Pictures from 50 Years of the OEIS

Neil J. A. Sloane, Visiting Scholar, Math. Dept., Rutgers University; and OEIS Foundation, Highland Park, NJ
(njasloane@gmail.com)

Art and Math Seminar, Department of Mathematics, Kansas State University, Nov. 22023

Tiling a Square with
 Dominoes

36 ways to tile a 4X4 square

$$
a(2)=36
$$

$$
\begin{array}{lr}
1,2,36,6728,12988816, & 258584046368, \\
53060477521960000, \ldots & (A 4003)
\end{array}
$$

$$
a(n)=\prod_{j=1}^{n} \prod_{k=1}^{n}\left(4 \cos ^{2} \frac{j \pi}{2 n+1}+4 \cos ^{2} \frac{k \pi}{2 n+1}\right)
$$

In 2015, almost the same sequence arose:

Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, Tianyuan Xu, Sandpiles and Dominoes, 2015

$$
\begin{aligned}
& 1,2,36,6728,12988816,258584046368, \\
& 53060477521960000 / 5, \ldots!! \\
& \text { (A256043) }
\end{aligned}
$$

Outline of talk

Triangular numbers, Recamán's sequence, graphs Cellular automata (O. PoI, D. Applegate) Coordination sequence (C. Goodman-Strauss) Ways to draw n circles (J. Wild)
Cutting polygons into squares, monotiles (G.Theobald) Stained glass windows (L. Blomberg, S. Shannon) The scariest sequence in the world (S. Shannon)

OEIS．ORG E ON－LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N．J．A．Sloane

The On－Line Encyclopedia of Integer Sequences ${ }^{\circledR}$（OEIS®）

Enter a sequence，word，or sequence number：

Search Hints Welcome Video
For more information about the Encyclopedia，see the Welcome page．
Languages：English Shqip العربية Bangla Български Català 中文（正體字，简化字（1），简化字（2）） Hrvatski Čeština Dansk Nederlands Esperanto Eesti ע Suomi Francais Deutsch E
 Română Pyccкий Cрпcки Slovenščina Español Svenska Tagalog ภาษาไทย Türkce Yкрайнська ${ }^{\text {l }}$ Tiếng Viêt Cymraeg

Lookup｜Welcome I Wiki｜Register｜Music｜Plot $2 \mid$ Demos｜Index \mid Browse \mid More｜WebCam Contribute new seq．or comment \mid Format \mid Style Sheet \mid Transforms \mid Superseeker \mid Recent \mid More pages

The OEIS Community I Maintained by The OEIS Foundation Inc．
License Agreements，Terms of Use，Privacy Policy．

The poster, on the OEIS Foundation
web site,
http://oeisf.org

OEIS.org

Graphs

Triangular numbers,
Recaman's sequence and others,
A Facial Recognition Project

The Triangular Numbers

O) $1 \quad 1+2=3 \quad 1+2+3=6 \quad 1+2+3+4=10$

The triangular numbers

$$
\begin{gathered}
0,1,3,6,10,15,21,28, \ldots \\
a_{n}=\frac{n(n+1)}{2}
\end{gathered}
$$

A217

Triangular Numbers

Anicius Manlius Severinus Boethius,

Boethius (480-524 AD), De institutione arithmetica
exagonus in sex triangulos divisus. 7 At vero triangula figura, cum eam quis ita diviserit, in alias figuras non resolvitur, nisi in se ipsam. In tria enim triangula dissipatur.
5 Triangulus in tres triangulos divisus:

Adeo haec figura princeps est latitudinis, ut ceterae omnes superficies in hanc resolvantur, ipsa vero, quoniam nullis est principiis obnoxia neque ab alia latitudine sumpsit initium, in sese ipsam solvatur. Idem autem et in 10 numeris fieri, sequens operis ordo monstrabit.

Dispositio trianyulorum numerorum.

VII. Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicun15 que aequalitatem laterum in trina laterum spatia segregant

1 exagonus] Fignram exagoni regularis habent d, s. 3 in se om. e. 5 Triangulus etc.] Hanc inscriptionem om. c, d, f, l. 6 Ideo f. 8 est om. c. || obnoxia principiis c. 9 ipsa a, b, c, d, f, l, s; vide supra versum quartum et septimum. 10 operis om. c. Il ordo operis s. 11 Titulum om. c, d. 12 numerus om. d. 15 Post segregant. addunt: iuxta subiectas discriptionis formulas r, s. $\quad 16$ Numeros om. $\mathrm{c}, \mathrm{d}, \mathrm{f}$.
XV.

XXVIII.

> De lateribus triangulorum numerorum.
VIII. Ad hunc modum infinita progressio est, omnesque ex ordine trianguli aequilateri procreabuntur, primum omnium ponenti quod ex unitate nascitur ut baec vis sua triangulus sit, non tamen etiam opere atque actu. Nam si cunctorum mater est numerorum, quicquid in his, quae ab ea nascuntur, numeris invenitur, necesse est ut ipsa naturali quadam potestate contineat. ${ }^{\text { }}$ Et huius trianguli. latus est unitas. Ternarius vero, qui primus est opere et actu ipso triangulus, crescente unitate binarium numerum latus habebit. Vi enim et potestate primi trianguli, id est unitatis, unitas latus est, actu vero et opere trianguli primi, id est ternarii, dualitas, quam Graeci dyada vocant. Secundi vero trianguli, qui opere 15 atque actu secundus est, id est senarii, crescente naturali numero in lateribus ternarius invenitur; tertii vero, id est denarii, quaternarius latus continet;

1 Descriptionem numeri•XXVIII- om. d, 2 Titulum om. d. 3 VIII. om. f. I| in infinita a, b, c, d; in infinitum 1. If omnisque f. 4 ex om. a, d, f; supra versum r. 5 ponenti] ponent f, s ; in s tamen i ; rasura est deletum. Supra versum: In af. ponent id b; tibi d. \|l .VI sua a. 6 sua am. c. 8 quae] Conicials qui esse legenduan. 11 ipse ipso, o in a mutato s; in c. || triangulos e, s. 13 unitas supra versum a.

Recamán's Sequence

Bernardo Recamán Santos, 1991

Subtract or add: 1, 2, 3, 4, 5, 6, ...
Pin plot of A005132(n)
No negative terms, no repeats
$0,1,3,6,2,7,13,20,12,21,11, \ldots$ $123-4567-89-10 \ldots$

A5132

Recamán's Sequence (2)

Edmund Harriss,

First 62 terms drawn as a spiral

The Recamán Sequence (3) oeis.org/A005132

Recamán's Sequence (5) A5132

The Big Question: Does every number appear?

After $10^{\wedge} 15$ terms, $852655=5 \times 31 \times 5501$ was missing (Allan Wilks, 2001)
After $10^{\wedge} 230$ terms, 852655 is still missing (Ben Chaffin, 2018)

30 years ago I believed that every number would eventually appear. Today I think that there are infinitely many missing terms, and 852655 just got lucky and is the first of many.

Exotic Graphs

Graphs (continued)

Keyword "look" means an interesting graph:

Scatterplot of A063543(n)

Graphs (continued)
Typical Graphs

Graphs (continued)

The OEIS contains over 365000 sequences, and each one has a graph (click the "graph" button).

Use facial recognition software to find closest matches to the graph of a sequence you are studying.

Would be extremely useful.

Sequences from Cellular Automata

The Toothpick Problem

(Omar Pol, David Applegate, NJAS)

The Toothpick Sequence (2)

Al39250

Animation created
by David Applegate

The first 32 generations of the toothpick structure.
Notice that after every power of 2 generations,
the number of new toothpicks added drops to 4.
This si the key to finding a formula for the n-th term.

The Toothpick
Sequence (3)

Another Ulam CA, on hexagonal grid:
A cell turns ON iff exactly one of its 6 neighbors in ON

(AI5I724)

No recurrence known!

The Toothpick

Sequence (7)

The snow-flake automaton
(trident)

Generations 1 (2), 2 (8), 3 (14), 4 (20), 5 (38), ... 32 (1124), ...
Sequence A161330.

David L. Applegate, Omar E. Pol, and NJAS, The toothpick sequence and ... Congress. Numerant., 206 (2010), 157-191.

Coordination Sequences

Joint work with Chaim Goodman-Strauss

Coordination Sequences

Joint work with Chaim Goodman-Strauss

With thanks to Jean-Guillaume Eon, Brian Galebach, Joseph Myers, Davide Proserpio, Rémy Sigrist, Allan Wechsler, and others

Definition. $\quad \mathbf{G}=$ graph, $\mathbf{P}=$ node,

 the coordination sequence w.r.t P:$a(n)=$ number of nodes at edge-distance \mathbf{n} from P

A8574
CS is

$$
1,4,8,12,16,20,24,28, \ldots
$$

G.f. $=\left(1+2 x+2 x^{\wedge} 2+2 x^{\wedge} 3+. . .\right)^{\wedge} 2$

The 3.3.3.3.6 uniform tiling (A250120)

Trunks and Branches for 2 of the 11 Uniform Tilings

3.3.4.3.4 (dual to Cairo), A219529

3.4.6.4, A8574 again!

Number of ways to draw n circles

Jonathan Wild
Music Department, McGill

A25000 I

$a(2)=3$

No. of arrangements of n circles in the plane

A25000 I

$$
a(3)=14:
$$

I, 3, I4, I73, |695| Jonathan Wild

A25000I

Some of the 173 arrangements of 4 circles

Counted (and drawn) by Jon Wild

A25000
 More of the 173 arrangements of 4 circles

Counted (and drawn) by Jon Wild

Two distinct arrangements with same "truth table" of intersections

Jonathan Wild

D

Open Problem: How many ways to draw six circles?

A90338

A subset: n lines in general position

I, I, I, I, 6, 43, 922, 38609
Wild and Reeves, 2004

$a(5)=6$

Dissecting Polygons into Squares, Rectangles, or Monotiles (Gavin Theobald)

Three fundamental sequences from geometry

```
s(n) = min number of pieces needed to dissect regular n-gon to a square
r(n) =
```

\qquad

```
                            a rectangle
q(n) =
```

\qquad

``` a monotile
```


$$
s(3)=4 ?
$$

$r(3)=2$

$$
q(3)=1
$$

Rules: cuts are simple curves, turning over is allowed

"Oh, we're not bouncers. We just can't fit through the door."

Theorem s(3) > 2

Each piece can contain at most one vertex, so at least 3 pieces!
Oh, we're not bouncers. We just can't fit through the door.

Three fundamental sequences from geometry (3)
$\mathrm{n}=5$

$r(5)<=4$

$q(5)=2$
$\mathrm{n}=6$

$s(6)<=5$

$r(6)=3 ?$

$q(6)=1$

Three fundamental sequences from geometry (4)

$$
\mathrm{n}=8
$$

$s(8)<=5$

$r(8)<=4$

$$
q(8)=2
$$

Three fundamental sequences from geometry (5)

$$
\mathrm{n}=9
$$

$s(9)<=9$

$r(9)<=7$

$q(9)<=3$

Three fundamental sequences from geometry (6)

$n=$	3	4	5	6	7	8	9	10	11	12
$s(n)$ $<=$	4	1	6	5	7	5	9	7	10	6
$r(n)$ $<=$	2	1	4	3	5	4	7	4	9	5
$q(n)$ $<=$	1	1	2	1	3	2	3	2	4	3

General reference:
Gavin Theobald, Geometric Dissections database, http://gavin-theobald.uk
For r(n), see N. J. A. Sloane and Gavin A. Theobald, On Dissecting Polygons into Rectangles, arXiv:2309.14866 [math.CO], 2023.

Square - 32-gon
(14 pieces)
$s(32)<=14$ from Gavin Theobald's

Geometric Dissections Database

Square - 50-gon
(20 pieces)
$s(50)<=20$ from Gavin Theobald's
Geometric Dissections Database

Monotile dissections from Gavin Theobald

$q(12)<=3$
$q(17)<=6$

Heptadecagon - Monotile (6 pieces)

$q(15)<=5$
$q(19)<=7$

Enneadecagon - Monotile
(7 pieces)

Graphical Enumeration and Stained Glass Windows

Lars Blomberg, Scott Shannon, and NJAS

Part 1 is on the arXiv and has been published in INTEGERS

Sainte-Chapelle, Paris

Planar Graphs and Stained Glass Windows (1)

Motivation

1. Extend work of Poonen-Rubinstein on K_n, and Legendre-Griffiths on K_\{n,n\} to other families of graphs
2. Desire to create our own stained glass windows, in homage to Amiens, Sainte-Chapelle, Chartres, Strasbourg.

Our motto: "If you can’t solve it, make art"

Planar Graphs and Stained Glass Windows (2)

9086 cells (R)
8878 nodes (V)
17963 edges (E)
Solved by Poonen and Rubinstein 1998

> Euler says
> E $=$ R+V-1.
R and V about equal tells us most crossings are simple.

Here \mathbf{n} is odd, so all crossings are simple.

Complete graph
K_23
with 9086 cells. Colored by our special algorithm.

The Two Known Results

1. Poonen and Rubinstein, 1998: Number of nodes and cells in K_n : Basically $\binom{n}{4}$ minus complicated correction terms.
2. Legendre (2009), Griffiths (2010), ditto for K_\{n,n\}.

$$
\text { K_\{4,4\} }
$$

or equivalently

$$
=B C(1,3)
$$

Typical problem:

Take $m \times n$ grid of squares or $(m+1) \times(n+1)$ grid of points

Join each pair of boundary points
by a chord
In resulting graph, count vertices, edges, regions.

This is the graph $\mathrm{BC}(\mathrm{m}, \mathrm{n})$
"Boundary Chords"

See: Blomberg, Shannon, NJAS, Graphical enumeration and stained glass windows I, Integers, 2022.

A331452 has many pictures of $B C(m, n)$ stained glass windows.

3×3 grid of squares
BC(3,3)

Planar Graphs and Stained
Glass Windows (6)
$B C(6,6)$
6X6 grid of squares Join every pair of boundary
points by a chord.
6264 = A265011(6) regions 4825 = A331449(6) vertices

No formulas known.

Source: Blomberg, Shannon, NJAS Graphical enumeration and stained glass windows I, integers, 2022

Planar Graphs and Stained Glass Windows (7)

BC(9,2)

Left: Color-coded to show number of sides: 3 (red), 4 (orange), 5 (green),

7 (blue),
8 (purple)

Right: Same graph, colored using our special algorithm.

Answers are known for BC(1,n)

Theorem
(Stéphane Legendre (2009) and Martin Griffiths (2010))

$$
\text { Define } V(m, n, q)=\sum_{a=1 . . m} \sum_{\substack{b=1 . n \\ \operatorname{gcd}\{a, b\}=q}}(m+1-a)(n+1-b)
$$

Nodes in BC(1,n): $\quad 2(n+1)+V(n, n, 1)-V(n, n, 2)$
Cells in $\mathbf{B C}(\mathbf{1}, \mathbf{n}): \quad n^{2}+2 n+V(n, n, 1)$

$B C(1,4)$

104 cells (70 triangles, 34 quadrilaterals) but no pentagons or hexagons - why?!

Interior Nodes in BC(1,n)

It appears that most interior nodes in BC(1,n) are "simple", i.e. are where just two chords cross.

For $n=1,2,3, \ldots$ the numbers of simple interior nodes are 1, 6, 24, 54, 124, 214, 382, 598, 950, 1334, ...

A334701 has first 500 terms! Open Problem: Find a formula.

This is a frequent problem: we have hundreds of terms of a sequence with a simple definition; the OEIS has 365,000 entries: need a smarter guessing program.

Scott Shannon’s Sequence A355798

Place n-1 points on each side of a square, join each point to every point on the opposite side.

How many regions?
$1,4,24,104,316,712,1588,2816,4940,7672, \ldots$

Open Problem: Have 40 terms, need a formula

Scott Shannon's Magic Carpet

P.G. and S.G.W (15)

Farey Tree of Order 6 (Scott Shannon \& N.J.A.S., A358949(6) = 23770 vertices Dec 2022)

Image: Scott Shannon

- $=18$ ngons $X 6$
- $=20$ ngons $\times 12$
- $=24$ ngons $\times 34$

Total verices $=23770$

The Scariest Sequence in the World

The most horrible sequence in the world A357082 (20K terms)

$$
\therefore \text {, }
$$

为
?
为

$$
\begin{aligned}
& 6,1 \\
& 6
\end{aligned}
$$

路
, wors

Acknowledgements and Credits

Sources for images: David Applegate, Lars Blomberg, Ben Chaffin, Michael De Vlieger, Chaim Goodman-Strauss, Sébastien Palcoux,

Omar Pol, Scott Shannon, Gavin Theobald,
Michael De Vlieger, Jonathan Wild.
Thanks above all to the Editors, Trustees, Contributors, and Supporters
of the OEIS and the OEIS Foundation
who keep the OEIS running.

Images from the OEIS are available under the Creative Commons Attribution Share-Alike 4.0 license (CC-BY-SA-4.0)

Tripod vessel
Egypt, 3800 BC
Brooklyn Museum
(07.447.399)

