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Remark 4: The author is unable to deal analytically with the 
general case of p + l/2 where one does not have the property of 
symmetry. However, the case that p is close to l/2 may be 
tractabie an9 interesting. 
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The Covering Radius of Cyclic Codes of Length up to 31 

DIANE E. DOWNIE AND N. J. A. SLOWE, FELLOW, IEEE . . 

Abstract-The covering radius is given for all binary cyclic codes of 
length less th?n or equal to 31. Many of these codes are optimal in the 
sense ?f having the smallest possible covering radius of any linear code of 
that length and dimension. 

There has been considerable interest recently in the covering 
radius of codes (see [l], [3]-[5]), but many open questions remain 
concerning the covering radius of particular families of codes. In 
this cofrespondence we give the covering radius R for all cyclic 
codes of length n I 31. As our source for these codes we used 
C. L. Chen’s table in Peterson and Weldon 16, App. D] with four 
omissions corrected. 

Several methods were used to compute R. Most codes were 
handled by computer. Let C be an [n, k] code. 

Method 1: By definition, R 5 R, if and only if every vector of 
weight R, + 1 is within distance R, of some codeword. This 
method may be implemented by first making a list of the code- 
words, and then testing each n-tuple of weight R, + 1 to see if it 
is within distance R, of some codeword. The number of steps is 
proportional to 

( 1 R,: 1. 2k 

and 2k words are needed to store the code. 
Method 2: Let H be a parity check matrix for C. Then C has 

R I R, if and only if every (n - k)-tuple is the sum of at most 
R, columns of H [3, Sec. I-A]. This may be implemented by 
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TABLE I 
COVERING RADIUS R AND NORM N OF CYCLIC CODES OF 

LENGTH I 31 
- - 
n k - - 
7 4 
7 3 
9 3 
9 2 

15 11 
15 10 
15 9 
15 9 
15 8 
I5 8 
15 1 
15 I 
15 6 
15 6 
15 5 
15 5 
15 4 
15 4 
15 3 
15 2 
17 9 
17 8 
- - 

*Optimal. 

- 
n 

- 

21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
2i 
21 
21 
21 
21 
21 
21 
- 

- - 
k d 

- 

roots R N 
- - 
16 3 377 2* 5 
15 3 1 2. 5 
15 4 0,377 3 6 
14 4 091 3 6 
13 3 l-7 3* 7 
13 4 3,7,9 3’ 7 
12 3 l,9 3* 7 
12 4 0,3,7,9 I 14 
12 4 al,7 4 8 
12 5 1.3 3* 7 
11 4 O,l,9 4 8 
11 6 f&l,3 5 10 
10 4 1,779 4’ 9 
10 5 1,377 6 12 
9 3 1.5 5 11 
9 4 O,l,7,9 9 18 
9 6 1,339 5 11 
9 8 O,l,3,7 7 14 
8 6 O,l,3,9 7 14 
8 6 (Al.5 6 12 

- - i - 

- 
d - 
3 
4 
3 
6 
3 
4 
3 
4 
4 
4 
3 
5 
6 
6 
3 
I 
6 
8 
5 

10 
5 
6 

- 

roots 

1 
0.1 

1 
O,l 

1 
0.1 
1.5 
3.5 

Rl.5 
Q3.5 

l,7 
l,3 

0,133 
O,l,7 
1,537 
1,335 

O,l,5,7 
O,l,3,5 

1,337 
O,l,3,7 

1 
0.1 

R 

I* 
3 
3* 
4. 
1* 
3 
3 
3 
4 
5 
3* 
3* 
5 
4 
5* 
5* 
6 
I 
6* 
3’ 
3* 
5 

- 
N - 

3 
6 
7 
8 
3 
6 
6 
6 
8 

10 
7 
7 

10 
8 

11 
10 
12 
14 
13 
14 
7 

10 
- 

initially setting hit(u) = 0 for all (n - k)-tuples u, then finding 
all sums of R, or fewer columns of H, and for each sum s, 
setting hit(s) = 1. At the end, if hit(u) = 1 for all u, we con- 
clude that R I R,. The number of steps is roughly proportional 
to 

( 1 lo Ro 
and 2”-k words of storage are needed. 
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- 
n 
- 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
23 
23 
25 
25 
2-l 
27 
2-l 
21 
21 
27 
- 

- 
n - 

31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
- 

TABLE I (Continued) 
- - 
k d 

- 
7 
7 
6 
6 
6 
5 
4 
3 
3 
2 

12 
11 

5 
4 
9 
8 
7 
6 
3 
2 

- 
3 
8 
6 
I 
8 

10 
9 
1 

12 
14 

I 
8 
5 

10 
3 
6 
6 
6 
9 

18 
- - 

- 

k - 
26 
25 
21 
21 
21 
20 
20 
20 
16 
16 
16 
16 
15 
15 
15 
15 
11 
11 
11 
10 
10 
10 
6 
5 

- 

d - 
3 1 
4 091 
5 173 
5 175 
5 1,lS 
6 0,1,3 
6 0,1,5 
6 0,1,15 
5 1,5,11 
6 1,397 
I 1,335 
I 1,597 
6 0,1,3,7 
8 0,1,3,5 
8 0,1,5,7 
8 0,1,5,11 

11 1,3,5,7 
11 1,3,5,1 1 
10 1,3,1,15 
12 01357 , 3 7 7 
12 013511 9 9 , . 
10 013115 3 9 , ? 
15 1,3,5,7,11 
16 0,1,3,5,7,11 

- - 

roots R 

1,5,7 I 
1,3,7,9 6 
WA7 8 

1,3,5 6* 
0,1,3,7,9 9 
f&1,3,5 8* 
1,3,5,7 8* 
1,3,5,9 9* 

01357 7 > 7 9 10 
0,1,3,5,9 10* 

1 3* 
091 I 

1 108 
0,1 11 

1 9 
(41 10 
199 10 

0,1,9 12 
173 12; 

0,1,3 13; 

roots R 

1* 
3 
3* 
3* 
3* 
5 
5 
5 
5 
5 
5 
5 
9 
7 
7 
6 
1. 
I* 
8 
11 
11 
11 
11 
15 

- 

N 
- 

15 
13 
16 
13 
18 
16 
17 
19 
20 
20 

I 
14 
21 
22 

24 
25 
26 
- 

- 

N - 
3 

11 
11 
11 
11 
18 
14 
14 
12 

- 

A few codes were handled analytically. For example, the even 
subcode of a Hamming code has R = 3 (R 2 3 follows from the 
supercode lemma [3, Prop. l] and R I 3 from Delsarte’s bound 
[3, Th. 11). Secondly, if an [n, k, d] code C can be obtained from 
an [n’ = n + 1, k’ = k, d’ = d + l] even weight code with 
known covering radius R’ by deleting a coordinate, then C has 
covering radius R’ - 1 [3, Corr. 11. We applied this to the 
[32,6,16]R = 12 Reed-Muller code [2] and to the [32,16,9] 
R = 6 quadratic residue code [l]. 

The table gives n, k, d and the roots of the generator poly- 
nomial, as in [6] (and, as in [6], codes with k = 1 or d I 2 are 
excluded). Then we give the covering radius R and in many cases 
the norm N, as defined in [4]. (For reasons of economy we did 
not compute N in every case. In each case when we did compute 
N, the condition 2R I N I 2 R + 1 was satisfied, showing that 
the code was normal. The existence of an abnormal code is still 
an open question [4].) 

Entries marked with an asterisk are optimal in the sense of 
having the smallest possible covering radius of any linear code of 
that length and dimension (see the table in [4]). Some unstarred 
entries may also be optimal. For example at the time of writing it 
is only known that the smallest covering radius of a [15,6] code is 
either 3 or 4. 

The table in [6] contains the following errors (on page 495). 
The fifth code of length 31 should have roots 1,15 (not 1,7) and 
d = 5; the eighth code of length 31 should have roots 0, 1,15 (not 
0, 1,7) and d = 6; the nineteenth code should have roots 1,3,7,15 
(not 1,3,7,11) and d = 10 (not 11); and the twenty-second code 
should have roots O,l, 3,7,15 (not O,l, 3,7,11) and d = 10 (not 
12). 
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