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0. Introduction

Codes with low covering radius have applications in source coding and data
compression (see [6]). Although there has been considerable activity in recent years in
studying these codes ([2]-[4], [6], [7], [9], [10], [12], [13]), many open questions remain.

The following are some of the most important. Other problems may be found in [2], [6].

1. What is the solution to Berlekamp’s light-bulb game?

In the Math. Dept. Commons Room at Bell Labs in Murray Hill there is a light-bulb
game built by Elwyn Berlekamp nearly twenty years ago. There are 100 light-bulbs,
arranged in a 10 X 10 array. At the back of the box there are 100 individual switches,
one for each bulb. On the front there are 20 switches, one for each row and column.
Throwing one of the rear switches changes the state of a single bulb, while throwing one

of the front switches changes the state of a whole row or column.

Suppose some subset S of the 100 bulbs are turned on using the rear switches. Let
f(S) be the minimum number of illuminated bulbs that can now be attained by throwing

any sequence of row and column switches. The problem is to determine

* This appeared in ‘‘Open Problems in Communication and Computation’’, ed. T. M. Cover and
Gopinath, Springer-Verlag, NY, 1987, pp. 51-56.



R = mSax f(S)

It is known [1] that 32 < R < 37.

The preceding problem is in fact equivalent to finding the covering radius of a certain
code. Let C be an [n, k] binary, linear code. The covering radius R of C is the maximal

distance of any vector x € F5 from C, i.e.

R = max min dist(x, c) . (D)
xeF; ceC

Let us define a light-bulb code L, , to be the [n = ab, k = a + b — 1] linear code
spanned by the rows and columns of an a X b rectangular array. Figure 1 shows some
typical codewords of L3 3 (which might also be called the tic-tac-toe code). Berlekamp’s
game asks for the covering radius of L jo. Since there are potentially 2100 choices for

x in (1), a brute force attack will not succeed!

More generally one may ask for the covering radius of L, ;. The Table gives the
known bounds on L, ,. For large a it is known [1], [6] that
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See also [5], [9].

My reason for giving Berlekamp’s game as the first problem is that it appears that
light-bulb codes, and codes closely related to them, such as those in Equations (46), (47)
of [6], often have unusually low covering radii. It would therefore be valuable to have a

better understanding of these codes.



A related question: determine the exact covering radius of the codes obtained by the

extended direct sum construction given in (79) and (81) of [6].

2. Is there a code of length 15, dimension 6 and covering radius 3?

Two general questions in this subject are: (i) find the smallest possible covering
radius t[n, k] of any [n, k] linear code, and (ii) exhibit explicit codes that attain or come
reasonably close to this bound (see [6]). The value of #[n k] is known exactly if k < 5,
or if n < 14, and a table of bounds on ¢[n, k] for n < 64 is given in [6]. The first gap
occurs when n = 15 and k = 6. A [15, 6] codes exists with R = 4, but the best bound

only guarantees that R > 3. Problem: is t[ 15, 6] = 3 or 4?

3. Find an abnormal linear code

The ‘‘amalgamated direct sum’’ construction for constructing codes with low
covering radius given in [6] works best when applied to normal codes (the definition is
given below). It seems likely that almost all linear codes are abnormal, although at the
time of writing (August 1985) not a single example of an abnormal linear code is known.
Every code that has been studied so far has turned out to be normal! Problem: find an
abnormal linear code, or prove that all linear codes are normal. Abnormal nonlinear

codes are known to exist (see [7]).

The definition. Let C be an [n, k] code with covering radius R, and let Cgf) denote
the set of codewords (¢y ,..., c,) €Cwithc; =a(fori =1, ---,nanda = 0 or

1). Then C is normal if, for some i,

dist(x, C§?) + dist(x, C{?) < 2R + 1



holds for all x € F4. Many classes of codes are known to be normal, including all codes
of minimal distance d < 5, or with dimension k < 5, or with covering radius R < 2, or

with length n < 14 (see [3], [7], [13]).

4. What is the covering radius of a first-order Reed-Muller code?

First-order Reed-Muller codes are among the simplest, most elegant, and most
important of all codes [8, Chapter 14]. These codes have length n = 2, dimension

k = m + 1 and minimal distance 2" ~!. For m even Rothaus [12] showed that

n

R=21"
2 2

But for m odd it is only known in general that

E_VESR<£_ﬁL
2 2 2 2

(see [2] for references), and for odd m > 15 that

n_o 2 on Nn
2 32 2 2 2

(Patterson and Wiedemann [10]). Problem. Determine R when m is odd.

This problem can be stated another way: which boolean functions of m arguments are

most difficult to approximate by linear functions?

For m even these codes are known to be normal [6]. Problem. Show that first-order
Reed-Muller codes of length 2™, m odd, are normal. (This would improve certain

asymptotic estimates in [6].)



5. Find the covering radius of cyclic codes of length 63

In searching for codes with low covering radius it was found that one of the cyclic
codes of length 31, the [31, 11] five-error-correcting BCH code, has an exceptionally low
covering radius, namely R = 7 (see the tables in [4], [6]). It is likely that some cyclic
codes of greater length will also have low R. Problem. Determine the covering radius of

cyclic codes of length 33 - 63. (Tables of these codes may be found in [11].)
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List of Figure Captions

Figure 1. Some codewords in the light-bulb code L3 3.



Table. Covering radius of light-bulb code L,,, from [1], [6] (n = length,

k = dimension, R = covering radius, ¢t[n, k] = world record).
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ABSTRACT

Some of the principal unsolved problems related to the covering radius of codes are
described. For example, although it is almost twenty years since it was built, Elwyn
Berlekamp’s light-bulb game is still unsolved. [Added later: this problem has since been
solved — see P.C. Fishburn and N.J.A. Sloane, ‘‘“The Solution to Berlekamp’s

Switching Game,”” Discrete Math., Vol. 74, 1989, pp. 263-290.]

* This appeared in ‘‘Open Problems in Communication and Computation’’, ed. T.M. Cover and
Gopinath, Springer-Verlag, NY, 1987, pp. 51-56.
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