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CODES FROM SYMMETRY GROUPS, AND A 132, 17, 81 CODE*

YING CHENGf AND N. J. A. SLOANE:

Abstract. Let G be the automorphism group of the four-dimensional cube, a group of order 24.4! 384.
The binary codes associated with the 32-dimensional permutation representation of G on the edges ofthe cube
are investigated. There are about 400 such codes, one of which is a 32, 17, 8] code, having twice as many
codewords as the 32, 16, 8 extended quadratic residue code.
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1. Introduction. Since random codes are good ([1], [27, p. 558 ], [29 ]), one wishes
to identify families ofcodes large enough to have a chance ofincluding some good codes,
yet small enough to be manageable. In this paper we describe one such family: the codes
obtained from the action of the automorphism group of the n-dimensional cube on its
m-dimensional faces.

In particular, the automorphism group G ofthe four-dimensional cube, a group of
order 384, permutes the 32 edges of that cube. Regarding the edges as a basis, we have
a 32-dimensional vector space V over GF(2) on which G acts. The codes we consider
are the subspaces of V invariant under G. There are about 400 such subspaces, one of
which is a [32, 17, 8] binary code.

We find this quite astonishing, since the well-known second-order Reed-Muller and
extended quadratic-residue codes of length 32 are [32, 16, 8 codes, and are extremal
Type II self-dual codes 16 ], 17, p. 194 ], 24 ]). It is remarkable that there should be
a linear code with the same minimal distance and twice as many codewords. Of course
the new code is not self-dual. Its properties are summarized in Theorem 1.

This family of codes can be generalized in several ways. Besides varying the dimen-
sions of the cube and the faces, we could consider other regular polytopes instead of the
cube, or more generally other Weyl groups (our group G is the Weyl group of type B4).

Many other codes have been obtained from modular representations of groups in
the past. Of course classical cyclic codes arise from the regular representations of cyclic
groups, and include a large number of good examples. In the 1960s Berman [4], [5 ],
Camion 11 ], Delsarte 19 ], and MacWilliams 25 ], 26 studied other abelian groups,
but (perhaps because of the limitations of the computers available) did not find any
especially interesting codes.

In 1975 Lomonaco (see [15]) found a record [45, 13, 16] binary code obtained as
an invariant subspace of the regular representation of the group C3 X C15. In [10],
Calderbank and Wales found a 176, 22, 50 code from the Higman-Sims simple group.
Brooke 7 ]-[ 9 has studied a large number ofother simple groups, using Parker’s "meat-
axe" 28 ], without, however, finding any new record codes. Representation theory has
also been used to construct codes by Liebler [23 ], Camion [12], Rabizzoni 32 ], Ward
34 ], Zlotnik 36 ], Klemm 21 ], Charpin 13 ], 14 ], Bhattacharya 6 ], Jensen 20 ],
Wolfmann [35], and Landrock and Manz [22].

However, it seems fair to say that our 32, 17, 8 binary code is the first record code
oflength less than 100 that comes from a modular representation (where the characteristic
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of the field divides the order of the group). Furthermore, in contrast to many of the
papers mentioned, we do not use the regular representation of the group. Another dis-
tinguishing feature of our approach is the relatively large number of invariant subspaces
that occur, increasing the chance that one of them is good!

2. The new code. Let G be the automorphism group ofthe four-dimensional cube,
a group of structure 24.$4 and order 24.4! 384. This group permutes the 32 edges of
the cube, which we label as in Fig. 1. Let Fbe a 32-dimensional vector space over GF(2
with basis that is in one-to-one correspondence with the edges, so that G acts on V. A
typical vector v l/" has the form v (v,..., v32), vi 0 or 1, with coordinates
corresponding to the labels in Fig. 1. We write these vectors in hexadecimal notation,
with 0 0000, 9 1001, 1010, F 1111. We may also identify v with
the corresponding set of edges.

Any set of vectors u, v, Fgenerates a binary linear code of length 32, denoted
by (u, v, .), namely the modulo-2 span of the union of the orbits of u, v, under
G. These codes are the G-invariant subspaces of F. A code or subspace (u) with a single
generator is called cyclic, following [18, p. 52]. (This is the appropriate generalization
of the standard term from coding theory.)

We denote the G-invariant codes ofdimension k by Ck C) -(
,Ck ,’-’,andwhen

they are cyclic we denote corresponding generating vectors by Uk U TheUk
labels are chosen so that, for k 4: 16, Ci) and ci2)_k are dual codes. Also --16 and

l)
16 are duals (0

_
-< 2). We shall make use ofthe particular generators u (ki) shown

in Table 1. Some generators that represent geometrically interesting configurations in
the cube are displayed in Fig. 2.

The code C7 is the most interesting, and we summarize its properties in the following
theorem.

THEOREM 1. The code Cl7 ( u3, u4 > is a 32, 17, 8 binary code, with generator
matrix as shown in Fig. 3(a). (An alternation definition is given in 3.) This code has
thefollowing weight distribution:

0 8 10 12 14 16

Ai 908 3328 14784 27392 38246

22 18

FIG. 1. Four-dimensional cube with the 32 edges labeled.
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TABLE
(i> for selected code Ctki> (in hexadecimal).Generating vectors Uk

u FFFFFFFF
u 3 00FF00FF

u4 FF000000
u 5 FOFOFOF0

uI) CC99CC99
u 6 55AA5555

uI) 00665533

u 006655CC
u 7 0F695A3C

uI) 3C693C69

u 000F00F0
u 33663C69

u 1E2D4B78

u 00335566

u 1E2D4B87
u 11224477
u 88112244

uI0) 0F3C3C5A

uII) 0F3C3CA5
u 9 0FOF3C69

uI) 0F3C5A69

u 003C5569

u 33693369

u IEIEIEIE
u 1E1E1EE1
u 11111111

u 111111EE
U10) 0FOF5A5A

U11) 0FOF5AA5

Ull 00335A69

ull oo c3c5 

utl 11224B78
ut > oo0o5  c
u13 AAA50000

0 0e4  7

u 11111EIE
o 0e0 0e

ut 03770605

0 090cc 

u16 03091242
03  e050

utf 00 74  4

u27 88840000
u28 00008200

u29 80808040

u31 08100000

with A32-i Ai, and G is its.full automorphism group. The covering radius ofC7 is 6,
a typical deep hole being 0 0 0 0 7 (in hexadecimal). The dual code is Cl5 (u5,
a [32, 15, 8] code with generator matrix as shown in Fig. 3(b), and has thefollowing
weight distribution:

0 8 10 12 14 16

Ai 124 1152 3584 6016 11014

with A32-i Ai. All G-invariant subcodes OfCl7 and C5 are as shown in Figs. 4 and 5;
in particular C17 and CI5 intersect in the 32, 9, 8 code Ct9) The double circles in Figs.
4 and 5 show all the cyclic modules in these diagrams; C7 itself is not cyclic.

Remarks. (i) The dual lattice to Fig. 5 gives all the codes containing C7.
(ii) The best way to remember these codes is to notice that the generator u5 for

the dual C5 resembles two umbrellas, one of which has lost its fabric (see Fig. 2). This
vector is stabilized by a subgroup of G of order six.

(iii) In Table we give more than enough generators to enable any ofthe codes in
Figs. 4 and 5 or their duals to be reconstructed. (The Bensen and Conway 3 notion of
reduced lattice of submodules was helpful in preparing Table 1.) For completeness we
note that G itself is generated by the following permutations:

(1, 15, 17,8,9,22)(2, 16, 19,7, 10,24)(3, 14,20,6, 12,23)

(4, 13, 18,5, 11,21)(26,27,28)(30,31,32)
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u u4

u; u6 u14 u15

U28

FIG. 2. Subsets ofedges corresponding to selected generating vectors.

(a)

10101010101001010000000000000000
01101010111000010000011010100000
001100(0)0(0100010000011000000101
0001000100000110(0)00010100110000
000010100110010101000100(0)000110
00000110001000010010010000001100
00000011000100010110111110100000
00000000101010101010010100000000
0000000(O10101011010010100000000
00000000001111000101101001100110
000101110001010000100001
0011110110011000110011
000000000001111111100000000
000(0K)0000000(K101010101011010
00000000000000000011001101100110
0000000000IIl100001111
0000000(0)00000000000000011111111

(b)

11101000000110110010111001000100
01000100111010000001101100101110
00100010010000101101011100101110
00010001101100101110010010001011
00001001000011000110111100111111
00000110101010010011010111001111
00000011000010010011111101010011
00000(00100110011010101000110011
0000(0)00011001101010101011001100
00(0X00(llll001001011000110011
11110101010100001111
0000001111111100000000
IIC000000000101101000111100
0flO0600ll001101100110
00000000000000000000000011111111

IOG. 3. Generator matricesfor codes (a) C17 and (b) Cs.
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FIG. 4. Complete lattice of G-invariant subcodes ofCi7o The code C is abbreviated k in Figs. 4 and 5.
Cyclic modules (with one generator) are indicated by double circles.

and
(1,9, 17,25)(2, 10, 18,26)(3, 11, 19,27)(4, 12,20,28)

(5, 13,21,29)(6, 14,22,30)(7, 15,23,31)(8, 16,24,32).

(iv) The following list identifies, from the set of codes mentioned in Figs. 4 and 5
and their duals, all those that have minimal distance d => 6:

d 6: C6 C163) -(1) /-,,(2)
C’17 C18, I.-,18
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,5

FIG. 5. Complete lattice ofG-invariant subcodes ofC,5.

d=8: C4,C,Ci)(i=0,...,3,6,9),C(i=0,...,6),Ct9(i=0,..’,11),
(i) ,..,(i)CI))(i=O, ,S),Cl’,)(i=O, ,6),c,2 (i=0, 1,2),t.-,3 (i=0, ,5),

--(I)
14 (i=0, ,3),C5,C,5 ,Cl)(i=0, ,5),C,7;

d 12:C6l) "-’2 -0
,c6 ,C7 (i=4,5,7,8,10,11);

d= 16: C3, C1)"

d- 32: C.
(v) A dense 32-dimensional lattice sphere packing may be obtained from C7 by

applying Construction D of 2 ]. This packing (see 17, p. 235 ]) has center density
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2 and each sphere touches 249,280 others, and is the second densest packing known in
this dimension. (Quebbemann’s 32-dimensional lattice 30 ], 31 ], 17, p. 220 has
i 2.566 and each sphere touches 261,120 others.)

The group G 24. $4, like $4, has just two conjugacy classes of elements of odd
order, and so, again like $4, has just two absolutely irreducible representations over
GF(2) (cf. [18, p. 58 ]). These are the trivial one-dimensional representation and the
two-dimensional representation by the following matrices of GL2(2):

0 0I(0 1/,(1
THEOREM 2. (a) Every composition series of V begins and ends:

{0} =Co=C="" C3C3 V,

where C { 0 32, 132} and C3 consists of all even-weight vectors. In particular, every
nontrivial G-invariant code is even, contains 132, and its weight distribution satisfies
Ai A32 -i.

(b) One composition seriesfor V is

{0} C0 C C3 C4 C6 C7 C9 C0
(3) /-,(2) (5)cC12cCI3cC14cC16cC17c.18 c-20 cC22

=t_,23 cC24=C26cC28c. C29c. C31cC32 V.

c The composition factors for V are 1122 0.
Before proving these theorems we describe what we think is the full list of invariant

subspaces.
CONJECTURE. (a) The complete list of G-invariant subcodes of V consists of 373

codes, whose dimensions k are as follows:

k 2 3 4 5 6 7 8
# 0 2 3 14 16

k 9 10 11 12 13 14 15 16
# 20 16 19 16 17 22 22 31

(The number of dimension 32 k is equal to the number of dimension k.)
(b) The code C7 is the unique G-invariant code of minimal distance d >- 8 and

dimension k

_
17. The largest G-invariant codes of minimal distances 4, 6, 12, 16 have

dimensions 25, 18, 8, 5, respectively (and are not especially good; cf. Verhoeff [33 ]).
(c) There are nine self-dual codes, all with minimal distance d 2 or 4 (e.g., the

vectors 0 0 0 0 0 0 1 1, 0 0 0 0 0 0 0 r generate self-dual codes with d 2, 4, respectively).
The nontrivial Reed-Muller, extended Hamming, and extended quadratic-residue codes
of length 32 are not G-invariant codes.

Remark. The 373 codes described in (a) (and in Figs. 4 and 5) are only claimed
to be distinct, not necessarily inequivalent. But usually distinct G-invariant codes are
inequivalent. More precisely, if C and C’ are equivalent codes (implying that there is a
permutation r e $32 with C C’) such that Aut (C) Aut (C’) G, then C C’. For
Aut (C’) r Aut (C)r- Aut (C) G, implying that ,r is in the normalizer of G in
$32. But G is equal to its normalizer, so r e G, and C C’.

Proofof Theorem 1. The assertions about the dimension, weight distribution, cov-
eting radius, and dual code are routine computer verifications.

By definition, Aut (C7)
_

G. To prove equality, we first examined (by computer)
the weight distributions ofthe nonlinear subcode formed by the 908 codewords ofweight
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8. There are exactly four weight 8 codewords with weight distribution A0 1, A8 180,
A7 544, A 16 183, namely the vectors r r 000000, 00 r r 0000, 0000 r r 00,
000000 r r (These are supported on the four classes ofeight parallel edges ofthe cube,
see Fig. 1.) Thus the division of the 32 coordinates into these four blocks of eight is
canonical. The group G induces all 4! permutations of the four blocks.

There are exactly 28 codewords meeting the blocks 4 + 4 + 0 + 0, and these have
the form u, u, 0, 0) and u, if, 0, 0), where u is a weight 4 word in an 8, 4, 4 Hamming
code It8. The automorphism group of /8 has structure 23.L2(7) [2, p. 399 ], and the
permutations induced by G on the first block yield exactly the 23 part of this group. G
also contains the permutation (9, 10)(11, 12) (31, 32), fixing the blocks and fixing
every point of the first block. Any permutation of C7 not in G can then be assumed to
fix the blocks, and to act as an element of L2(7) inside each block. We verified by
computer that all such permutations are already in G. Thus Aut (C7) G.

The assertion that Figs. 4 and 5 show all G-invariant subcodes of C7 and C5 was
proved as follows. We first established what we believe is a complete list ofall G-invariant
subcodes of V. There are 373 codes, as described above. (This list was constructed by a
variety of techniques: repeatedly taking joins, intersections, and duals; constructing a
generator matrix for each code and finding the cyclic module generated by each row;
finding the cyclic modules generated by all vectors of selected codes; and other ad hoc
methods.) The list was checked to be closed under the operations of taking joins, inter-
sections, and duals. We examined the cyclic codes generated by every vector of C7 and
C5, and verified that these are on the list. This proves the assertion.

Proofof Theorem 2. (a) From the remarks preceding the theorem we know that
the composition factors are all or 2. Suppose a composition series begins Co C.., where C2 is a two-dimensional code generated by vectors u, v and affording the
two-dimensional representation (1). Then every g e G sends u to u, v or u + v, and all
three occur. Since G is transitive, [u f3 1 + [u f3 v[ + [ff f’) v 32. Since u can be
mapped to v, u N 1 [ff f’) v I, and similarly u fq [ [u f’) v I, so the three sets are
equal in size and 31u v 32, which is impossible. The assertion C3 c C3_ follows
by duality.

1000
0100
0010
0001
aaO0
bbO0
ccO0
aOaO
bObO
cOcO
aOOa
bOOb
cOOc
Owww
xOxx
yyOy
zzzO

FIG. 6. Alternative generator matrixfor C7 (0 00000000, 11111111).
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(b), (c) The computer was used to verify that all the composition factors of 2 in
the given series are irreducible.

3. An alternative construction. The [32, 17, 8 code C17 described in Theorem
was in fact first found by the following construction. This provides an alternative de-
scription, and may be of independent interest.

Let a’ct8 and /[ be two versions ofthe [8, 4, 4] Hamming code that intersect only
in { 08, 18 }. (For example, take the point-code and line-code shown in 17, Fig. 11.27 .)
Choose independent vectors a, b, c e aW8 that span /8/{ 08, 18 }, and vectors w, x, y,
z / that span a//{ 08, 18} and satisfy w + x + y + z 0. (For example, a
10101001, b 10011100, c 10000111, w 11001100, x 10101010, y 11110000,
z 10010110.) Then Fig. 6 generates a code equivalent to C7. (It is not difficult to find
an isomorphism onto the earlier version. The first four rows of Fig. 6 are the four special
codewords mentioned in the proof of Theorem 1.)

Acknowledgments. We are grateful to John Conway and Walter Feit for some very
helpful suggestions.

Note added in proof. Gerhard J. A. Schneider ofthe University ofEssen has verified
that Conjecture (a) is correct, using the CAYLEY computer system. There are indeed
exactly 373 G-invariant subcodes. (Personal communication, June 10, 1988.)
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