}$	0	2	2	2	2	2	2	4	4	2	2	2	2	0	4	4	2	2	4	2	2	2	4	2
$\mathbf{1}$	2	0	0	0	0	0	2	0	2	0	0	0	2	4	0	2	0	2	2	0	0	2	2	0
$\mathbf{1}$	2	0	0	0	0	2	2	2	2	0	0	2	2	4	2	2	2	0	2	0	2	0	2	0
$\mathbf{1}$	2	0	0	0	2	0	0	0	2	0	2	0	2	2	0	0	2	2	2	2	2	2	2	0

Primes
Absolute values of differences of prev. row: Absolute values of differences of prev. row: Absolute values of differences of prev. row: Repeat

Conjecture: Leading entries are always 1! Astonishing. Still unproved.

30 years ago, Andrew Odlyzko checked 10^11 primes, 635 rows of table.
Could now be checked a lot further.

New Gilbreath Conjectures (2)

Call the first column the "Gilbreath Transform"
Change "prime(n)" to "tau(n)" = number of divisors of n.

		23													6
	0	11	2	22	21	,	24		2	0		34			
	1	01	0	01	10	1	20		2	1		1			22
0	1	11	0	11	11	1		2	1	1		1			0
		1			00		02	21							

March 2023: Wayman Eduardo Luy and Robert G. Wilson V submitted A361897, the Gilbreath Transform of tau(n):
$\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0}, \ldots \quad$ A361897
and conjectured that it is a 0,1 sequence!

New Gilbreath Conjectures (3)

Gilbreath Transform of Euler phi function (A000010) appears to be $1,0,1,0,1,0, \ldots . .=(1,0)^{*}$

See A362913

	12	22	4		64	64					A000010 $=$ phi(n)
[0	10	02	2	42	22	26		6		8]	
[1	12	20	2	20	00	40		2		2]	
[0		22	0	20	04	4		0		2]	
[1	10	02	2	24	40	22		2		0]	
[0	12	20	0	24	42	00		2		4]	
[1	12	20	2	22	22	02		2		0]	
[0		22	0	00	02	20		2		2]	
[1	10	02	0	02	20	22		0		0]	
[0		22		22	22	02		0		0]	
[1	10	02	2	00	02	22		0		0]	
		20	2	02	20	02	2	0		2]	

New Gilbreath Conjectures (4)

Gilbreath transform of sigma(n) = sum of divisors function $\mathbf{A 0 0 0 2 0 3}$ gives A362451:
$1,2,1,1,1,2,1,0,0,1,0,4,0,3,0,2,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1$,
$0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,1,0$,
$1,1,1,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1,1,1$,
$0,1,1,1,0,0,0,0,1,0,0,0,0,1,1,1,0,1,1,1,68,0,14,0,7,0,2,0,21,1,8,1$,
$9,1,0,1,18,0,7,0,2,0,1,0,13,1,1,1,2,1,1, \ldots$

Pin plot of A362451(n)

Logarithmic scatterplot of A362451(n)

Even more dramatic: sigma(n) - n = sum of aliquot parts: see G.T. A362452

Sum and Erase (Éric Angelini)

Eric Angelini, Does this iteration end? (Sum and erase), Personal blog "Cinquante Signes", blogspot.com, Jul 262022 .

Éric Angelini's Sum and Erase Sequence (1)

Take a number n , with initial digit d. Let $\mathrm{s}=$ sum of digits of n ; write down $t=n s$ (the concatenation). If d appears in s, delete all copies of d from t.

The next term is what's left.
$n=318, d=3, s=12, t=31812.3$ is not in 12 , so we get 31812 $n=319, d=3, s=13, t=31913.3$ is in 13 , so we get 191 $n=1019, d=1, s=11, t=101911->09$ which we write as -9

> A359142 = what n becomes:
$0,0,0,0,0,0,0,0,0,0,112,123,134,145, \ldots, 189,90,0,213, \ldots$
A359143 = trajectory of 11:

11, 112, 1124, 11248, 2486, 4860, 486018, 48601827,... ?
Comment from Michael S. Branicky, Jul 26 2022:
Starting at 11, this first reaches 0 at step 1399141 .
The longest string encountered has length 222:
$444444414144444454144444145454455155154545515454564756517555545657676664 \backslash$ $465677675961617616416561527541551562575592651853254255356658359962263264 \backslash$ $365667368971272273374676377982812823836853869892911922935952968991101010 \backslash$ 121016 .

Éric Angelini's Sum and Erase Sequence (2)
A cycle of length 49 found by Hans Havermann:

A cycle of length 49 found by Hans Havermann

05464644657500000011711019071641751
Astonishing!
15464644657500000011711019071641751109
25464644657500000011711019071641751109119
35464644657500000011711019071641751109119130
225464644657500000011711019071641751109119130134142149163173184197214221226236247260268284298317328341
235464644657500000011711019071641751109119130134142149163173184197214221226236247260268284298317328341349
2446464467000000117110190716417110911913013414214916317318419721422122623624726026828429831732834134936
2566670000001171101907161711091191301312191631731819721221226236272602682829831732831393635
26700000011711019071171109119130131219131731819721221222327202828298317328313933530
27700000011711019071171109119130131219131731819721221222327202828298317328313933530249
28700000011711019071171109119130131219131731819721221222327202828298317328313933530249264
29000000111101901111091191301312191313181921221222322028282983132831393353024926426
30000000111101901111091191301312191313181921221222322028282983132831393353024926426228
3111111911119119131312191313181921221222322282829831328313933532492642622824
3211111911119119131312191313181921221222322282829831328313933532492642622824246
3311111911119119131312191313181921221222322282829831328313933532492642622824246258
. . .
3811111911119119131312191313181921221222322282829831328313933532492642622824246258273285300303309
3999933293389222222322282829833283393353249264262282424625827328530030330932
4099933293389222222322282829833283393353249264262282424625827328530030330932303
41332338222223222828283328333353242642622824246258273285300303303230330
42282222222228282828524264262282424625827285000020021
4328222222228282828524264262282424625827285000020021171
44282222222228282828524264262282424625827285000020021171180
4528222222228282828524264262282424625827285000020021171180189
468888854646844658785000000117118018907
478888854646844658785000000117118018907164
488888854646844658785000000117118018907164175
495464644657500000011711019071641751

Éric Angelini's Sum and Erase Sequence (3)

Other cycles found by Michael Branicky

There is a cycle of length 20173 starting at 34674044445 .

There is a cycle of length 46 that includes
9982228989928229222222829202026260298265278295291026

Éric Angelini's Sum and Erase Sequence (4)

Studied by Angelini, Branicky, Hasler, Havermann, ...
25 eventually joins the earliest cycle, which has length 583792 and smallest term 3374
Q: Do most numbers reach 0 or cycle, or do most numbers go to infinity?
If \mathbf{n} is large, it lengthens by about $\log \mathbf{n}$, then shrinks by a linear factor.
So the chance of n blowing up is tiny.

Can we construct a Chernobyl word w:
100000000000000000w
goes to
100000000000000000w' and keeps slowly growing ?
(Maybe w only has even digits, but then w ' would have an odd digit...?

Report on Status of OEIS

Report on Status of OEIS (1)

1. The submissions stack: https://oeis.org/draft

If I neglect it for a week it creeps up to 350 or 450 , with waiting time 2 months or more.
Board of Trustees of OEIS Foundation has voted to hire a full-time managing editor, and to raise $\$ 3 \mathrm{M}$ endowment for salary.
Initial step: get OEIS Foundation classified as a 509(c)(3) supporting organization for a major university. Almost completed.
Next steps: Raise the money, find good candidate. Must be US resident.

In the meantime, you can help! Go to bottom of submissions stack, look at submissions, add comments (any registered user can do this).

You can add "Pink Box" comments like:
Definition unclear / Excellent sequence, looks ready for approval /
Second term is wrong, when corrected this is sequence A123456 /
Seems contrived, why is this interesting? /
intger is misspelled / what is k in the definition? / and so on
[However, if sequence is actively being reviewed by an editor, don't touch it]

Report on Status of OEIS (2)

2. 2023 is 50th anniversary of 1973 book "A Handbook of Integer Sequences"

My article, "A Handbook of Integer Sequences" 50 Years Later, appeared in The Mathematical Intelligencer (also on arXiv),
followed by articles in New York Times, Spektrum der Wiss., Pour la Science, Scientific American, Science et Avenir, etc.

See my home page, http://neilsloane.com, for copies. Should help with raising the \$3M.

3. Statistics, August 2023

- 365000 sequences
- 750 to 900 new seqs accepted per month
- 45 proposed seqs rejected in July 2023
- 39 Editors in Chief; 133 Associate Editors
- Main file, "cat25" has 7.2 million lines; 512 MB

Sequences with No 3-Term Arithmetic Progressions

No 3-Term AP's

Talk by Thomas Bloom, April 262023

$R(n)=$ max subset S of [1...n] containing no 3-term AP: A003002
K. Roth (1953): S positive density implies S contains 3T AP.
F. Behrend (1946): $S=$ numbers written in base 3 with no 2's contain no 3T AP.

Zander Kelly \& Raghu Meka reduced upper bound to close to Behrend's lower bound.

No 3-Term AP's (2)

Use greedy algorithm to construct

 sequence with no 3-Term AP: A229037 with partial sums A362942Questions: How does the greedy version compare with optimal solution (A003002), with the "base 3" construction
and with the new bounds?

Explain the fractal structure!

