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Abstract -Let w1 = d ,  w2; . ., w, be the weights of the nonzero 
codewords in a binary linear [ n ,  k , d ]  code C, and let 
w',, w>, . . ., w;, be the nonzero weights in the dual code C I. Let t 
be an integer in the range 0 < f < d such that there are at most 
d - t weights w: with 0 < w: I n - t .  Assmus and Mattson proved 
that the words of any weight w, in C form a t-design. We show 
that if w 2  2 d + 4  then either the words of any nonzero weight 
w, form a ( t  + 1)-design or else the codewords of minimal weight 
d form a (1,2,. . . , t ,  t + 2}-design. If in addition C is self-dual 
with all weights divisible by 4 then the codewords of any given 
weight w, form either a ( t  + 1)-design or a (1,2;. ., t ,  
t +2)-design. The special case of this result for codewords of 
minimal weight in an extremal self-dual code with all weights 
divisible by 4 also follows from a theorem of Venkov and Koch; 
however our proof avoids the use of modular forms. 

Index Terms -Assmus-Mattson theorem, Golay code, t - 
designs, self-dual codes, extremal codes. 

I. A STRENGTHENED ASSMUS-MATTSON THEOREM 
ET C be a binary, linear [ n,  k ,  d ]  code with nonzero T eights w,=d,w,;.-,w,, and let w;;-.,w;. be the 

nonzero weights in the dual code C I. Our starting point 
is the following theorem. 

Theorem 1 (Assmus and Mattson [2]): Let t be the 
greatest integer in the range 0 < t < d such that there are 
at most d - t weights wj with 0 < wj < n  - t. Then the 
codewords of any weight w, in C form a t-design. 

Venkov [21], answering a question raised in [20], showed 
that this theorem has an analogue for extremal even 
unimodular lattices in Euclidean space of dimension 24m. 
The expected analogue was that the lattice vectors of any 
fixed nonzero length would form a spherical 11-design. 
Venkov proved this and more: he showed that these 
vectors possess an additional regularity, forming what he 
called a spherical 11;-design. His proof uses the theory of 
modular forms. 

Venkov [21] also announced that similar results could 
be obtained for self-dual codes. These results are stated 
by Koch [15] (see also [14], [16]). In particular, Venkov 
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and Koch show that, in any extremal binary self-dual 
doubly-even code C,  the set @ of minimal weight words 
has the property that a certain linear form associated with 
'!@ is constant on ( t  +2)-sets. Here t = 5 if the length n of 
the code is a multiple of 24, t = 3 if n = 8 (mod24), and 
t = 1 if n = 16 (mod24). To prove their result they associ- 
ate a unimodular lattice with C and again apply the 
theory of modular forms. 

Our strengthened version of Theorem 1 involves the 
concept of a T-design, defined as follows (cf. [SI). Let R 
be the set of all d-subsets of the n-set [l,n]={l;.*,n}, 
with d < n/2. We identify iR with the set of all points 
5 = (t, ,  . . ., 5,) in [w" that satisfy tP E (0,1] for all p and 
C;=,[, = d. The vector space R" of mappings from R to 
R is invariant under the natural action of the symmetric 
group S,. The irreducible S,-invariant subspaces of R" 
are the harmonic spaces harm(i), i = 0,l; . * ,  d .  (These 
spaces are described in detail in Section 11, where in 
particular we give an explicit basis for harm(i).) 

Let @ be a subset of R, i.e., a constant weight code, 
and let T(@) E R" be the corresponding characteristic 
vector. The importance of the harmonic space harm(i) is 
that if the projection of d@) onto harm(i) is zero, then 
there is some regularity in the way the vectors of '!@ meet 
an arbitrary i-subset of [ l ,  nl. In particular (see [lo]), @ is 
a t-design if and only if, for all i = 1,2; . ., t, the inner 
product (d'!@),f) = 0 for all f E harmW. As in [81 we 
extend the definition of a design to subsets T c [ l , n ]  
other than [ l ,  t ]  by saying that a collection @ is a T-design 
if, for all i E T, the inner product (d@),f) = 0 for all 
f E harm(i). (In case 0 E T, a T-design is defined to be a 
TI-design with T' = T \{0}.) 

When combined with the results of Section I11 of the 
present paper (in particular Theorem 7), the Venkov- 
Koch result mentioned above implies that the codewords 
of minimal weight in an extremal self-dual doubly-even 
code C form a (1,2,. . . , t, t + 2)-design. (For in this case 
the linear form in Theorem 7 reduces to Venkov's form, 
given on page 461 of Koch [15].) 

The purpose of the present paper is to give a similar 
generalization of the Assmus-Mattson theorem that does 
not assume the code is self-dual and whose proof avoids 
the use of modular forms. Our main theorem is the 
following. 
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Theorem 2: Let C be a binary [ n , k , d ]  code with 
nonzero weights w1 = d ,w2; .  .,wF, and let w;; . . , w i t  be 
the nonzero weights in the dual code C L .  Let t be the 
greatest integer in the range 0 < t < d such that there are 
at most d - 1 weights w,' with 0 < w: I n - t .  If w 2  2 d + 4  
then either the codewords in C of any nonzero weight w, 
form a ( t  + 1)-design or else the codewords of minimal 
weight d form a {1,2, * . . , t ,  t + 2l-design. 

The proof is given in Section IV. In one important 
special case we can prove slightly more. 

Theorem 3: If, in addition to the hypotheses of Theo- 
rem 2, C is self-dual with all weights divisible by 4 
then the codewords of any given weight w, form either 
a ( t  + 1)-design or a { 1,2,. . . , t ,  t + 2}-design. 

The proof is given in Section V. 
A list of the known extremal codes is given in [6, p. 1941 

and [7]. We may conclude for example that the codewords 
of minimal weight in the [24, 12, 81 Golay code and the 
[48, 24, 121 extended quadratic residue code form 
{1,2,3,4,5,7}-designs. The minimal weight codewords in 
any of the five [32, 16, 81 self-dual doubly-even codes ([51, 
[71) or in the extremal self-dual codes of lengths 56, 80, 
and 104 form (1,2,3,5}-designs, and the minimal weight 
words in the extremal self-dual codes of lengths 16, 40, 
64, 88, and 136 form {1,3}-designs. Other examples are 
given in Section IV. 

The invariant linear forms associated with codes are 
further investigated in [3], [4]. Generalizations to nonlin- 
ear codes and other fields are considered in [31. 

11. THE HARMONIC SPACE HARM (i) 
In this section we give a more precise definition of and 

an explicit basis for the harmonic space harm (i). 
We first define the homogeneous space hom(i) (0 I i I 

n). This is the subspace of R" represented by homoge- 
neous polynomials f (z )  = f(z,; . ., z f l )  of total degree i 
and degree at most 1 in each variable z,,. Note that, since 
these functions are defined on a, z i  and z p  (1 I p I n )  
represent the same function, and z1 + z 2  + . . . + z p  is 
the constant function d .  The latter assertion implies that 
hom( j )  is a subspace of hom(i) for 0 I j I i. 

The monomials zzPlzp2 . . . zp ,  are linearly independent 
and span hom(i). Thus the dimension of hom(i) is (:) 

The Laplacian A is the differential operator given by 
(cf. [lo]). 

This maps hom(i) onto hom(i - 11, and the kernel is the 
harmonic space harm(i). In [lo] it is shown that there is 
an orthogonal decomposition 

hom( i) = harm( i) CB hom( i - l ) ,  (1  I i I n ) ,  

with respect to the inner product ( f ,  g ) = C, E " f ( .$>g( .$) ,  
from which it follows that the dimension of harm(i) is 

( : ) - ( 
space of constant functions. 

define an element 4 of Rn by 

) . Hom (0) = harm (0) is the one-dimensional 

Theorem 4: For any i-subset { q 1 ; . . , q i }  of [ l ,n]  we 

where ' T J ( Z ~ ~ , . .  . , z q t )  is the sum of the characteristic 
functions zp,zpz * . . z,, of all j-subsets Ip1; . ., P,} of 
Isl,.. . , q l } .  Then the set of all ( ) such 4's spans 

harm (i). 

Pro08 Consider a monomial m ( z )  in hom(i). With- 
out loss of generality we may take 

m( z )  = z1z2. * 2,. 

For an integer u E [0, i] we define +,(z) E hom(i) to be 
the sum of all monomials of degree i having exactly U 

variables z p  in common with m(z) .  We first show that 
A ~ , ( z )  = ( i  - U + l )guPl (  2) + ( n - 2 i  + U + 1)gU(z) ,  

(2) 

where g,( z )  E hom(i - 1) is the sum of all monomials of 
degree i - 1  having exactly j variables in common with 
m(z) .  We write z = (x, y ) ,  where x = (z1; . ., z L )  and y = 

( z ,  + 
. . , zfl). Then by definition, 

4J.I = a u ( x ) ~ , - , ( Y ) ,  g , W  = 5 ( X ) @ t - j - l ( Y ) ,  

(3) 

where a,(w) = a,(wl , .  . . , w r )  = Cw,,w,, . . . w!, denotes the 
elementary symmetric function of degree J in the vari- 
ables wl; . * , w r .  Note that q ( x )  is the sum of all mono- 
mials of degree j dividing m(z).  Equation (2) follows 
from the identities 

ACT,( X )  = ( i  - U + ~)cT,- , (  x), 
Aar(  y ) = ( n  - i - r + 1) a,- 1( y ) . 

We now define 

It follows readily from (2) that + ( z )  is a solution of the 
Laplace equation AqNz) = 0. Thus we have associated a 
harmonic function 4 E harm(i) with the given monomial 
m E hom(i). 

We next prove that + ( z )  satisfies (1). First a simple 
counting argument yields 

for all u and 1 with U + 1 I i. We then obtain the identity 

for r I i 
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This can be proved by induction on r ,  as follows. We use I-subset of [ l ,  n] then since @ is an (1 - 2)-design we have 
the two relations 

@ , ( Y )  = d - a , ( x )  

n -21 + 2  
= -  

d + l - I  

d - 1 + 1  ' 
1-1 which is (6) with r replaced by r + 1. 

Using (3145) and the combinatorial identity - 
we see that ( T ( @ ) , + ( x ) )  = 0 for all x implies that Lx is 
independentof x.Conversely,if L,  isindependentof x, ~ ( - 1 ) l ( . d - l  ) ( j F l ) = ( - l ) ~ - u ( ,  d - j  . )  

1 1 - U - I  1 - J  the inner product 

(which follows from [13, p. 58, (24)]), we obtain a repre- 
sentation for +,(z )  in the simple form 

d - j  n - l + l  

j = O  

(7) 

Equation (1) now follows from (4) and (71, after applying 

for some constant A independent of x. Since 

c a , ( x )  E hom(O), for all j ,  
X 

the classical identity 

j = O  

for all x ,  
we have (112, (3.2111, together with 

( j ) (  1) =(;)(;.I:). 
The set of all + ( z )  associated with monomials m of 

tion the linear space spanned by these functions is invari- 

hom(O)nharm(l)=(O}, 
U degree i spans the whole space harmW. For by construc- and SO A = 0. This completes the proof. 

ant under the symmetric group S,; and as the harmonic 
spaces harm( j )  are the irreducible S,-invariant subspaces 
of R", this implies that the space in question coincides 
with harm(i). This completes the proof of Theorem 4. U 

We conclude this section with an application of Theo- 
rem 4. (A stronger result will be given in Section 111.1 

Theorem 5: A classical (I -2)-design '@ is also an {I}- 
design if and only if for any 1-subset x of [ l , n l  the 
quantity 

L, = { l (d  - I + 1) -(n -21 +2))p1., + ( d  - I + l)pl-l , , ,  

111. INVARIANT LINEAR FORMS 
Any S,-invariant subspace 5 of R" is the sum of 

harmonic subspaces: 

C =  E harm(i), (9) 
i c T  

where T is a well-defined subset of {O, 1,. . , d } ,  and C 
denotes an orthogonal sum. There are 2d f '  such sub- 
spaces 5. 

Let '@ be a subset of R. A subspace 5 of R" will be 
said to be '@-regular if 

T(R),$) ,  f o r a l l $ E r .  (10) 

Note that since T(R) is the function 1 (which spans 
harm(O)), the inner product (do),$) vanishes for all 
$ E harm(j) with j 2 1. 

Theorem 6: A nonempty subset '@ c R is a T-design if 
and only if the subspace 5 defined by (9) is '@-regular. 

I'@l 
Dl (T ( '@) ,$ )  = -( 

(8) 

where pj ,x  is the number of blocks in '@ that have exactly 
j points in common with x ,  is independent of the choice 
of x .  (We shall therefore call Lx an invariant linear 
form.) 

Proof: Let h,(O I j I 1 - 2) be the number of blocks 
of @ containing a particular set of j points. If x is any 
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Proof: If is @-regular it follows from (9) and (10) 
that 

( n-( @) , + ) = 0, for all + E harm ( j )  with j E T, j # 0, 
(11) 

i.e., '$3 is a T-design. Conversely, if '$3 is a T-design with 
0 E T then 

n - ( @ ) E  E harm(i) ( 12) 
r E T  

and so l =  C, E harm(i) is @-regular. 
We can now give the generalization of Theorem 5 that 

will be used to prove the main theorem. We replace (8) by 
a more general invariant form, (13). 

Theorem 7: Let @ be a nonempty subset of 1R. Sup- 
pose that for some integer 1 with 1 s 1 s d there exist real 
numbers a, b, c, not all zero, such that 

a r U 1 , x  + brU/-l,x = c, (13) 
for all 1-subsets x of {1,2,. e ,  n) (P,,~ was defined in 
theorem 5). Then 

@isan(l}-design, ifa#Zb, 

@ isan(1-1)-design, if a=lb .  (14) 

In particular, if @ is not an { I  - 1)-design then @ is an 
{&design. 

Proof: For a given I-set x = {p17- . ., pr} let us define 
a function E R" by 

+x(t l>* . ' 9  t n )  = a t p 1 t p 2  . * * t p ,  

+ b[(1- 5 P b , ) 5 P 2 . .  . e,, 
+ [ P o -  t P 2 ) 5 P ,  . . . [ P ,  

Assumption (13) can be written as 

(n-(@), t+hx)  =c,  for all 1-sets x. (16) 

The value of c can be deduced from a and b by summing 
(13) over all 1-sets x; this yields 

[ a ( ;  j +  b( l!l j (  IZ; j ] I@ l=  .( 7). (17) 

Now (n-(1R)7$x)  is clearly constant, and this constant, c' 
say, is given by 

It follows from' (171, (18) that (16) amounts to 

I@l 
( T ( @ ) , + ~ )  = - ( T ( ~ R ) , + ~ ) ,  la1 for all I-sets x. 

(19) 

Consider the linear space 5 spanned by the functions 
$x (for all 1-sets x). By definition, l is S,-invariant. 
Furthermore it follows from (19) that l is @-regular. 

Hence @ is a T-design with respect to the set T defined 
from the harmonic decomposition (9) of 6. In view of (15) 
we have 

cLx(t) = ( a  - I W P / .  . . tp/ + 4 - 1 7  (20) 

where 01-1  is a member of hom(1- 1). Hence, is a 
subspace of hom(I), and l is a subspace of hom(1- 1) if 
and only if a = Ib. Furthermore it is easily seen from (15) 
that (assuming a, b, c are not all zero) 5 is not a subspace 
of hom(Z - 2). (This is obvious if a # Ib. When a = lb, 

n c +x1x(5) = b c [t& . . . t/-,  + 5153 . . .er-, 

+ . . . + 6152 . . . S , - 2 l t i  

x =(I;  . . , / -  1 ,  j )  
where j = l ; . . , n  

i = l  

+ b(n - Z + l ) t l  . . . trP1 
= b [ 5 2 * . . t r - 1 +  . . .  +t l  . . .S / -2 ]  

+ b(n - 1 + l ) t l  . .  . trP1 
= b(n -21 +2)5, . .  * trP1 

+ b(d  - I +2)[52 . .  . t/-l 
+ . . . + 51 . . . t / - 2 ] ,  

and since n - 21 + 2 is not zero, this sum cannot belong to 
hom(Z - 2) unless b, and hence a and c, are zero.) Thus if 
a # Ib then '!# is an {&design, and if a = lb then @ is an 

0 { I  - 1)-design. This completes the proof. 

IV. PROOF OF THEOREM 2 
Suppose C satisfies the hypotheses of Theorem 2. By 

Theorem 1 the codewords of any weight wi in C form a 
t-design. If k = dim C = 1, only the repetition code yields 
a t-design. In this case C L  consists of all even weight 
vectors and gives trivial designs. So from now on we 
assume k > 1. 

It is easy to see (the argument is given on page 165 of 
[17]) that there are no codewords of C L  with weight w' 
satisfying n -  t < w ' <  n, and hence that there are two 
cases: 1) C is even, w;, = n, s' = d - t + 1, or 2) C is not 
even, wit # n,s' = d - t. Thus we can write 

(21) S' = d - t + 1 - 6, 

where 6 = 0 if C is even, 6 = 1 if C is not even. 
We work in the framework of the Hamming association 

scheme H(n,2)-see [8], [9], [ll],  [17, ch. 211 for back- 
ground. The Krawtchouk polynomial of degree i is de- 
fined to be 

and the annihilator polynomial of C is 
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Let us expand 
s’ + m 

t m a ( t ) =  CX:~)P,(~), m = O , I , - . ’  
i = O  

We set “1’) = a,. Note that a:$” # 0 for all m. 
It was shown in [9] that for all x E IF;, 

where b, (x)  is the number of codewords in C at distance i 
from x. 

We next prove a lemma. 
Lemma I :  Let C be a binary [ n ,  k ,  dl code with nonzero 

weights w1 = d , w 2 , - .  *,ws, and let w;,.. . ,wir be the 
nonzero weights in the dual code C L .  Let t be the 
greatest integer in the range 0 < t < d such that there are 
at most d - t weights w: with 0 < w: I n - t ,  and suppose 
w2 2 d +4. If the codewords of minimal weight form a 
( t  + 1)-design then so do the codewords of any nonzero 
weight w,. 

Proof: Let x be an arbitrary subset of {1,2; . -, n} of 
size 1 = t +l.  Setting m =  w2 - d -2+ S > 0 in (22) we 
obtain 

w 2 - r - 1  

a y & (  x) = 0. (23) 
1 = 0  

The zero codeword contributes to the sum in (23) if and 
only if 1 I w2 - t - 1. The contributions from the code- 
words of weight d are independent of x ,  since by hypoth- 
esis these words form a ( t  + 1)-design. Codewords of 
weight greater than w2 do not contribute to the sum at 
all, since 

w , - l >  w2 - 1  = w 2  - t -1. (24) 

We now consider the contributions from the codewords c 
of weight w2. Suppose c intersects x in j points. Then 

dis t (c7x)  = w 2 +  1 -2j1 w 2  - t -1, (25) 

implying j = t + 1, i.e., codewords of weight w2 contribute 
to the sum in (23) if and only if they contain x. Therefore 
(23) implies that the number of codewords of weight w2 
containing x is independent of x, or in other words the 
codewords of weight w2 form a ( t  + 1)-design. Similarly, 
by taking m = wj - d -2 + S in (221, we find that the 
words of weight wj form a ( t  + 1)-design. This proves the 
lemma. 0 

We now complete the proof of Theorem 2. The set of 
minimal weight words in C will be denoted by @, and 
pj,x is the number of words in @ that have exactly j 
points in common with a given l-set x. 

Case I )  C even, s’ = d - t + I :  Suppose first that there 
is a smallest integer f in the range 0 I f I [ (d  - t ) / 2 ]  
such that f f d - t - 2 f  # 0. Let x be an arbitrary subset of 
{1,2,. * ,  n) of size 1 = t + 2f. Since C is even, the dis- 
tances from x to C are all congruent to t (modulo 21, and 

from (22) we have 
d - t - 2 f  

a , b , ( x ) = l .  (26) 
i = O  

i = t(mod2) 

Proceeding as in the proof of the lemma, we find that 
only the zero codeword and the codewords of weight d 
contribute to the sum in (261, and the words of weight d 
contribute, if and only if they contain x. Equation (26) 
then reads 

where we set 

0, P < O ,  
e . = (  1, p 2 0 .  

If f 2 1 we conclude from (27) that @ is a ( t  + 2f)-design, 
in particular a ( t  + 1)-design, and therefore by Lemma 1 
that the codewords of every nonzero weight form ( t  + 1)- 
designs. 

On the other hand suppose f = 0. We take x to have 
weight 1 = t +2, and find that (22) becomes 

where both coefficients on the left side are nonzero. 
From Theorem 7 we conclude that @ is a { t  + 1)-design or 
a {t  +2}-design, and hence either a ( t  + 1)-design or a 
{l; . ., t ,  t +2}-design. In the former case Lemma 1 ex- 
tends this to codewords of every nonzero weight. 

The third possibility is that no such f exists, and all 
coefficients ( Y ~ - , - ~ ,  are zero. But in this case taking x in 
(22) to have weight t leads to a contradiction (the left side 
of (26) vanishes but the right side does not). 

Case 2) C not even, SI  = d - t: Let x have weight t + 2. 
Equation (22) implies 

f f d - t - 2 p ~ + 2 , ~  + f f d - t p t + l , x  = f f t + 2 E d - 2 t - 2 ,  

where ad- ,  # 0. From Theorem 7 we conclude that @ is a 
{ t  + 1}-design or a {t  +2)-design, and Lemma 1 completes 
the proof. 0 

An alternative proof of Theorem 2: The previous ar- 
gument shows only that an invariant linear form of the 
type (13) exists; by Theorem 7 this is enough to prove the 
desired result. However it is possible to give a proof in 
which a “computational miracle” produces an explicit 
invariant linear form. We give this direct proof in the case 
when C is even. We suppose that @ is not a ( t  + 1)-design. 

By applying (22) with m = 0 and 1 to a ( t  + h e t  x we 
obtain 

&) d - t - l p f + l , x  + f f ( d l ) t + l p t , x  = - f + l E d  -21 + 1 7  (30) 
where ad-,+ # 0. Since @ is a t-design, 

where A, is the number of blocks through t given points. 
Since @ is not a ( t  + 1)-design, the left sides of (29)-(31) 
must be proportional (or else m,,,,, would be indepen- 
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dent of XI. Therefore puI+2-j ,x,  and we must therefore show that 

24 ' ) -  - ( n - i ) a , + l + n a z - i a , - l  (34) 

(35) 

(i 2 1). In particular, 

2aa?t+l = nffd-t+l - ( d -  t + 1)(Yd-t, 

2aa?,-, = - (n  - d +  t + Z ) ( Y ~ - ~  

+ n(Yd-t-1 - ( d -  t -1)ad-f-z. (36) 
Furthermore ad-[ # O ,  or else (as shown in the first 
proof) @ is a (t + 1)-design. From (32), (33), (351, (36), we 
obtain 

( t + 2 ) ( d - t  -1 ) - (n -2 t -2 )  
- t  ' (37) d - t - 1  

We now apply (22) with m = 0 to a (t +2)-set x and 

- 
ad-t-2 - 

find 

{ ( t + 2 ) ( d - t  -1)-(n-2t-2)}Pt+2,x 

+ ( d - t  - l )P t+ l ,x  
d - t - 1  

ad-? 
(38) - ( - at+2Ed-2r- 1) -- 

The left-hand side of (38) is the desired linear form, 
independent of x. Theorem 7 and Lemma 1 complete the 
proof. The most interesting aspect of this argument is the 
leverage provided by the assumption that IQ is not a 
(t + 1)-design. 

Examples: An example with t = 5 is provided by the set 
of 759 minimal weight words in the [24, 12, 81 Golay code. 
In this case we have the identity p7,x + p6,x = 1 for any 
%set x. (There are only two possibilities, (p7 ,x ,p6 ,x )  = 

(0,l) or (l,O), corresponding to the two kinds of 7-subsets 
of [ l ,  241 under the action of the Mathieu group M2,-cf 
[6, Fig. 10.11.) The 759 words form a (1,2,3,4,5,7)-design. 

A second example with t = 5 is provided by the 17296 
minimal weight words in the 148, 24, 121 extended 
quadratic-residue code (or in any self-dual doubly even 
[48, 24, 121 code). In this case we have the identity 
p7,x + p6,, = 8 for any 7-set x. (There are only two possi- 
bilities: (p7 ,x ,  = (0,8) or (1,7).) Again the minimal 
weight words form a (1,2,3,4,5,7}-design. 

A more trivial example with t = 1 is provided by the 
[n  = 2m,2, m] code {02",0"1", 1"0", 12"}. The two words 
of weight m form a {1,3)-design. 

A Further example- Complementation: The (1,2, - * , 1, 1 + 21-design property is preserved when the blocks 
of @ are complemented. To see this, let '@ =([1,n]\BI 
B E @), and let uj,+ be the number of blocks in @ meet- 
ing a given (1 +2)-set in exactly j points. Then uj,x = 

where A j  is the number of blocks of Q through j given 
points. Equations (40) and (41) form a triangular system 
of 1 + 2 equations in the 1 + 3 quantities j = 0,. . e ,  

1 +2. From this we obtain 

= w I + 2 , x  + 0,  
= ~ p ~ + ~ , ~  + 6, 

(.,P not both zero), 

( y , S  not both zero), 

for suitable real numbers a, p, y ,  6, and (39) follows. 

V. EXTENSION TO CODEWORDS OF HIGHER WEIGHT 
AND THE PROOF OFT HE OR EM^ 

Lemma 1 shows that if the codewords of minimal 
weight form a (t  + 1)-design then so do the codewords of 
any nonzero weight. To extend the (1,2, e ,  t, t + 2)-design 
property to codewords of higher weight it is necessary to 
make some assumptions about the gap sizes w, - wiP1 for 
i 2 3. In the sequel we shall only consider self-dual codes 
with all weights divisible by 4, even though the arguments 
apply to a wider class of codes. 

We begin with an example, the [24, 12, 81 Golay code. 
The annihilator polynomial is 

Given an arbitrary 7-set x ,  let Mjy' be the number of 
codewords of weight w that meet x in exactly j points. 
From (381, (40, we obtain the invariant linear forms 

w , x  + M 6 " , x ,  (43) 

21M;,, +6M& + M&. (44) 
Next we apply (22) with m = 1 to obtain the invariant 
form 

+ ay)M8 + ay)j@ + ag)M12 7 , X '  (45) 
7 ,  x 6 ,  x 5 , x  

Before calculating the shifted Krawtchouk coefficients 
a(') we can see that there are two possibilities. The first is 
that the form 

aykqx  + a(:)M8 6 ,  x + LYpkP, 5 x  (46) 
is a linear combination of (43) and (44). Since ai1) # 0, we 
may conclude that in this case the codewords of weight 12 
form a 7-design. The second possibility is that (431, (44), 
(46) form a ,  basis for the space of linear forms in the 
variables j = 5,6,7. Now we understand the Golay 
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code well enough to know that the first possibility does 
not occur, but it is precisely this argument that we will 
apply to an arbitrary doubly-even code. We may in fact 
calculate the shifted Krawtchouk coefficients from (341, 
finding that a$) = all) = a$’) = 0, as’) = 35/4, a$’) = 0, 
ai1) = - 5/12, so (45) becomes 

21Mt,, - M;, - M:,’x. (47) 
Next we apply (22) with m =  3 to obtain the invariant 
form 
c r C 3 ) ~ 8  + a ( 3 ) ~ 8  + a(3)M8 

1 7,x 3 6 , x  5 5 , x  

+ a ( 3 ) ~ 8  + @ ) ~ 1 2  + f f ( 3 ) ~ 1 2  
7 4 ,x  5 7 , x  7 6 . ~ 7  (48) 

where a$3)# 0. From (41) we have a second invariant 
form involving the new variable M:,, namely 

35M7,, + 15M& + 5 M t x  + M:,.. (49) 
Since (43), (44), (46), (47) are a basis for the space of 
linear forms in the variables M,f’,, j = 4,5,6,7, we may 
eliminate these variables from (48) and obtain an invari- 
ant form 

aM+,2x + bMi,2x, 

of type (13). In this case a / b = 5 ,  and so the codewords 
of weight 12 in the Golay code form a {1,2,3,4,5,7}- 
design. 

The proof of Theorem 3 is a straightforward general- 
ization of this example. From Theorem 1 the codewords 
of any given weight wp form a t-design, so (generalizing 
(41)) we have invariant linear forms 

LWp,] = ( ) Mp,, 
t + 2  

j = 0 , l  , * . . , t , p = 1 , * - . , d - t , 
h = l  

( 50) 

where x is an arbitrary ( t  + 2)-subset of [l, n].  From (22) 
we also have invariant forms (generalizing (45) and (48)): 

a(m) Hm = c W ,  + f -k 2-2 J MTl 9 

W , , I  
w, + t + 2 - 2 ~  2 d - t + 1+  m 

m = 1,3,5, * .  a .  (51) 
Finally Theorem 2 provides an invariant form 

aM;+,,, + bM;+l,x,  b + 0. (52 )  
The theorem is proved by induction. For i = 2,. * .,let 
T(i) be the linear system in the variables (MT;: p < i, 
wp + t + 2 - 2 j < w, - t - 2) consisting of (52) and the lin- 
ear forms 

L,,,, f o r p < i ,  w p + t + 2 - 2 j < w 1 - t - 2 ,  

and 
H,, for m < w, - d - 3 ,  m odd. 

The inductive hypothesis is that the corank of the linear 
system T(i) is at most 1. This is certainly true for i = 2, 
since r(2) includes the triangular system consisting of (52) 
and L d , ]  for d + t + 2 - 2 j < w 2 - t - 2 .  

The linear system T(i + 1) involves variables Mz; that 
do not appear in r(i). For each new variable MT; with 
wp < w , + ~  we have a linear form L,,f: so these new 
variables do not change the corank. The h e a r  form 

H - d - 3  - f f ( w , + i - d - 3 ) ~ w , + ~  (53) W l f I  w,+1-2-2 t+2,x 

only involves variables MI:; with wp < w , + ~ .  We dis- 
tinguish two cases. The first is that (53) is a linear comb- 
ination of forms from T(i) and forms LWp,f involving 
variables M;; not appearing in I%). Then M z t , l x  is 
independent of x ,  that is, the codewords of weight w , + ~  
form a (t  + 2)-design. Now T(i + 1) includes the triaOgular 
system 

Mt‘7$,1x7(t +2)Mr‘;$tx + M 2 i , 1 x , L w , + , , l  

in the variables M;’ so the corank of T(i + 1) is at most 
1. The second case IS that the linear form (53), together 
with the forms in T(i) and the forms LWp,f involving 
variables M;; not appearing in T(i), form a basis for the 
space of linear forms in the variables appearing in (53). 
Now consider Hw,+,  -d- 1. We may eliminate variables 
from H w , + l - d - l  to obtain a linear form 

aM2;,lx + bMZi,’,, (54) 

where b # 0. By Theorem 7 we may conclude that the 
codewords of weight w , + ~  form a (t + 1)-design or a 
{1,2, . , t ,  t + 2)-design. The rank of T(i + 1) restricted to 
variables M,:’ for p < i + 1 is full. Since T(i + 1) includes 
the triangular system ((54), L w , + l , l )  in the variables MT’+l, 
the corank of T(i + 1) is at most 1. 

Remarks: The proof leaves open the possibility that the 
codewords of weight w, might form a (t  + 1)-design while 
the codewords of weight wI ( j  # i) form a {l,- e ,  t, t + 21- 
design. 
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