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Abstract

This paper studies the Coxeter-Todd lattice Ag, its automorphism group (which is
Mitchell's reflection group 6-P$C7(4,3)-2), and the associated 12-dimensional real
lattice K12. We give several constructions for Ag, which is a Z[w]-lattice where w = e%1Tils;
enumerate the congruence classes of Ag/2Ag and A%/6A%, where 6 = to — <D; prove the
lattice is unique; determine its covering radius and deep holes; and study its connec-
tions with the lattice E6 and the Leech lattice. A number of new dense lattices in
dimensions up to about 107 are constructed. We also give an explicit basis for the
invariants of the Mitchell group. The paper concludes with an extensive bibliography.

1. Introduction

This paper studies the Coxeter-Todd lattice Ag in six complex dimensions (23), and
its automorphism group Go = Aut(Ag), which is Mitchell's(46) complex reflection
group of order 108-9!, isomorphict to 6-P£}-(6, 3)-2 and to 6-PSU(4:, 3)-2. We
simultaneously investigate the corresponding real lattice K1Z, which is the densest
12-dimensional sphere packing known.

We begin (in Section 2) by giving four constructions for Ag, each referring to a
different base; the four versions are denoted by A(2>, A(3), A(4) and A(7) (see Tables 1-3).
Each version makes a different subgroup of Go visible. Ag (by any of these definitions)
is a Z[w]-lattice, where w = e2"*'3 (cf. (17)), and in Section 3 we describe the congruence
classes of A6

J/2A6
J and A^/flA^, where d = o-w = y/-3. The knowledge of these

classes is used repeatedly in the rest of the paper. The first application is found in
Section 4, where we give two proofs that Ag1 is unique. The first proof (Theorem 1)
characterizes A% by the number of vectors of norms 1, 2, 3 and 4, and establishes that
A(2), A(3), A(4) and A(7) are isomorphic. The second proof (Theorem 3) characterizes Ag
as the unique unimodular Z[w]-lattice in dimension < 12 that contains no vector of
norm 1, a result originally obtained by Feit (29) via direct enumeration.

In Section 5 the notion of a congruence base for a ktttieeis introduced. When^om-
bined with the information about congruence classes, this makes it easy to determine
the order of the automorphism group. Sections 6 and 7 describe the strong connections

t Other names for this group are 6- J74(3) • 2, 6-HO(4, 32) • 2 (Dickson(25)), [2 1; 3]2 (Shephard
(49)), [3 2 I]3 (Coxeter, Benard(2)), and W(Ke) (Cohen(8)). It is number 34 on Shephard and
Todd's list (50).
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between Ag, the lattice E6, and the Leech lattice A24. Theorem 4 for example shows
that A^ is the Z[w]-span of E6 and 6E% (the star denoting the dual lattice). The Leech
lattice contains two orthogonal copies of A%, one in the form A(2), the other A(4).
Theorem 5 describes the reverse process, by which A(2) and A<4) are glued together to
form A2i. In Section 8 we determine the covering radius of Ag and K12, and show that
there is a unique type of deep hole (cf. (13)) in these lattices. As a corollary it follows
that K13, ...,i£18 (see (41)) are densest possible lattices containing Kl2.

Several useful maps are defined in this paper. For example equation (18) embeds
E6 in A(4). The maps <r and T (equations (12), (13) are explicit isomorphisms from A(2)

to A(3) and A(2) to A(4), and the gluing map Aw (30) is a norm-doubling homomorphism
from A<4) to A<2). Thus the composition A = Aw o T (43) is a norm-doubling endomorphism
of Ag, and 0 (44) is a norm-trebling endomorphism of A%. In Section 9 we use A to
construct new lattice packings, that are denser than any previously known in dimen-
sions 228, 240, 252, ..., 780. Similarly a norm-trebling endomorphism of A24 leads to
new records in dimensions 24(212 + 1) < 24n < 24(312+ 1) (see the example at the end
of Section 9).

Finally, in Section 10, we discuss the history of the invariants of 60, and in Theorem
10 present a basis for these invariants.

We shall describe algorithms for decoding Ag and K12 (i.e. finding the closest lattice
point to an arbitrary point of C6 or R12, cf. (16)), as well as properties of their Voronoi
regions, in a sequel (19) to this paper.

The lattice A% and the group Go have a long history. The group and its associated
5-dimensional collineation group Gt (obtained by factoring out the centre of order 6)
were discovered by Mitchell (46) in 1914. The conjugacy classes of G1 were enumerated
by Hamill (37), and the character tables of (?j and Go were given by Todd (59) and
Benard(2). The subgroups and their associated geometrical configurations were
extensively studied by Hartley (38), (39), Todd (59), Hamill (37) and Edge (27), (28). Go

has received attention recently because of its connection with certain sporadic simple
groups: see Conway(il), Gorenstein(35), (36), Kantor(40), Wilson(60), (61). For the
isomorphisms Go s 6-PQ~(6, 3)-2 ~ 6-P££7(4, 3)-2 see Tits(57), Dieudonn6 (26),
Carter (6), and Bruen and Hirschfeld(5). See also Coxeter (21) and Lindsey(42), (43).

The lattice Ag, which may be regarded as being generated by the centres of the
homologies of Gv was first explicitly described by Coxeter and Todd in 1954 (23).
The 756 minimal vectors are the vertices of the complex uniform polytope (2 1; 33)

3,
and Ag itself is the degenerate polytope (2 1; 44)

3 (see (49), pp. 380-381). The theta
series is given in equation (14) below, and more fully in ((54), table vn).

The name Ag for this lattice is explained by the following characterization, estab-
lished in (18). Starting with the 0-dimensional 1-point lattice AjJ, let us define n-
dimensional lattices A£ inductively by: (i) each A£ is an integral Z[w]-lattice of minimal
norm 2, (ii) each A.%, contains at least one A%_t, and (iii) the A£ have the smallest
possible determinant subject to (i) and (ii). Then there is a unique Ag, the Coxeter-
Todd lattice. Other references to this lattice and its group will be found in the body
of the paper.

Definitions and notation (see also (17), (18)). An n-dimensional Zfw]-lattice Ln is a
free Z[w]-module in Cn (usually the subscript gives the dimension). The dual lattice
L%, = {xeCn:x-yeZ[w] for all yeLn). Ln is integral if Ln £ £,*( and unimodular if
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Ln = L$. The norm of a vector x = (xv ...,xn)eO is 2V(a;) = x-x = Sla;,-!2, and
to, ...,xn)c is an abbreviation for a~1(a;1, ...,#„), where a is an appropriate constant
of norm c. The number of vectors of norm i in Ln is denoted by Mi. The automorphism
group Aut (Ln) is the subgroup of the unitary group U(n, C) fixing Ln. Two lattices
Ln and J ^ are isomorphic (written Ln ~ Mn) if they differ by an element of U(n, C)
and possibly a change of scale. Finally H denotes the skew field of quaternions.

2. Four definitions for the lattice Ag

2.1. We begin by denning four lattices A(2), A(3), A(4), A<7), which in Section 4 will be
shown to be isomorphic (to AJJ). The notation A(a) is suggested by the fact that all
inner products in A(a> are divisible by a before scaling, and so, on the minimal scale at
which it is an integral lattice, all the vectors of A(o) can be written in the form to, x2,... )a

withx3,x2, ...eZ[w]. We say that A(2),..., A(7) show Ag represented in the 2-base 7-
base respectively.! A vector of norm < 4 in any of these lattices is called a short vector,
and in Tables 1-3 we give lists of the short vectors in A(2) — A(4).

2.2. Definition of A(2). The most concise description is to say that A(2) is obtained
by applying construction A of (52) to the hexacode (13). More explicitly, the hexacode
Chex (see (13), (14), (17), (44)) is the [6, 3, 4] code over GF(4) consisting of all vectors
that can be obtained from the five vectors

01 01 w

WW 0X0 (0(0

00 11 11

1 1 (t)O) (0(0

00 00 00

by freely permuting the three pairs, reversing any even number of pairs, and scalar-
multiplying by any power of (o. (The five words have 36,12, 9, 6,1 images respectively.)
Also

ZH/2Z[w] s GF(4), (1)
and there is a natural map

<r:Z[<u] ^ Z[w]/2Z[w]-^ GF(4).
Then

A« = {(*,, ...,^),:*«eZ[w], (afc), ...,<r(xe))eCbex}

((52), example 3). It is straightforward to show that A<2) is a unimodular Z[w]-lattice.
The corresponding 12-dimensional real lattice K12 may be defined by

Ku = {(Re to), Im to), ..., Re(z6), Im(*,)): to,...,*6)2eA«*}. (2)

The short vectors in A(2) are listed in Table 1. The third column shows typical vectors
of each shape and the fourth column the numbers of such vectors. For example the
third line of the table refers to the vectors such as

W(0, ±1,0, ± 1 , ±w, ±5) , (i; = 0,l,2)

•f Mitchell (46), in his original construction of the group, used the 4-base to specify the centres
of the homologies, and Todd(58) used all four bases (although without defining the hexacode).
Coxeter and Todd(23) introduced the lattice in terms of the 3-base.
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Table 1. A(2), which is A£ written in the 2-base
(The visible group is (28 x 3) A6. The rows of the table give short vectors arranged in
orbits under the visible group. The last two columns show how the congruence classes
of A(2)/2A<2) and A(2)/0A(2) are divided among the rows.)

Norm of
vector

0

2

3

4

Norm of
coordinates

(0«

(4,
(I4

(3,
(1«

(42

(4,
(3*
(3,

')

0s)
l,02)

I3, 02)
')

,0<)

ISO)
', I2, 02)
I5)

Coordinates

(06)2

(2, 06)2

( 0 , 1 , 0 , 1 ,

(0, 6, 0, 1,
( 1 , 1 , 0), (i),

(2, 2(0, 0*)

( 2 , 1 , 0 , 1 ,
(0, 6, 0, 6,
(6, 1, (o, a,

0). £))«
<o, w ) 2

to, G>)2

(0,(0)2

a, 55) 2

Total

Total

Total

Number

1

3-2l-6
3-24-15
756

3-2 4 15-4
3-2«-6
4032

3-2*-Q-3
3-25-15-6
3-2«15-6
3-2«-6-6
20412

Class
mod 2

1

2
2

2
2

12

8a
4a

12

Class
mod 6

1

3
3

18
18

96

45c
72b
36c

obtained from any of the 15 projectively distinct hexacodewords of weight 4. There
are 3 • 24 • 15 vectors of this shape. The fifth line refers to the 3 • 26 • 6 vectors such as

(i> = 0,1,2)W(± l , ± 1, ±w, ±0), ±w, ±w

obtained from the 6 projectively distinct hexacodewords of weight 6.
The Mitchell group Go may now be defined as Aut (A<2)). It is not difficult to show

that this group is generated by the reflections in the minimal vectors of A(2). For it is
easily verified that the subgroup generated by these reflections acts transitively on
the vectors of norms 2 , 3 , 4 and 5, and that Aut (A(2)) contains no other elements.
Note also that Aut (A(2)) contains a monomial subgroup (26 x 3) A6. This is a split
extension of the subgroup 26 (generated by all sign changes) by Aut (Chex) (which is
a nonsplit extension 3A6 of a cyclic group of order 3 by the alternating group of degree
6). We call this the visible group of A(2). The rows of Table 1 show the orbits of short
vectors under the visible group.

2-3. Definition of A<3>. Let Q = <D- W, with 02 = - 3. Then (see (23))

A9) := {{xlt ...,x6)3:xi€Z[w],x1 = ... = z6(mod#), "Lxt = 0(mod3)}.

In the notation of (53) this is an application of construction B to the ternary code
{06, + I6, - I6}, using the fact that

Z[w]/0Z[w] ~ GF(3). (3)

The visible group of A(3) is a split extension (2 x 35): S6. The short vectors are listed in
Table 2, in orbits under the visible group. (They are also given in (23).) For example the
third line of the table refers to the vectors + (wa, o)b,..., u)s)3, where a, b,...,fe{0,1,2}
and a + b + . . . + / = 0(mod3). A more condensed notation is used for the vectors
of norms 3 and 4.
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Table 2. The short vectors of A(3), which is A.% written in the 3-base :

the visible group is (2 x 35): S6

425

Norm of
vector

0

2

3

4

Norm of
coordinates

(06)

(3*, 0')

(9, 06)
(4, 1B)

(33, 03)

(7, I6)
(7, 1«)

(4*, 1*)

(3*, 0s)

Coordinates

(08)3

± (wo0, - to"0, 0

± [(I)", W6 &/

(3, 06)3

( - 2 , l s ) s

(03, 03)3

(l + 3w, l s ) 3

(1 + 3S), 16)3

(-2M*)3

(0°,-0' ,O2)3

Number

1

)s 2-35

Total 756
2-3-6
2-3'-6

••-0
Total 4032

2-36-6
2-3s-6

2-3»-Q

2-3*-45
Total 20412

Class
mod 2

1

2

2

2
2

2

12
12

6a

6a

Class
mod 0

1

3

3

18
18

18

186
186

456

81

Table 3. The short vectors of A(4), which is A.% written in the 4-base :

the visible group is (3 x 25): S6

Norm of
vector

0

2

3

4

Norm of
coordinates

(0«)

(4s, 04)

(3, I5)

(7, 1»)
(7, 1«)

(43, 03)

(33, I3)

(16,0s)
(12,4,0*)
(9, 3, 1*)
(7, 3*. I3)
(7, 3*. I3)

(4*, 02)

(4*, 0')
(3s, 1)

Coordinates

(08)4

(22, 0*)4

(0, 16>4

(2 -0 , 16)4

(2, 2b), 2w, 03)4

(03, 13)4

(20, 2, 0*)4

( - 3 , 0 , 1*)4

( _ 2 - 0 , 02, 13)4

(2*. 0*)4

((2«)M2O)«,0«)(

Number

1

•-0
3-2s-6

Total 756
3-26-6
3-26-6

3.*.g).2

••-•0
Total 4032

3-2-6
3-22-30
3-2s-30
3-25-60
3-26-60
8'2i"(S)

, 3-2*-90
3-25-6

Total 20412

Class
mod 2

1

2

2

2
2

2

2

12
4a

106
6c
6c

8a

12
26

Class

1

3

3

18
18

6d

12 d

3e
30 e
12/
24/
24/

3 /

18/
48e
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2-4. Definition of A<4).

A<4): = {(xv ...,x6)4:xteZ[w], xx = ... = x6 = m (say) (mod2)

and xx +... + z6 = 2wm (mod 4)}.

The visible group of A(4) is (3 x 25): S6, and the orbits of short vectors under the visible
group are listed in Table 3.

2-5. Definition of A<-7K

Let a = 2 + 3w, with a 2 - a + 7 = 0, N(a) = 7, Z[w]/aZ[w] s GF(7). Then

A<7>: = {(x0>...,z6)7:xteZ[w],xo= ... =xe (moda), Sx,- = 0}.

The minimal vectors consist of all permutations of
±W( l , l , i ; i , - 2 -w , -2 - f t> ,2w) 7 ,

± W ( a , - a , 0,0,0,0,0),,

where v = 0,1,2, a total of

6-4T2l + 6 © = 756-
The visible group of A(7) is 6: S7.

3. Congruences mod 2 and mod 6

I t is useful (for example in proving the uniqueness of Ag, as we shall see in the
next section) to have a description of the congruence classes of h%/2A% and A%/6A%
in the 2-, 3- and 4-bases. It follows from (1) and (3) that Ag/2A£ and A£/0Ag are
elementary abelian groups of orders 212 and 36 respectively.

We first consider Ag/2Ag. The following facts are easy to establish by the argument
used to prove theorem 2 of (10). Every congruence class contains short vectors. A
vector v is always congruent to — v modulo 2 Ag, and if v has norm 2 or 3 these are the
only congruences. The vectors of norm 4 fall into congruence classes of size 12 modulo
2Ag, each set forming a coordinate frame. For example in A(2) the 12 vectors

±(2,2,0,0,0,0)^ ±(0,0,2,2,0,0)2, ±(0,0,0,0,2,2)2,

±(2,-2,0,0,0,0)2, ±(0,0,2, -2,0,0)a, ±(0,0,0,0,2,-2), (4)

are congruent modulo 2A(2) and form six mutually orthogonal pairs. Another class of
A(2)/2A(2) contains the coordinate frame

±(2,l,0,l,ft»,5J)a, ±(0,1,2,1,-<u,-5?)g, ±(0,0,0, -0,*>, -«)«,

± ( -2 , l , 0 , l , « ,5J ) a , ± ( 0 , 1 , - 2 , 1 , - « , - w ) 2 , + (0,1,0,-1,&>0,-5J0)a. (5)

Thus modulo 2Ag

the vectors of norm 0 fall into 1 class of size 1,

the vectors of norm 2 fall into 378 classes of size 2,

the vectors of norm 3 fall into 2016 classes of size 2,

the vectors of norm 4 fall into 1701 classes of size 12,
and indeed
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The fifth column of Tables 1-3 shows how the classes are divided among the rows of
each table. For example the first entry 12 in Table 1 indicates that all 12 vectors (4)
are found in this row of the table. The following entries 8a and 4a indicate that 8 out
of the 12 vectors (5) are found in one row and 4 in the next.

Similarly, every congruence class of A%/6K% also contains short vectors. The vectors
v, d)v and Tov are all congruent modulo 6A%, and if v has norm 2 these are the only con-
gruences. The vectors of norm 3 are divided into congruence classes of size 18, consist-
ing of scalar multiples of a set of six mutually orthogonal vectors {oS'vf v = 0,1,2,
1 < i < 6, with vi • Vj = 0 if i 4= j}. The vectors of norm 4 are divided into congruence
classes of size 81. For example in A(3) the following vectors:

a<: = (w + 3,w5)3 (1 ^ i ^ 6) (7)
with the To + 3 in position i,

63.:=(w + 3,w5)3 ( H i < 6 ) (8)
with the (o + 3 in position j ,

ci3.:=(-22,14)3 ( U « < j < 6 ) (9)

with the — 2's in positions i and j , together with their multiples by w and w, are all
congruent modulo 0A(3). Thus modulo 6A%

the vectors of norm 0 fall into 1 class of size 1,

the vectors of norm 2 fall into 252 classes of size 3, (10)

the vectors of norm 3 fall into 224 classes of size i 8,

the vectors of norm 4 fall into 252 classes of size 81,
and indeed

The right-hand columns in Tables 1-3 indicate how the classes are divided among the
rows of each table. For example the entries 186, 186, 456 in the last column of Table 2
refer to the 81 congruent vectors described in (7)-(9).

4. Uniqueness of A£

In this section we give two different characterizations of AJ (a third characterization
is given in (18)-see the Introduction). The first (Theorem 1) will imply that the
lattices A(2), A®, A<4> and A(7) constructed in Section 2 are isomorphic. We define A£
to be the lattice A(4> constructed in Section 2-4.

THEOREM 1. Let L be a ^-dimensional integral Z[o)]-lattice in which uQ = 1, ux = 0,
u2 = 756, u3 = 4032 and u4 = 20412 (where ut is the number of vectors in L of norm i).
Then L is isomorphic to A%.

Proof. The method of proof is essentially the same as that used to characterize the
LeeclLlattice in (10). First, the argument used to prove theorem 2 of (10) shows, using
equation (6), that the division of the short vectors of L into congruence classes modulo
2L is the same as the division of short vectors of Ag into classes modulo 2A£ (see Section
3). We may now suppose that L contains all vectors of the shapes (+ 4,05)4 and
(+ 22,04)4, these being 6 mutually orthogonal pairs of vectors of norm 4 and their
halved differences. Let x = (x1,x2,...,xe)4 be an arbitrary vector of L. By considering
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the inner product of x with the vectors ( ± 4,05)4 and (+ 22,04)4 we see that all xt e Z[w]
and xx = ... = xa = m (say) (mod 2). So far we have identified 180 vectors of norm 2,
namely + e</(22,04)4, corresponding to m = 0. Let x be one of the remaining 576 norm 2
vectors, so that HN(xi) = 8 and m = 1. The elements of Z[w] have norms 0,1, 3,4,...,
so the only possibility is that one xt has norm 3 and the other five have norm 1. There-
fore without loss of generality we may assume that (6, l5)4eL. Then all the vectors
<">"( ± &, ± 15)4 are in L. Since these vectors span A(4), L 2 A(4). On the other hand, by
considering the inner product of an arbitrary vector x with (6,15)4, we find that
Sa^ = 2am (mod 4). Thus L £ A(4), and so L = A(4) = A# as required.

COROLLABY 2.

% A<4> ~ A<7> ~ K\.

Proof. We have seen in Tables 1-3 that A(2), A(3) and A(4) have the same values of
uQ, ux, u2, u3, uit and it is not hard to show that A(7) does also. The result then follows
from Theorem 1.

For example
a: (x^x^x^x^x^x^-* (y^y^y^y^y^y^, (12)

where {xv x2 xe) • P = {y1, y2,..., y6) and

1
(0

1

w

1

w

1
(0

0)

1

1

(0

1
to

to

1

to

1

1
to

1

to

to

1

1
1

to

to

to

to

1

to

to

to

to

is an isomorphism from A(2) to A(3), and

T. (13)

is an isomorphism from A(2) to A(4>.
The following alternative characterization of Ag was first obtained by Feit (29) via

direct enumeration.

THEOREM 3 (Feit (29)). Let Lbe a unimodular Z[to]-lattice of dimension n < 12 con-
taining no vectors of norm 1. Then n = 6 and L ^ Ag.

Proof. I t follows from theorem 9 of (52) that the theta-series of L,

is an element of the graded polynomial ring C[00,0J, where

a= —oo 6 = - c o
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The only element of this ring in dimension less than 12 that contains no q term is the
6-dimensional series

^ + . . . . (14)

Therefore n = 6 and (14) is the theta-series of L. From Theorem 1, L ^ A£.

5. The group order; congruence bases

The calculation of the order of the automorphism group of a lattice is sometimes
simplified by the following definition. Let Ln be an n-dimensional /-lattice for some
ring J (i.e. a free J-module), and let n be a prime ideal in J. I t may happen that certain
congruence classes of Ln/nLn have the property that the minimal representatives in
the class consist of scalar multiples of a set of n mutually orthogonal vectors. If so we
call these minimal representatives a congruence base for the lattice. Expressing the
lattice in terms of a congruence base often leads to simple coordinates for the vectors.

For example, for the Leech lattice A24, any congruence class of A24/2A24 containing
vectors of norm 8 contains 48 vectors ±ev ..., ± e24 of norm 8 forming a coordinate
frame (see (10)). By expressing the vectors of A24 in terms of elt..., e^ we obtain the
standard coordinates for this lattice. Other examples are the complex Leech lattice
(see (60)) and the lattice Es (see (17)).

Let the vectors of a congruence base have norm r, and suppose that Aut (Ln) acts
transitively on the vectors of Ln of norm r. If H is the subgroup of Aut (Ln) fixing a
congruence base, and s is the number of vectors in the base, then there are ur/s ways
of choosing a congruence base, and so

| A u t ( i n ) | = ^ | ^ | . (15)

Usually H consists of monomial matrices and is closely related to the visible group
mentioned in Section 2.

Continuing the example, for the Leech lattice H = 212 • M2i (where MZi is a Mathieu
group), and

= 8315553613086720000
(see (9)-(U)).

For Ag we have two choices for the prime ideal n. In Section 3 we saw that a con-
gruence class of Ag/2Ag containing norm 4 vectors contains 12 norm 4 vectors forming
a congruence base (e.g. (4) or (5)). The stabilizer of such a congruence base is 2s: S6

(one third of the visible group of A(4)), and so

|Aut (Af)| = ^ ^ • 25- 6! = 29 • 37- 5- 7 = 108 • 9 T = 39191040. (16)

If we adjoin the antilinear symmetries (those which involve complex conjugation)
the group order increases to 210 • 37 • 5 • 8, which is the order of the automorphism group
of the real lattice K12.
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Alternatively we could argue from congruences modulo 6K%. The vectors of norm 3
are divided into congruence bases of size 18, the stabilizer of a base being 35: S6 (half
the visible group of A(3)). Then

|Aut(A£)| = ^ | ? - 3 5 - 6 ! = 39191040,

is agreement with (16).
6. Connections with the lattice E6

In the next two sections we examine the close connections between the lattices Ag,
E6 and A24. First, we recall the standard definition of the lattice EB:

E8 := {{xit ...,x8): alla^eZ or alla;f eZ + £, and Sa^ is even}

(see (4), (15), (41), (47)). E8 is a six-dimensional sublattice of Es and (like Ag) has many
isomorphic definitions. One definition is

#6 : = {(xv ...,xa)eE8:x6 = a;7 = xs}. (17)

In this version the 72 minimal vectors of E6 consist of

40 of shape (±12,O6)

32 of shape ±(±£ 5 , | 3 ) .

Comparison of these vectors with the minimal vectors of A<4) listed in Table 3 suggests
defining the map

x = (xvx2,x3,x4,x5,y,y,y)eE6h->$ = (2xv 2z2, 2x3, 2x4,2x5, 2%)4e A<4>, (18)

which preserves inner products and embeds E6 in A(4). I t is not difficult to verify that
the lattice

(the Z[w]-span of the vectors x, cf. (l)) has index 3 in A(4) £ Ag.
The alternative definition

Ee:={(xv...,x8)<=E8:x1 + ...+x6 = x7 + x8 = 0} (19)

will enable us to see the whole of Ag. The minimal vectors in this version of E6 consist of

30 of shape (1, - l ,04 | 02),

2 of shape (0 6 | l , - 1 ) ,

2' 2 ) •

The dual lattice E* is the union of E6 and two cosets ± ax + Ee, the 27 minimal vectors
of the coset <xx + E6 in this definition being as follows:

(5 - I 5 1 -

/ I 3 —I3

40 ofshape ^- , —

(20)

(21)

with the f in position i, and

(22)

with the — f's in positions i and j .
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THEOREM 4. Regarding E6 and E$ (with either definition) as embedded in complex
space, we have

Proof. The 27 vectors af, /?i; yi3- of-Bf have the same mutual inner products, except
for a factor of 3, as the norm 4 vectors ait bjt cti of A(3) (see (7)-(9)). We have already
seen that Z[w] E6 has index 3 in A(3) ^ Ag, and by adjoining 6ait 6fit, dy^ we obtain
all of A<3>.

7. Connections with the Leech lattice A24

Vectors in R24 will be specified by MOG coordinates

(23)

as in (12), (13), (17), (24), and may be written as quaternionic vectors (in H6) by identify-
ing (23) with

k). (24)

(25)

xx

Vi

zi

w2

x2

Vi

z2

w3

x3

Vz

Z3

W,

x4

y,

Z4

w5 we

xb xe

ys y6

H ze

We regard Z[w] as embedded in H via the identifications

-1+i+j+k
w =

Let Re denote the subspace of R24 consisting of the vectors (23) for which xt = yi = zi

for i = 1,..., 6, and let Im = Rex, the subspace of R24 with wt = 0, xi + yi + zi = 0 for
t = l , . . . , 6 .

We already know from ((17), figure 5) that the lattices

A<&: = A24 n Re and A<«: = A24 n Im

are isomorphic to K12. More precisely, if we write vectors in Re with a subscript 4,
and vectors in Im with a subscript 2, we find that

and = 2A» • (j - k). (26)

For example the Leech vector

2

2

2

2

2

2

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

is in A(R), and by (24) and (25) is written as

(2 + 26,2 + 26,0,0,0,0)4 = 2( - 25, - 2w, 0,0,0,0)4 e 2A«.
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0

0

4

- 4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

is in AW, and by (24) is written as 2(2,0,0,0,0,0)2 • (j -k)e 2A<2> • (j - k).
The Leech lattice A24 is therefore obtained by gluing (cf. (15), (17)) A(K) to A</). Let

.Re(A24) and Im(A2i) denote the projections of A24 onto the spaces Re and 1m respec-
tively. Then it can easily be seen that

-Re(A24) =

Consider for example the Leech vector

±, /m(A24) =

4

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Its projections onto Re and Im are respectively

u = Re(x) —

v = Im(x) =

From (24),

and similarly

4

1

1
I
0

1

— s

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

u 4 + y ,

(27)

(28)

(29)

in agreement with (27).
This x = u + v is a glue vector connecting ASR) and A(/) in the Leech lattice, and the

pairing u <-> v is the gluing map. Abstractly this gluing map is from congruence classes
of (1/0) AS/AS £ (1/0) A<«/A<« to congruence classes of (1/0) A%/K% ~ (1/0)A<2>/A(2).



The Coxeter-Todd lattice 433

From Section 3 we know that the norms of minimal representatives of these classes are
0, §, 1 or f, and the gluing map must pair classes of norm § with classes of norm f, and
classes of norm 1 with classes of norm 1. The gluing map has a simple description in
terms of our quaternionic coordinates. It is essentially given by the map

A,,,: (a, b, c, d, e,/)41-> (wa, JDb, we, wd, we, w/)2 , (30)

which is a norm-doubling homomorphism from A(4) to A(2). (A,,, uses the word

(w,w,w,w,w,G>)eCbex,

but in fact any hexacodeword of weight 6 would do.)

THEOREM 5 (the gluing map). A vector x = u + v, ueJRe, velm, is in A24 if and only
if when u and v are written as vectors in H6 using the above conventions then

u = W--Q, v = 2V-(j-k)-± (31)

withUeA™, VeAPamd

AJ£7) = V (modA«-0). (32)

Thus the gluing map is given by

u»2bw(U)-(j-k)±, (33)

for if (31) and (32) hold then the right-hand side of (33) is congruent to v modulo A(J).
We omit the straightforward proof. Example: According to the theorem, (28) is

glued to

\ ( j - k ) ,

and indeed this is congruent to (29) modulo A(7>.

8. Covering radius and deep holes

In this section we use Simon Norton's method (cf. (48), (17), theorem 12) to find the
covering radii of A% and K12, and the deep holes in these lattices.

THEOREM 6. The covering radius of A% is ̂ /f times the packing radius. Any deep hole
is congruent modulo Ag to a vector {1/6) v, where veA%, N(v) = 4. All deep holes are
equivalent under the action of Aut (Ag).

Proof. The proof resembles that of theorem 12 of (17), and the reader is referred
to that paper for the justification of certain steps. Let the covering radius of A% be
Jd; then the covering radius of (1/6) A% is ^/(d/3). Since the minimalVepresentatives of
some congruence classes of (1/6)A%/A% have norm f (by Section 3), we know d^\.
Suppose x is a deep hole in A$? and let z be the closest point of (1/0) Ag to x. Again
using our knowledge of the congruence classes of (1/6)A%/A^, z can be written as
z = -(l/6)vr + l, where vr,leA% and r := N(vr) is 2, 3 or 4. Then x' = x-l is also a
deep hole, and the closest point of (1/6) A% to x' is -(l/d)vr. Let x' = -(l/6)vr+x',
where N(x") < d/3.

Now -(l/6)vr = (wvr-w\)/3 is the centre of the triangle 0, wvT, —wh)r (see Fig.
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(a)

o
o o

(b)

FIGTJBE 1. (a) A deep holea;' (small square), the closest point of (I/O) A.% (doublecircle),
and some nearby points of A" (small circles), (b) The same points referred to the new
origin.

1 (a)). Let us move the origin of coordinates to the point — (l/6)vr. Then the points
of Ag nearest to the new origin include

1 (O (x)" (34)

(see Fig. 1 (&)). Since x' is a deep hole, N(x' — 1) ^ d for all le Ag. Now

N(x' -l) = N(x') - 2 Re {x' • 1) + N(l). (35)

If we take / to be one of the points (34) we obtain

and therefore

(36)

But N{x") ^ d/3, sor^2d^%, i.e. r = 3 or 4.
The case r = 3. Using the 3-base we may assume vr = v3 = ± (0,..., 0,3w', 0, ...)3,

x" = (xv ...,x6)3. Then (36) implies

4 >d (37)^ ( x ' ^ i - ^ I m ^ " ^

for v = 0,1,2,A; = 1,...,6, hence

fe (̂  = 0,1,2). (38)
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FIGURE 2. The region defined by equation (38), with \0A\ = £.

Therefore xk is in the shaded region shown in Fig. 2, and \xk\ < \, N{x") sj ^ .
Substitutingthisinto(37)wefindthatallthenumbers ± 2• 3-*Im(ofxk) (fory = 0,1,2)
are < - -g? < 0, which is impossible.

The case r = 4. Now the closest point of (1/(9) A£ to x' is - (1/(9) v4, where iV(v4) = 4
(referred to the old origin). From Section 3 there are 81 points of norm f in (1/0) A£
that are congruent to - (1/6) vt modulo A^ (for example, the points (7)-(9), divided
by 6). Changing to the new origin, let

which are points of K%, now having norm f. Let us define a map from C6 to C6 by

Then, by an argument similar to that in (17), using the fact that the 12-dimensional
real vectors corresponding to <f>v ..., 081 form a eutactic star (cf. (23), §4), it follows
that

for some constant c. Taking y to have a single nonzero coordinate we find c = 81
Thus

Re(T(y)-y) =
and so

(39)

for some »e{l, ...,81}. Set y = *', N(x") = a\a> 0, and d = $ + *, * ^ 0. Since *' is
a deep hole, Nfa-z") > d, which using (35), (39) becomes

and so either

or
(40)

(41)

(40) and a2 ^ d/3 lead immediately to a contradiction. On the other hand (41) and
a Ss 0 imply # < 0, hence 5 = 0 and d = f.
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Therefore the deep holes are elements of (1/6) A% that are congruent to — (1/6) vt

modulo Ag. Since Aut (A£) is transitive on the 20412 vectors of norm 4, there is unique
tj^pe of deep hole. This completes the proof of Theorem 6.

COROLLARY 7. The covering radius of Ki2 is V(8/3) times the packing radius, and there
is a unique type of deep hole.

The argument used to prove theorem 3 of (17) now leads to the following result.

THEOREM 8. Let L12+r (0 ^ r < 8) be any (12 + r)-dimensional lattice of minimal norm
M and containing a copy of K12 with the same minimal norm. Then

M\12+r

T j Ar) (42)
where Ao,..., A8 are 1, 4, 12, 32, 64, 128, 192, 256, 256 respectively.

By inspection of Table II of (17) we see that equality holds in (42) for the lattices
2LJ2> •••>-^l8-

COROLLARY 9. The lattices K12, ...,K1S are densest possible lattices containing Kn

and having the same minimal norm.

9. New sphere packings obtained from Ag and A24

Ag, K12 and A24 all have both norm-doubling and norm-trebling endomorphisms,
which can be used to obtain new lattices in higher dimensions via the constructions
in (l), (3). A norm-doubling map for A% is the endomorphism of A(2) given by

A : = A ^ O T : (a,b,c,d,e,f)2 h-> (oja + wb, 7oa — cob,..., we + wf, Toe — wf)2, (43)

which satisfies A2 + A + 2 = 0. A norm-trebling map for Ag is

0 : (a, b, c, d, e,/)2 ^ (da, 6b,..., df)2, (44)
and satisfies 0 3 + 3 = 0.

We mention in passing that the dual lattice Kf2 is the 12-dimensional real lattice
corresponding to 0-1Ag.

Both A and 0 lead to new lattices, but those obtained from 0 are not very dense
and we shall only describe those obtained from A.

We use the construction given in (3), applying it to A (which we now regard as
acting on K12). Then, as described in section 3 of (3), especially equation (15), we
obtain lattice packings in R12n for 1 < n < 26 + 1 having centre density $ given by

log2 S = n log2 (3-3) + 6(an - 2a+1 + a + 2), (45)

where a = [log2»]. In dimensions 228, 240, 252,..., 780, these appear to be denser than
any lattice previously constructed.

Lattices obtained from a norm-doubling map for the Leech lattice A24 have already
been analysed in (l) and (3), and produce record packings in dimensions up to 24(212 + 1).
If vectors of A24 are represented by quaternions, as in (23)-(24), left multiplication by
6 = i + j + k is a norm-trebling endomorphism 0 of A24. Again applying the construc-
tion in (3), but now using codes over GF(312), we obtain lattice packings in R24n for
1 ^ n ^ 312 +1 having centre density S given by

{ 3 a + 1 — 1 )

an ha+1),2 J

(46)
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where a = [Iog37i.]. These set new records in dimensions 24(212+1) < 24ra sg 24(312+1).
For example in dimension 1048584 the new record is S = 2691750544 •••, a considerable
improvement over the old record (compare (3)).

10. The invariants of the Mitchell group

Let Ru° denote the ring of invariants of the Mitchell group Go, i.e. the set of poly-
nomials fe C[a;j,..., x6] such that

Aof = f forall AeG0,
where

/ 6 6 \
Aof{xi,...,x6): = fl £ a^Xi,..., £ a6ixA.

\t=i i=i /

I t appears that no basis for RG° has ever been published, and we therefore provide
one in this section.

In Todd's 1950 paper' The invariants of a finite collineation group in five dimensions'
(58), he computes the Molien series (cf. (51), (56)) 2o°°dA<i

) where ad is the number of
linear independent homogeneous invariants of degree d in RG<>, and shows that

00 1

d?o Ud ̂  = (1 - A6) (1 - A12) (1 - A18) (1 -A24) (1 - A30) (1 -A42)' ( 4 7 )

He remarks that it is ' tempting to infer' that there exist six algebraically independent
invariants #6,...,64i such that

R° = C[0 6 ,6 1 2 ,6 1 8 ,0 2 4 , d30,642], (48)

and shows that the lowest degree invariant 06 is given by

#6= 2 («!*! + ... +IV*6)6> (49)
ves

where S is (in effect) the set of 756 minimal vectors of Ag. Todd computes 66 explicitly
in the 2-, 3-, 4- and 7-bases. In the 4-base, for example, apart from a constant factor,

(6) (30) (20)

#6 = 2 A + 16 S x\x)-30 2 x\x)x\ + 2400^ ...xe. (50)
i ij i j k

In a companion paper, Hartley (38) investigates the properties of the surface d6 = 0.
In their 1954 paper (50), Shephard and Todd state that Go 'possesses a system of

invariants of degrees 6,12,18, 24, 30, 42 whose Jacobian is of degree 126. The existence
of these forms was indicated by Todd (58) and the slight reservation expressed there
about their possible interdependence can be settled by a calculation like that made
by Coxeter ((20), p. 777) showing that for a certain special set of values of the variables
the Jacobian of these forms does not vanish.' The assertion (48) was established
beyond any doubt the following year by Chevalley(7) (see also ((22), §13-5), ((32),
theorem 2-l)j ((55), theorem 4-2-5), ((56), theorem 4-1)) as a special case of a general
property of reflection groups. Since then there appears to have been no further work
on the invariants of this group.

For any real reflection group which is the automorphism group of a regular polytope,
Flatto and Wiener (see (30)-(34), ((22), p. 179)), have shown that a set of basic invariants
is given by the polynomials 2»6s (^I^I + • • • + vnxn)k °f t n e appropriate degrees, where
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S is the set of vertices of the polytope. We now prove, by the type of calculation
suggested above, that the analogous result holds for Go.

THEOREM 10. Let S denote the set of 756 minimal vectors of Ag, and let

/**:= 2 (»i«i + ...+v6x6)
k

veS
for k = 0,1,... . Then the ring of invariants of the Mitchell group is

Proof. The algebraic symbol manipulation program Macsyma (45) was used to com-
pute the Jacobian of fi6,..., /ii2 at the point x = (1,2,4,5, 6,8), modulo the prime 99991.
The result was —400730 — 43754 #= 0. The theorem now follows from Chevalley's
result quoted above.

We are grateful to the M.I.T. Laboratory for Computer Science for allowing us to
use Macsyma.
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