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Inequalities for Covering Codes 

Abstract-Any code C with covering radius R must satisfy a set of 
linear inequalities that involve the Lloyd polynomial L R ( x ) ;  these general- 
ize the sphere bound. The "syndrome graphs" associated with a linear code 
C help to keep track of low weight vectors in the same coset of C (if there 
are too many such vectors C cannot exist). As illustrations it is shown that 
t[17,10] = 3 and t[23,15] = 3, where t [ n ,  k ]  is the smallest covering radius 
of any [ n ,  k]  code. 

I. INTRODUCTION 

HE Delsarte-MacWilliams inequalities have enabled T linear programming to be applied successfully to er- 
ror-correcting codes (see for example [4]). The inequalities 
presented here (in Theorems 1, 2 and Corollaries 3, 4) are 
a partial analog for covering codes. Although several other 
recent papers have given bounds for covering codes [l], [5], 
[7], the results given here appear to be new. The technique 
of obtaining bounds by counting syndromes (used in the 
second proof of Theorem 2) was also used by Brualdi et al. 
[l]. The underlying principle is the fact that if C is a linear 
[n, k]  code with covering radius R,  then every (n - k)-tuple 
can be written as a sum of at most R columns of H [2, sec. 
I-A]. The bookkeeping involved in checking this condition 
is facilitated by the "syndrome graphs" introduced in 
Section 111. In Section IV we show t[17,10] = 3, and the 
final section contains a list of the known improvements to 
the table of t [ n ,  k] given in [3]. (Recall that t [ n ,  k] is the 
minimal covering radius of any binary code of length n 
and dimension k.) 

We restrict ourselves to binary codes; there is a straight- 
forward generalization to other fields. Our notation 
throughout is that a linear code C has weight distribution 
{ A ,  } and the dual C has weight distribution { B , } .  

11. LINEAR INEQUALITIES FOR COVERING CODES 

Suppose C is a (not necessarily linear) binary code of 
length n and covering radius R .  As in [4, ch. 51, we 
represent vectors u = ( ul,. . . , u,*) E F: by their images 
z" = z? . . . z;n in the group algebra QF:, and define 

I U ' U  

x,(z") = ( - 1 )  > 

X"(C) = c x u ( z ' > .  
ccc 
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Let 

J 

L , ( x ) =  K , ( x ; n ) = K , ( x - l ; n - l ) ,  (2) 
r = o  

j = 0,1,. . +, n, be Krawtchouk and Lloyd polynomials, re- 
spectively [4]. 

Theorem 1: For any subspace U c F; and any vector 
u E FT we have 

x u ( z u > x u ( c > L R ( w t ( u ) )  ' 2". (3) 
U € U  

Proof: Since C has covering radius R ,  in the group 
algebra we have 

( c zc)( ;oYj = c awzw7 (4) 
C € C  w E F; 

where 

y =  zw 
wt(w) = 1 

and the coefficients a ,  are positive integers. We apply xu  
to both sides of (4) and use 

x u ( y ) =  c (-1Y "=K, (wt (u ) ;n )  ( 5 )  
w t ( w ) = r  

[4, p. 1351 and (2) to obtain 

= w .  

w E F; 

By multiplying both sides by (-1)" " and summing on 
u E U, we have 

x~(Z">xu(c )LR(wt (u>)  
U € U  

= a ,  c ( - l ) u ( U + w )  . (6) 
w E F ;  u E U  

But 

so the right side of ( 6 )  is at least 
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From now on we restrict our attention to linear codes. and 

Theorem 2: Let C be a linear [ n ,  k ] R  code, i.e. one b) M (  w )  2 0, (13) 

(14) 

with covering radius R. Choose any m linearly indepen- 
dent vectors u l ; ~ - , u , , ,  in C L  ( 1 1 m 1 n -  k ) ,  and m 
arbitrary signs cl; . ., c, (equal to f 1). If u E C ' is a 
linear combination of the u,,  say 

where 

M (  x )  = LR(0) -2n-k - LR( x ) .  

Proof: a) is the case m = 1 of Theorem 2; b) is an 

Corollary 4: If ul,  u2,  u3 = u1 + u2 are nonzero vectors 

immediate consequence. 

in C ' of weights wl, w,, w3 respectively, then 

u = U l 1  + * . . + U L a ,  

set c ( u )  = c ( i l ) .  c ( i a ) ;  otherwise set c ( u )  = 0. Then 

U € C L  

Remarks: 
i) Since LR(0) = Zp=,( :I, we can write (8) as 

holds for all choices of signs e l  = f 1, c, = 1; and 2 (;)-2"-'f c(u)LR(Wt(u)) 2 0 .  (9) 
i = O  U € C l  b) M (  wl)  + M (  w2) - M (  w 3 )  2 0. (16) 

U Z O  

The sphere bound 

2 ( 3 - 2 % 0  
i = O  

is the case m = 0. 
ii) Theorem 2 can be stated more succinctly as follows: 

if U is a subspace of C' and E is any map from C' to 
{-1,0,+1} satisfying c ( u ) = O  for u€CI \U and c ( u +  
u )  = E ( U ) E ( U )  for u, u E U, then (8) holds. 

iii) Although Theorem 2 follows from Theorem 1, we 
also give a direct proof involving the choice of a parity 
check matrix, since this approach motivates the rest of the 
paper. 

First proof of Theorem 2: In Theorem 1 let C be 
linear, U c C I, and choose u so that xu( z u )  = c (  u )  holds 
for all u E U. Then (8) follows from (3) and (7). 

Secondproof: Let ul;. e ,  u,,, be the first m rows of a 
parity check matrix H for C .  Define T , = O  or 1 by 
~ ; = ( - 1 ) ~ 1  ( i = l , - . . , m ) .  Then for anyaEF;, 

Proof: a) is the case m = 2 of Theorem 2; b) follows 
by choosing el  = c 2  = - 1. 

Remarks: 
i) Equation (16) states that the three numbers M(w, ) ,  

M ( w 2 ) ,  M ( w 3 )  are a possible set of edge lengths of a 
triangle (which may have zero area- for example if M( wl) 

ii) Although assertions (13) and (16) are generally the 
most useful, there are many applications of the more 
general results (8), (12), (15). 

iii) Lloyd's theorem for linear codes. Let C be a perfect 
[ n ,  k ] R  code. Consider the graph r with vertices the 
cosets of C and where two cosets x, y are joined if and 
only if wt (x + y )  = 1. If we choose a parity check matrix 
H ,  then we may label the vertices of r with syndromes 
with respect to H. Vertices labeled s, t are joined in r if 
and only if s + t is a column of H. The graph r is regular 
with valency n and has eigenvalues n - 2w, with multiplic- 
ity B,, where B, is the number of codewords in C' with 
weight w,. Since the diameter of r is R ,  there are at least 
R nonzero weights in C '. Since C is perfect we have 

+ W w 2 )  = M(w3)).  

l+€ , ( - l )a .uz  LR(0)  = 2 n - k ,  

1 n 2  =1 and for every nonzero weight w in C' we have 
is equal to 1 if a -  u,  = T, for all i = 1; . -, m ,  and is M ( w )  =LR(0)-2"-k-LR(w) =o.  
otherwise 0. Therefore 

We conclude that the polynomial LR(x) of degree R has 
exactly R distinct integer roots in [0, n ] .  

Corollary 5: Suppose there is an integer /3 (0 I /3 I n )  
such that for all integers w (0 I w I n )  either 

since the left side is the number of linear combinations of M ( w ) r / 3  or M ( w ) 2 2 / 3 + 1 .  
at most R columns of H whose sum begins r1r2. . . T,, 
and t h s  must be at least as large as the number of 
( n  - k)-tuples with the same beginning. Equation (8) fol- 
lows by expanding (ll), and applying (5) and (2). 

, (11) l + c , ( - l > "  , - 2n-k-m 
wt(o)  = =  5 R 2 

Then 

{ U E C ' :  M ( w t ( u ) ) I p }  

together with the zero vector is a linear subcode of C I. 

Proof: Let ul, u2 E C ' be linearly independent vec- 
tors with M(wt ( u , ) )  I /3 ( i  = 1,2). We must show M(wt ( u1 
+ u 2 ) )  I /3. Let w, = wt ( u , ) ,  w3 = wt (ul  + u,). Then 

Corollary 3: If w is any nonzero weight in C I then 

(I2) 2 (;)-2n-k>lLR(w)l,  
r = O  

a) 
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M (  wl) + M (  w,) 2 M (  w,) 2 0, so M( w3)  s 2p. Therefore 
M( w,) I p, by hypothesis. 

Corollary 6: The zero vector and the vectors u E C 
with M(wt(u)) = 0 form a linear subcode of C I. 

Proof: This is the case /3 = 0. 

Examples: 
a) It was shown in [3] that t[23,15] = 2 or 3. Suppose C 

is a [23,15]2 code. The corresponding values of L, (x )  and 
M ( x )  for 0 I x I 23 are as follows: 

x: 0 1 2  3 4  5 
L, (x ) :  277 231 189 151 117 87 
M ( x ) :  -256 -210 -168 -130 -96 -66 

x: 8 9 10 11 12 13 

M ( x ) :  0 14 24 30 32 30 

x: 16 17 18 19 20 21 
L 2 ( x ) :  21 39 61 87 117 151 

L 2 ( x ) :  21 7 - 3  - 9  -11 - 9  

M ( x ) :  0 -18 -40 -66 -96 -130 

6 7  
61 39 

-40 -18 

14 15 
- 3  7 
24 14 

22 23 
189 231 

-168 -210 

From (13), the nonzero codewords in CL have weights 
in the range { 8,9,. ,16}, and from Corollary 6 the code- 
words of weights 0,8,16 form a linear subcode. 

We shall continue t h s  example in Section 111, and show 
that C does not exist. 

b) From [3], t[16,7]=3 or 4. Suppose C is a [16,7]3 
code. The corresponding values of L 3 ( x )  and M ( x )  are as 
follows : 

x :  0 1 2 3  4 5 6 7 8  
L , ( x ) :  697 455 273 143 57 7 -15 -17 - 7  
M ( x ) :  -512 -270 -88 42 128 178 200 202 192 

x: 9 10 11 12 13 14 15 16 

M ( x ) :  178 168 170 192 242 328 458 640 
L 3 ( x ) :  7 17 15 - 7  -57 -143 -273 -455 

~~ 

From (13), the nonzero codewords in C’ have weights 
w 2 3. In this case (12) yields the additional result that 
w 514. 

At present it is not known if C exists. 

111. SYNDROME GRAPHS 

Every nonzero codeword c E C specifies a dependence 
among the columns of H. In particular, the existence of a 
codeword in C of weight w I 2R implies that two sets of 
at most R columns of H have equal sums (usually in 
several ways). For example, if c = 111100 . . . O  E C ,  we 
have the identities 

h1+ h , = h ,  + h 4 ,  

h , + h , = h , + h , ,  
h l +  h ,  = h ,  + h , ,  

where h i  is the ith column of H. Each such identity 
reduces the number of distinct sums of at most R columns 
of H .  If there are enough identities it may be possible to 
show that the code cannot exist. (Such identities indicate 
that there are low weight vectors in the same coset of C.)  

We now define certain “syndrome graphs” G,  .,. nm, 

which make it possible to record ‘and utilize even partial 

As in Section 11, let ul; . -, urn E C be the first m rows 
of a parity check matrix H (1 I m I n - k ) .  For each 
binary vector nl . . . n, we define a graph GT1 ... 11, as fol- 
lows. The vertices are the subsets { i,, e ,  i ,  } C { 1,. - * ,  n } 
(0 I r I R )  for which the binary vector a supported on 
that subset satisfies a . u j  = nj for all j=1; .  a ,  m.  Two 
vertices { i,; e ,  i , } ,  { j , ;  . -, j s }  are joined by an edge if 
and only if 

r S 

h i  = h,. 
p = l  o = l  

Proposition 7: The syndrome graph G,,, _ _ _  nm contains ex- 
actly 2n-k-rn connected components, each of which is a 
complete graph. 

Proof: It follows from the definition that the number 
of components in this graph is equal to the number of 
distinct sums f = ( f l , - - . ,  fn-k)rrof at most R columns of 
H for which fi = n1; e ,  f, = n,. Since C has covering 
radius R ,  this number is exactly 2n-k-m. It also follows 
from the definition that if node V, is joined to node V,, 
and V, to V,, then V, is joined to V,; thus every component 
is a complete subgraph. 

The merit of this graphical approach is that each time 
one can deduce-for example from the Delsarte- 
MacWilliams identities- that a codeword of weight at 
most 2R exists in C ,  the number of known edges in one or 
more of the graphs Gw,.,.vm increases. And of course a 
graph with many edges cannot have too many connected 
components . 

This leads to the following proposition. 

Proposition 8: Suppose the i th connected component of 
the syndrome graph G,,, _ _ _  ~m contains ui vertices and e, = 
ui( ui - 1)/2 edges (1 I i I K = 2n-k-m), and let u = Cui, 
e = Ce,  be the total number of vertices and edges, respec- 
tively. Then the nonnegative integers Si = ui - 1 (1 I i I K )  
satisfy 

K 

Si = -2n-k-m (18) 

a,‘= 2 e  - u +2n-k-rn.  (19) 

i = l  

K 

i = l  

Proof: This follows immediately from the definition 
of SI. 

Remarks: 
i) If it is known only that the syndrome graph Gnl,...,Tm 

contains at least 9 edges, then Proposition 8 implies that 
there exist nonnegative integers { Si } satisfying 

K 

(20) 6; = u - 2 n - k - m  

, = l  

information of this type. r = l  
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ii) It is worth emphasizing that Grl...r, depends both 
on the choice of u,; . ., urn E C and on the binary vector 
7T1. . . 7Tm. 

iii) It is sometimes useful to consider how the different 
syndrome graphs are related. There is a "parent" graph 9 
with LR(0) vertices labeled by all subsets { i , ;  . ., i , }  
{ l ; - . , n } ,  0 1 r  I R ,  with edges defined by (17). Each 
Grl...?,m is an induced subgraph' of 9. Furthermore if 
u l l , - .  ., ui, is a subset of u,; * * ,  urn, then Grl.., ", is an 
induced subgraph of Grtl ... ?, . 

iv) Consider the case m 21, T, = 1. Then M(wt ( ul)) = 0 
if and only if G, contains no edges (for then equality must 
hold in (11)). More generally, if u,; . e ,  urn are such that 
M(wt ( ui)) = 0 (1 5 i I m ) ,  then all the syndrome graphs 
G?,, _.. ?,, for which at least one vi is 1 contain no edges (this 
follows from the last sentence of the previous remark). 

Example a) (Continued): 
Let C be a [23,15]2 code, and let { A , } , { B , }  be the 

weight distributions of C ,  C ' respectively. From Section 
I1 and the tables in [3], [6] we have A ,  = A ,  = 0, B, = . . 
= B 7 = B 17 = . = B,, = 0, B,  21. We now use linear 
programming to minimize A ,  + A ,  subject to the Delsarte- 
MacWilliams constraints; the result is A ,  + A ,  2 12.33 . . . , 
i.e. A ,  + A ,  213. 

Suppose C' contains a codeword u1 of weight 12. The 
corresponding syndrome graph Go (Le., taking m = 1, T, = 

0) has u = 1 + + 11 + l1 = 133 vertices. Furthermore 
Go contains at least one edge for every codeword of weight 
3 or 4 in C ,  i.e. e213. (For example, suppose u l =  
11 . . . O E C ' ,  of weight 12. If c = 1 1 O . .  . O I O . .  . O 
E C, of weight 3, then there is an edge in Go joining vertex 
{1,2} to vertex (13). On the other hand if c = 

0 01110 . . .  0 E C, the three vertices (13, 14}, 
{ 13,151, { 14,15} in Go are joined by three edges to form a 
triangle (similarly if c has weight 4). The edges determine 
c, and so distinct c's produce distinct edges.) 

From (20) and (21) it follows that Z;?*,S, = 5 and Z~~*,S,' 
2 21, which implies 8, = 5 for some j and 6, = 0 for i f j .  
We take j = 1 .  Thus Go contains one component with six 
vertices (and at least 13 edges) and 127 isolated vertices. It 
is now easy to check that there is no way to choose 13 
vectors of weight 3 or 4 orthogonal to u1 for whch the 
corresponding edges are restricted to only six vertices. 
Thus C ' contains no vector of weight 12, i.e. B,, = 0. 
Similar arguments apply if u1 has weight 11 or 13, 
and we obtain B,, = B,, = B,, = 0. Linear programming 
now shows that there is no feasible solution to the 
Delsarte-MacWilliams constraints. Thus C does not exist, 
and we have established the following result. 

e) ( 2 )  

Theorem 9: 
t[23,15] = 3. 

Remark: We originally proved Theorem 9 without using 
a computer. To save space we omit this argument. 

'A graph H is an induced subgraph of G if the vertices of H are a 
subset of the vertices of G, and the edges of H are just the edges of G 
that join these vertices. 

IV. t[17,10] = 3 

Theorem IO: 

t[17,10] = 3. 

Proof: From [3], t[17,10] = 2 or 3. Suppose C is a 
[17,10]2 code. The corresponding values of L 2 ( x )  and 
M ( x )  are as follows: 

~ ~~ 

x: 0 1 2 3 4 5 6 7 8  
L,(x):  154 120 90 64 42 24 10 0 -6  
M ( x ) :  -128 -94 -64 -38 -16 2 16 26 32 

X: 9 10 11 12 13 14 15 16 17 
L*(x) :  -8  -6 0 10 24 42 64 90 120 
M ( x ) :  34 32 26 16 2 -16 -38 -64 -94 

From (13), the nonzero weights in C' are in the range 
5 I w I 13; and from [6], C ' has dmin = 5 or 6. From (16), 
there is at most one vector of weight 5 in C ', and also if 
there is such a vector, then there can be no vector of 
weight 6. Linear programming now shows there is no 
feasible solution to the Delsarte-MacWilliams inequalities 
if B 5 = 1 ,  B6= 0. We conclude that C' has d,,=6. 
Equation (16) also shows that any vector disjoint from a 
vector of weight 6 in C ' must also have weight 6 (and by 
a dimension argument there must be such a vector). 

Let ul, u,EC' be disjoint vectors of weight 6, say 
u1 = 11111100 . . . O ,  u, = 00000011111100000. Let D be 
the subcode of C' that vanishes on the last five coordi- 
nates, and let D' be the projection of C ' onto the last five 
coordinates, so that dim D + dim D' = dim C = 7, and 
dim D 2 2 (since u,, u ,  E D). 

Case i): Dim D = 2. Then dim D'= 5, D'= F:, so in 
particular C contains vectors u3;  . e ,  u7 whose last five 
coordinates are 10000,. . . ,00001 respectively. A computer 
program considered all ways to choose u,  and u ,  E C ', 
ending with 10000 and 01000 respectively, and such that 
{ u,, u , ,  u , ,  u , }  satisfy (8) for all choices of signs. There is 
an essentially unique solution (after talung account of 
obvious symmetries), which is shown in Fig. 1. The same 
program then found that there is no way to choose the 
fifth row u5 to end with 00100 and such that { u,; . ., u 5 }  
satisfy (8) for all choices of signs. 

u, I I I I l 1 0 0 0 0 0 0 0 0 0 0 0  
u2 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0  
us 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0  
uq 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0  

0 0  I O 0  
0 0 0  I O  

Fig. U? u5 '6 1. L Partial parity check matrix for 0 0 0 0  [17,10]2 code I 

Case ii): Dim D 2 3. The computer program found all 
ways to adjoin two further vectors u, E D, u,  E C' to 
ul ,  u ,  so that { u,, u, ,  u , ,  u , }  satisfy (8) for all choices of 
signs. There are 27 essentially distinct solutions { u, ,  u , }  
(after allowing for obvious symmetries), but in each solu- 
tion u ,  has weight six and intersects both u1 and u2  in 
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three coordinates. We may therefore take u3 as follows: [3]), we also have 

u l =  111 111 000 000 00000 [27,19]2$ [23,12]3 = [49,30]5, 
u 2 =  000 000 111 111 00000 
u 3 =  111 000 111 000 00000 

[42,33]26 [15,11]1= [56,43]3, 

[42,33]26 [23,12]3 = [64,44]5, 

(22) [49,30]56 [15,11]1= [63,40]6, u 4 =  a p y 8 .5 

Furthermore, in each solution the last five coordinates of which imply t[49,301 = 5 ,  t[56,431 = t[57,441 = 3, t[63,401 
u4 (denoted by c in (22)) have weight at least 2. This shows 
that dim D is exactly 3, dim D’= 4, and D‘ is the [5,41 

= 6, t[64,441 = 5 .  

even weight code. Therefore c has even weight. This re: 
duces the number of inequivalent choices for u4 (and ACKNOWLEDGMENT 
similarly for the remaining three rows of H) to 12, and we 
observe that none of these vanishes on any of the first four We thank Vera €’less for sending US a Preprint of [I]. 
blocks of three coordinates (i.e., none of a , P , y , 8  ever 
vanishes in (22)). But this is impossible, since there are 
four rows of H to be completed, and they cannot all be 
distinct on the first three coordinates. Thus C does not 
exist. 

V. IMPROVEMENTS TO THE TABLE OF 1 [ n, k] 

The known improvements to the table of t [ n, k] given in 
[3] are as follows: From [5]: t[15,6] = 4. From [7]: t[23,6] 
= 7, t[25,9] = 6, t[26,12] = 5, t[28,6] 2 9, t[29,8] 2 8, 
t[30,7] 2 9, t[32,10] 2 8, t[33,6] 211. From [l]: t[27,19] = 

2, t[41,29] = 3, t[42,33] = 2, r[58,48] = 2 (these four val- 
ues are attained by normal codes); t[16,9] = 3, t[32,23] = 3, 
t[45,35] = 3. In the present paper: t[17,10] = 3, t[23,15] = 

3. Using 6 to denote an amalgamated direct sum (as in 
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