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Orbit and Coset Analysis of the Golay and 
Related Codes 

Abstract-Let 8 be a code of length n over a field F, with automor- 
phism group G ;  8, denotes the subset of codewords of weight w. Our 
goal is to classify the vectors of IF" into orbits under G and to determine 
their distances from the various subcodes 8,. We do this for the 
first-order Reed-Muller, Nordstrom-Robinson, and Hamming codes of 
length 16, the Golay and shortened Golay codes of lengths 22, 23, 24, 
and the ternary Golay code of length 12. 

I. INTRODUCTION 

ET t be one of the following codes: the first-order L Reed-Muller, Nordstrom-Robinson, or Hamming 
codes of length 16, the Golay and shortened Golay codes 
of lengths 22, 23, or 24 (all these are binary), or the 
ternary Golay codes of lengths 11 or 12. The main results 
of this paper are the graphs in Figs. 1-5, which classify 
the vectors of 5" (where n is the length of t and [F = IF, 
or 5, is the appropriate field) into orbits under the action 
of the automorphism group of B. The groups considered 
are M , , ,  2.M,,, M,,, M,,:2, M,,, M24 (where M,, de- 
notes a Mathieu group [41, [SI), and the subgroups of MZ4 
isomorphic to Z4: A ,  and Z4: A,. Other properties of the 
orbits are summarized in Tables I, IV, V, VII, VIII, XI, 
XIII, and Fig. 6. 

The circled nodes in the graphs indicate the constant 
weight subcodes 8, of each code. Since distances in 
these graphs (measured by number of edges) coincide 
with Hamming distances between orbits, these graphs also 
classify the vectors of 5" according to their distances from 
the constant weight subcodes. 

Tables 11, VI, IX, X, XII, and XIV show how the cosets 
of these codes are decomposed into orbits under the 
groups. These tables are expanded versions of the usual 
coset weight distribution tables. The final table, Table 
XV, gives the weight distributions of the cosets of the [ l l ,  
6, 51 perfect ternary Golay code. 

Orbits of binary vectors under M24 (the case when t is 
the Golay code of length 24) were classified in ([2], [8], 
Chap. 10). In the present paper we introduce a new 
parameter, the specification number (or spec), to describe 
these orbits-see Fig. 1 and Table I. This makes it easy to 
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determine the distance of an orbit from the code and to 
tell when one orbit is contained in another. 

11. THE [24, 12, 81 GOLAY CODE 

The automorphism group of the [24, 12, 81 Golay code 
9 is the Mathieu group M24 (see [4], [8]). As described in 
([21, [8], Chap. 101, there are 49 orbits of vectors in 5z4 
under the action of M24, denoted by SJOr w 1241, 
T,(8 I w I 161, U,(6 I w I 181, PI, and XI,, where the 
subscript gives the weight of the vectors. These orbits are 
displayed in Fig. 1 and their properties are summarized in 
Table I. 

In Fig. 1 two orbits A , B  are joined by an edge if a 
vector in B can be obtained from some vector in A by 
complementing a single bit. The edge joining A and B is 
labeled near A with the number of choices for this bit. 

The Golay code 9 itself consists of the orbits 9, = So 
= {O}, 9, = S, (the 759 special octads, forming the Steiner 
system S(5, 8, 2411, 9,, = U , ,  (the 2576 umbral dodecads), 
9,, = SI, (the 759 special I6-sets) and ~ 9 , ~  = S,, ={I}. 
These nodes are circled in Fig. 1. The vectors of S, for 
w < 12 contain or are contained in a special octad and are 
called special w-sets; the vectors of U, for w < 12 are 
contained in an umbral dodecad and are called umbral 
w-sets; the vectors of T, are called transverse w-sets; while 
the vectors of XI, (called SA in [ll, [21) and P,, (called 
U; in [l], [2]) are the extraspecial and penumbral do- 
decads, respectively. (This terminology was introduced in 
[2], [13].) The vectors in S,, T,, U, are the complements 
of the vectors in S24-,, T24-w, U24-,, respectively, while 
the types PI, and XI, are self-complementary. 

Fig. 1 has the convenient property that the minimal 
Hamming distance between two orbits is given by the 
minimal number of edges joining the corresponding nodes 
of the graph. In other words, distance in the graph is the 
same as Hamming distance. 

The orbits in Fig. 1 are positioned according to their 
weight (increasing downwards) and specification number 
or spec (increasing across). For a vector of weight w I 12 
not in TI, or XI,, the specification number is defined to 
be the number of points in its support that lie in a nearest 
octad, minus the number of points outside that octad, 
while for vectors in TI, or XI, it is 3 and 5, respectively. 
The specification number of a vector of weight greater 
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than 12 is defined to be the same as that of its comple- 
ment. 

The specification number has two useful properties. 

a) A vector of weight W and spec S contains a vector 
of weight w and spec s just if W - w 2 IS - SI. 

b) The distance of a vector of spec s from the Golay 
code is at least min{s, 8 - s), and is equal to this 
except when the parity is wrong; that is to say, 
except for the vectors of T,, and XI2, which are at 
distance 4 (not 3) from the code. 

We also record some other properties of Fig. 1. The 
sum of the labels on edges upwards from an orbit of 
weight w is equal to w, while the sum of the labels on 
downward edges is n - w, where n is the length of the 
code. Furthermore if there is an edge from orbit A to 
orbit B labeled a (at A )  and p (at B) ,  then 

alAl= PIBI. (1) 
Before describing Table I we introduce our notation for 

Golay codewords. We shall write Golay codewords in the 
4 x 6  MOG (or miracle octad generator) array, as de- 
scribed in [3]-[6], [8]-[10]. We follow the version given in 
[SI, Chaps. 10, 11, and first define the hexucode to be the 
[6, 3, 41 code over F4 with generator matrix 

0 0 1 1 1 1  
O 1 O l o G ]  [ 1 0 0 1 w o  

(see [8], pp. 300-301). Then the 124, 12, 81 Golay code 
consists of all 4 X 6 binary arrays with the properties that 
the weights of the columns and the top row have the same 
parity, and the six inner products of the columns with the 
vector (0,1, o, W) forms a word of the hexacode ([8], pp. 
303-304). We order the coordinates of the MOG’s by 
reading down the columns, from left to right. When the 
Golay code defined by MOG coordinates is read in this 
way it coincides with the lexicographic version of this 
code ([71, [SI, p. 327). 

Table I begins by giving (in column 2) the number of 
vectors in each orbit. These numbers are easily calculated 
from Fig. 1, using (11, and an alternative enumeration is 
given later in this section. The next column describes the 
subgroup of M24 fixing a vector in the orbit. We use the 
ATLAS notation (see [4], [SI) for these groups. In particu- 
lar, A X B indicates a direct product, A . B  or AB is a 
group with a normal subgroup isomorphic to A for which 
the corresponding quotient group is isomorphic to B,  
A :  B denotes the case of A.B which is a split extension 
(or semidirect product), and i(S, X S,) indicates the even 
permutations of the group S, X S ,  acting on m + n ob- 
jects. 

The fourth column gives the action of this group on the 
24 coordinates, with the action on the 1-coordinates and 
on the 0-coordinates separated by a vertical bar. Orbits 
are separated by commas, so for example 6,5,  2 indicates 
three orbits of sizes 6, 5 ,  and 2. A symbol such as 2’ 
indicates an orbit of 14 points having an invariant parti- 

TABLE 1 
ORBITS UNDER M24 

Orbit Size Stabilizer Action Spec Error Pattern 

S” 1 M24 0124 0 0,) 
SI 24 M23 1123 1 11 
s2 276 M2,:2 2122 2 22 
s3 2024 M,, :S3 3121 3 33 

S, 42504 2 4 : g S 3 X  S,) 5116,3 5 3, 
S, 21252 z4 :S ,  6116,2 6 2 0 
U, 113344 3S, 
s7 6072 Z 4 :  A, 7116,l 7 1 n  
U7 340032 ’6 6,1115,2 5 31 
Sn 759 24: A,  8116 8 0 0  
Tn 97152 ‘ 4 7  7,1115,l 6 2 ,  
U, 637560 z4.S4 24142,24 4 42222, 
S, 12144 A8 8,1115 7 11 

32 T, 728640 L (7).2 7,2127,1 5 
U ,  566720 3’:2s4 9134,3 3 3 ,  
S,, 91080 2’:LL,(2).2 8,2127 6 2, 

S, 10626 2h: i (S3XSs)  4145 4 44~mm 

613‘ 4 41,,11, 

Ti,, 1700160 S 3 x S 4  32,414X3,2 4 43311 I 1  
U , ,  170016 S,.2 1016’,2 2 2, 
SI, 425040 i (S4XS4) .2  42,3143,1 5 3 3  
T , ,  2040192 S, 10.116.5.2 3 3 ,  . . , ,  

U;; 30912 Mi, 11112,l 1 1 
XI ,  35420 2‘.33.S:.2 4’14s 5 4444, 
SI, 1275120 2..S4 24,4124,4 4 4,22220 
TI, 1020096 (2X A,).2 2612‘ 3 4222222 
PI, 370944 L2(11) 11,1111,l 2 21 
U12 2576 MI2 12112 0 0 0  

tion (or system of imprimitivity) into seven sets of 2, while 
4 x 3  indicates an orbit of 12 points having invariant 
partitions into four sets of 3 and three sets of 4. 

The fifth column gives the specification number (de- 
fined earlier). 

The last column gives the distance d from the code, 
with a subscript describing the minimal error pattern(s). If 
U is a vector in the orbit, and d is at most 3, there is a 
unique closest codeword c E 9. Then e = U + c is the 
error pattern and the entry in the last column is d, ,  where 
i = wt(v n e) .  On the other hand if U is at distance 4 from 
the code then there are six codewords c,; e ,  c5 (say) all 
at distance 4 form U ,  and six equally likely minimal error 
patterns, e,  = U + c, (0 I r I 5). In this case the entry is 
4,”,, I , ,  where i, = wt(u n e,). 

The six vectors e,, . . . , e5 all have weight 4, with their 
1’s in disjoint sets of coordinates, and any sum e, + e,(r # 
s) is a codeword of weight 8. In this situation the individ- 
ual 4-sets are called tetrads and the set of six tetrads is 
called a sextet ([8], Chap. 10). Any 4-set belongs to exactly 
one sextet, and there are +( 7) = 1771 distinct sextets. 
The six columns of the MOG form a sextet, and we shall 
usually take this as our typical example. We see that the 

S,, (the “deep holes” in the Golay code) are at distance 4 
from the code and reduce modulo the code to any of the 
six tetrads of some sextet. 

Table I describes only orbits of weight WI 12. The 
entries for S24-w, T24-w, U24-,,, (w I 11) are the same as 
those for S,,,, T,,,, U,,,, respectively, except that the “Ac- 
tion” column is reversed, and in the final column d ,  

vectors in S4, U69 U,, TI,, E12, S12, T12, Ul8, and 
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TABLE I1 
COSETS OF [24, 12,8] GOLAY CODE 9 

N o . 0 1 2 3 4 5 6 7  8 9 10 1 1  12 

1 1  159 2576 
Sn Sn U12 

24 1 253 506 1288 
SI s7 SY U ,  I 

276 1 77 352 330 + 616 1344 

2024 

1771 6 64 360 960 20 + 720 + 576 

s2 S6 Tn Sin U T I O  PI2 
1 21 168 360 + 280 210+ 1008 
s3 s5 U7 TY U U9 SI, U TI, 

TABLE 111-A 
How MANY SPECIAL OCTADS? 

759 
506 253 

330 176 77 
210 120 56 21 

130 80 40 16 5 
78 52 28 12 4 1  

46 32 20 8 4 0 1  
30 16 16 4 4 0 0 1  

30 0 16 0 4 0 0 0 1  

TABLE 111-B 
How MANY UMBRAL DODECADS? 

2576 
1288 1288 

616 672 616 
280 336 336 280 

120 160 176 160 120 
48 72 88 88 72 48 

16 32 40 48 40 32 16 
0 16 16 24 24 16 16 0 

0 0  16 0 24 0 16 0 0  

becomes d d P a  and 4,,). 1 5  becomes 4,, . ,” where j ,  = 4 - i,. 
For example, for TI, and T I ,  the actions are 4 x 3, 2 132, 4 
and 2’, 117, 2, respectively, and the minimal error pat- 
terns are described by 4333311 and 3,, respectively. 

From Fig. 1 and Table I we may obtain a complete 
analysis of the cosets of the Golay code, as displayed in 
Table 11. This is an expanded version of the usual coset 
weight distribution table (as found for example on p. 69 of 
[ll]), and is more-or-less obtained by folding Fig. 1 about 
a vertical line through its center (and transposing). 

We next show how to construct and enumerate the 
vectors in each orbit. For orbits at distance I 3 from the 
code (belonging to the first four rows of Table 111, there is 

It then follows that the numbers in the ith row of Table 
I1 for i I 3 are found by multiplying the ith row of each 
Leech triangle by the ith row of Pascal’s triangle! For 
example the numbers 

77 352 330 

+ 616 1344 616 

in row 3 of Table I1 are obtained from row 3 of Tables 
111-A, 111-B: 

7 7 x 1  1 7 6 x 2  3 3 0 x 1  

+ 6 1 6 x 1  6 7 2 x 2  616x1. 

a unique description that can be read off Fig. 1. For 
example, any vector of type T9 is obtained by adding two Similarly the fourth row 

points to a special octad and deleting one point from that 21 168 360 210 

+280 1008 1008 280 octad. To count such vectors we make use of the familiar 
“Leech triangles” of numbers shown in Tables 111-A, 
111-B (cf. [8], p. 278, 1111, p. 68). 

If {a,,a2; . e, a8) is the (support of) a special octad, 
then the number of special octads intersecting {a,; * ,a , )  2 1 x 1  5 6 x 3  120x3 210x1 
in exactly (a, , .  . -,a,} is the ( j  + 1)th entry in the ( i  + 11th + 2 8 0 x 1  336x3 336x3 280x1. 
row of Table 111-A. Similarly Table 111-B gives the num- 
ber of umbral dodecads meeting (a,;  . .,a,) in exactly 
{a,, .  . *,a,). 

follows from 

The vectors in the final row of Table 11, the deep holes 
in 9, may also be enumerated in this way, but (because 
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TABLE IV 
DEEP HOLES I N  THE [24, 12,8] GOLAY CODE 

Name Error pattern Example Number+ 1771 

s4 4,,, Column of MOG 
U6 4111111 H(word) 
VU 4,,,,, H(weight 4 word) 

+top row 

Tin 4331 11 I H(word) 
+ 2 columns 

XI, 4,,,, 3 columns of MOG 
SI, 4,,,,,, H(weight 4 word) 

+top row 
+column 

+top row 
TI 2 4,,,,,, H(weight 6 word) 

1 . 6 = 6  
64 .1=64  

45.2,  = 360 

64 . (6 )=960  2 

1 4 6 ) =  3 20 

45.(2, .2)= 720 

18.2,  = 576 

the representatives modulo 9 are no longer unique), it is 
simpler to enumerate them from their error patterns 
(given in the last column of Table I). The results are 
shown in Table IV. 

Consider for example a vector of type S,, which, since 
its error pattern is described by 4400000, consists of one 
tetrad from a sextet. Since there are 1771 sextets, each 
containing six tetrads, the number of S, vectors is 1771 x 
6=10626. As an example we may take any of the six 
columns of the MOG. 

Vectors of type U, have error pattern 4111111, and 
typical examples consist of 4 X 6 MOG arrays with a single 
1 in each column, chosen so that the positions of the 1’s 
(when the rows of the array are labeled 0,1, o, 0) form a 
word w in the hexacode. We call this vector H(w). The 
number of such vectors is 1771 (for the choice of sextet) 
times 64 (for the choice of a hexacodeword). In the 
column headed “Number” in Table IV, the first factor is 
the appropriate number of hexacodewords, and the sec- 
ond factor gives the number of other choices that must be 
made. 

We omit details of the remaining entries in Table IV. 
(Readers familiar with Chap. 11 of [81 will have no diffi- 
culty in verifying these enumerations, and the numbers 
are in any case available in Table I.) 

Finally, Fig. 1 makes it easy to find the vectors at a 
specified distance from the code. For example, in con- 
structing constant weight codes in [ll it was necessary to 
determine the vectors of length 24, weight 12 and having 
distance 6 from the 2576 words of gI2 = U12. From Fig. 1 
and Table I we see that there are exactly 35420 such 
vectors, those of the orbit XI,. 

111. THE [23, 12, 71 GOLAY CODE 

The [23, 12, 71 perfect Golay code 9’ is obtained by 
deleting one fixed coordinate (which we label 03) from 
every word of 9, and Aut (9’) is the Mathieu group M,,. 
Of course the dual code to 9‘, the [23, 11, 81 even weight 
subcode of 9‘, has the same group. 

Let U be a vector of length 23 and weight w, and let x 
and y be the vectors of length 24 obtained from U by 
adjoining a 0 or 1 respectively in the coordinate. If x 

belongs to the orbit A, of Fig. 1, and y to the orbit 
B , + I ,  then U corresponds to the edge in Fig. 1 from A ,  
to B w + I .  We describe U by saying it is of type AwB. Its 
complement b is of type BwfA, where w’ = 23 - w. 

It is not difficult to verify (we omit the details) that M,, 
is transitive on vectors of each type. We conclude that 
orbits of vectors in [F;, under M,, are in one-to-one 
correspondence with the edges of Fig. 1. There are there- 
fore 72 orbits. 

These orbits are shown in Fig. 2, which uses the same 
conventions-except for specification number-as Fig. 1. 
The edge labels and the sizes of the orbits (given in Table 
V) can be determined from the information in Fig. 1 and 
Table 1, as we now demonstrate. 

TABLE V 
SIZES OF ORBITS UNDER M2, 

Sns 1 U,, 28336 SIOS 53130 
SI, 23 U,, 212520 Tlos 141680 
s2, 253 s,, 506 TI,, 850080 
S,, 1771 T,, 4048 U,,, 85008 
S,, 8855 ’ T,, 60720 U,,, 14168 
S,, 5313 U,T 212520 S, , ,  17710 

S,, 1771 Sy, 7590 TI,, 425040 

U6” 85008 Ty, 425040 T I , ,  170016 
S7, 253 U,, 283360 U,,, 15456 

S,, 28336 U,, 212520 Slls 212520 

S,, 14168 Ty, 30360 7‘11, 510048 

S7, 4048 Uy, 70840 U,,,  1288 

Consider for example the edges in Fig. 1 at the node 
T,. There is an edge from T, to TI, (labeled 14 at T,), 
and an edge from T9 to SI, (labeled 1). Since there are 
728640 vectors of type T, (from Table I), there are 

14 
- X 728640 = 425040 
24 

vectors of type T,,, and 

1 

24 
- X 728640 = 30360 

vectors of type T9s. 
The calculation of the edge labels in Fig. 2 is only 

slightly more complicated. Consider for example a vector 
L’ E ffi3 of type T,,, so that x (U with a 0 adjoined) is of 
type T, and y ( U  with a 1 adjoined) is of type Tlo. From 
the edge labels in Fig. 1 we see that complementing a 0 in 
x leads in one way to a vector of SI, and in 14 ways to a 
vector of TI, (one of which is y ) .  In Fig. 2, therefore, 
there is one edge from T,, to a node of type SI,, and 13 
edges to nodes of type TI,. (where the stars indicate 
unknown letters). On the other hand, complementing a 1 
in y leads in two ways to a vector of SI, and in 12 ways to 
a vector of Til. This tells us that in Fig. 2 there are two 
edges to nodes of type and 12 edges to nodes of type 

The possible nodes that T,, can be joined to are 
therefore SI,,, SI,,, TI,, and TI,,. However, from Fig. 1 
we see that SI,, is not joined to TI1, so a node of type SI,, 

* 
10,‘ 
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TABLE VI 
COSETS OF [23, 12,7] GOLAY CODE 9’ 

No. 0 1 2  3 4 5 6 7 8 9 10 1 1  

1 1  253 506 1288 
SOS SI, Sns U1 IU 

23 1 77 176 176 330 616 672 
SI, ’6, s lT  TKS SYS uinu UIIP  

253 1 21 56 112 240 120+280 210+336 672 
S 2 S  s5S s6U ulT T8T TYS sll)S uulllT 

s3S s4S s5U u8TuuXU TYTUUYT T~0.5‘uTIOT 

1771 1 5 16 48 120 120+120 240+160 80+480 * *  

**: 10+120+240+288 corresponding to S l l , U S l , s u T l , s U T , l ~ .  

is impossible. We conclude that a vector of type T9, 
transforms in one way to type SI,,, in 12 ways to type Tlo,  
and in one way to type TI,,. The labels at the bottom 
ends of these edges are then found from (1) and Table V. 

From Fig. 2 and Table V we obtain a complete analysis 
of the cosets of 9’, as shown in Table VI. 

IV. 

By shortening 9 to length 22 we obtain [22, 10, 81, E22, 
11, 71, and [22, 12, 61 codes. The automorphism group of 
the first and third of these is M,, : 2, while the automor- 
phism group of the [22, 11, 71 code (obtained from the 
words of J that begin 00 or 01) is M2*. 

Without giving any details we mention that the orbits of 
M,, are in one-to-one correspondence with the edges of 
Fig. 2. There are therefore 130 orbits, which can be 
named in the following way. An edge in Fig. 2 directed ‘ 

from A,, to C w + l , D  indicates that there is a vector 
uEIFi2 of weight w such that uOOEA,,,, ~ 0 1  E B,+,, 
u10 E Cw+,,  u l l  E D,+,. The appropriate name for the 
orbit of U under M,, is then A , B C D .  

Under the action of M,, : 2, however, the orbits A, , ,BCD 

and AWcBD fuse, and the composite orbit should be 
named For example the M,, orbits U,,,, and 
U,,,, fuse under M,, : 2 to give the orbit U,(,,),. There 
are 105 distinct orbits under M,,.2. 

THE SHORTENED GOLAY CODES OF LENGTH 22 

V. THE FIRST-ORDER REED-MULLER AND 

HAMMING CODES OF LENGTH 16 

The [16, 5,  81 first-order Reed-Muller code 9 and the 
[16, 11, 41 Hamming code &? are duals and both have 
automorphism group G I  24: A,,  where A ,  is the alter- 
nating group of order 8 ([81, p. 277). To define these 
codes and the Nordstrom-Robinson code of Section VI 
we divide the coordinates of the MOG into three “bricks” 
of eight coordinates each, and label the left-hand brick as 
follows: 

CO 0 
3 2 
5 1 
6 4 

(cf. [81, p. 316). 

Then 9 consists of the codewords of the [24, 12, 81 
Golay code 9 that vanish on the left-hand brick (with 
this brick deleted), while 2Y is the projection of 9 onto 
the last two bricks. 

To study how vectors L; E F:6 of weight w I 8 fall into 
orbits under G we shall adjoin the left-hand brick (a 
special octad) to 6, obtaining a vector U of weight 8 +  w, 
belonging to one of the orbits of Fig. 1. Conversely, each 
orbit in Fig. 1 that contains a special octad arises in this 
way. To classify vectors of F:6 under G we must therefore 
take the orbits in Fig. 1 that contain a special octad and 
study them acc2rding to the special octads they contain. 
We denote by X,,, the type of vector formed by removing 
a special octad from a vector of type X,,,. It turns out (as 
usual we omit the details) that G ispansitive on vectors 
of each of Jhese types, except for U,,, which splits into 
two orbits U; and U;,. So there are 32 orbits under G, as 
displayed in Fig. 3, whose properties are summarized in 
Tables VI1 and VIII. 

A 

S8 
15 

Fig. 3. Orbits of vectors of length 16 under action of automorphism 
group ~ 2 ~ :  A,) of Reed-Muller code 9 and Hamming code 2. 
Words in 9 have two circles, words in 2 have one or two circles. 
Weight is 8 less than subscript. Omitted lower half of graph can be 
obtained by taking mirror image of top half. 
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TABLE VI1 
PROPERTIES OF ORBITS UNDER AUT(.&) = AUT(X') 

Weight Name Size n x  n,, n l h  Orbits 

0 
1 
2 
3 
4 
4 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
8 

$8 1 1  0 0  8 
16 1 0 0  8 

$0 120 1 0 0  8 

S) 2 1680 3 0 0  8 
T I 2  140 1 0 0  8 

TI3 2688 1 0 0  8 
:I 4 840 7 0 0  8 

VI 4 448 2 1 0 2 + 6  
SI, 240 15 0 0 8 
TI, 6720 7 0 0  8 
tls 4480 6 1 0 2 + 6  
s,l h 30 30 0 1 8 
TI, 1920 15 0 0 8 
q 5  840 1+12 2 0 8 
U;, 10080 12+1 2 0 4 + 4  

:y 

:I I 560 1 0 0  8 

s,I  3 1680 3 0 0  8 

TI4 6720 3 0 0  8 

Note that now the weight of any type of vector is 8 less 
than the subscript on its symbol. The vectors of 9 are 
marked with double circles, the remaining vectors of 2 
with single circles. The omitted lower half of the graph in 
Fig. 3 can be obtaine; by, taki?g th,e mirror image of the 
top half. The types SI,, T,,, U:, U,', of weight 8 vectors 
are self-complementary. 

In Table VII, the columns headed n 8 ,  nI2 ,  and nI6  give 
the numbers of special octads, umbral dodecads and 
special 16-ads contained in U ,  while the last column shows 
how the stabilizer of L: acts on the 8 coordinates of the 
left-hand brick. To explain the last two rows of Table VII, 
we note that if c' is of type U,, the it contains 13 special 
octads, which fall into orbits of sizes 1 and 12 under the 
stabilizer of U .  Thus the left-hand brick can be chosen in 
two e!sentially different ways, producing the orbits 
and U,',. Table VI11 contains samples of the vectors U ;  

TABLE VIII* 

59 

512 

U14 

U15 

1 1 1 1 1  
1 1 1 1 1  

@6 

*Omitting the left-hand 8 coordinates from these pictures produces 
samples from the orbits of Aut(%)= A u t ( 3 ) .  

orbit representatives C: for Aut (9) = Aut (2) are ob- 
tained by omitting the left-hand brick. 

The cosets of 9 and 2 are analyzed in Tables IX and 
X, respectively. (The weight distributions of the cosets of 
9 were originally given in [121.) 

TABLE IX 
COSETS OF [16,5,8] REED-MULLER CODE 9 

No. 0 1 2 3 4 5 6 7 8 

TABLE X 
COSETS OF [16, 11,41 HAMMING CODE 2 

N o . 0 1  2 3 4 5 6 7 8 
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VI. THE NORDSTROM-ROBINSON CODE OF 

LENGTH 16 

We use the notation of the previous section. Let 9, 
(0 s i 1 6 1  denote the words of the Golay code 9 that 
have 1’s in coordinates w and i, and 0’s elsewhere in the 
first 8 coordinates, with the first 8 coordinates deleted. 
Each si is a translate of 9 containing 16 words of 
weight 6 and 16 of weight 10, and 

M = 9 u 9 0 u ~ l u  . . .  u 9 ,  
is the Nordstrom-Robinson code. Thus M consists of the 
words of 9 that begin with one of 

with these first 8 coordinates deleted, and Aut ( M )  = 

Again we study vectors D E F i6  by adjoining the left- 
hand octad (consisting of 8 “ghostly” points), one of 
which (03, or the “focus”) is special, obtaining a vector 
U E Ff”. We classify L; by saying what U reduces to modulo 
9, i.e., its minimal error pattern. This is either a vector e 
of weight at most 3, or six vectors e,; ., e5 of weight 4, 
all mutually congruent modulo 9, i.e., a sextet (see Sec- 
tion 11). These minimal error patterns (e or {e,;.*,e,}) 
are described in the fourth column of Table XI, using the 
symbols F for the “focus” (or coordinate), G for a 
“ghostly” point (one of the other seven points in the 
left-hand brick), 0 for a coordinate out of the last 16 
where U is 0, and 1 for a coordinate where U is 1. 

24: A, .  

$9 
15 l a  

Fig. 4. Orbits of vectors of length 16 under action of automorphism 
Vectors in &’ are group (Z4: A, )  of Nordstrom-Robinson code 

circled. Weight is 8 less than subscript. 

It turns out that the minimal error pattern is enough to 
distinguish the orbits of Fi6  under Au t (M) ,  and further- 
more that A u t ( M )  is transitive on vectors of each type. 
Once again we omit the proof. There are therefore 39 
orbits under Au t (M) ,  those of weight at most 8 being 
shown in Fig. 4 and Table XI. 

In Fig. 4, as in Fig. 3, the weight is 8 less than the 
subscript. Again the FottFm $alf of the graph has been 
omitted; The types SI,, TI,, v: are self-complementary, 
while U& complements to U,. Fig. 4 closely resembles 
Fig. 3, except that certain nodes and edges have been 
split. 

The sizes and error patterns for the orbits are given in 
Table XI. 

TABLE XI 
PROPERTIES OF ORBITS UNDER AUT(&’) 

Weight Name Size Error Patterns under d 

0 $8 1 

2 $,, 120 
1 S, 16 

3 SI, 560 
4 SJ2 1680 
4 XI2 140 
5 SIX 1680 
5 T A  612 
5 fi 2016 
6 SI, 840 
6 T I ,  6720 
6 t:, 112 
6 336 
1 SI5 240 
7 r,, 6720 

7 3360 

8 T I ,  1920 
8 840 
8 5040 
8 U, 5040 

7 v;, 1120 

8 SI, 30 

- 
1 
1 2  

1’ 

(FG’, G4, 14, 04, 04,04) 
0’ 
FG 0 
G2O 
O 2  
(FG10,G210,G210,G210, 10’,lOX) 
FG 
G* 
0 
102 
FG 1 
G21 

( ~ ~ 0 2 , ~ 2 0 2 , ~ ~ 0 ~ , ~ 2 0 2 , 1 4 , 0 4 }  

- 

10 
(FG3,G4, 1202, 1202, 1202, 1202) 
(FGI2,G2l2,G2O2, G202 ,  1202, 1202} 
(G212,G212, FG02,G202, 1202, I2O2} 

Although the Nordstrom-Robinson code M is nonlin- 
ear, it has the property that certain of its translates 
partition the whole space (see Table XII). The union of 
M and the seven translates described by the last row of 
Table XI1 is the Hamming code A?. 

VII. THE TERNARY GOLAY CODES OF 

LENGTH 11 AND 12 

The automorphism group of the [12, 6, 61 ternary Golay 
code 9- is the group 2.M,, (see [41, [SI). In this section we 
classify orbits of F:’ under the action of this group. 

There is an essential difference between the binary and 
ternary classifications. In the binary case there is only one 
way to change a bit, so edges in the graphs of Figs. 1-4 
link pairs of orbits. An edge linking orbits A ,  and B,-l 
indicates that any vector in can be obtained by 
changing a 1 in some vector of A ,  to a 0. 
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TABLE XI1 
TRANSLATES OF LENGTH 16 NORDSTROM-ROBINSON C O D E  THAT PARTITION THE WHOLE SPACE 

N o . 0 1  2 3 4 5 6 7 8 

In the ternary case we take the components of the 
vectors u E F: to be O’s, +’s (or + 1’s) and - 3  ( -  1’s). 
Consider the pair of vectors U , U ’  at Hamming distance 1 
from u that are obtained by changing a particular nonzero 
component of U. One ( U  say), obtained by changing the 
sign of this component, has the same weight as U; the 
other ( U ‘  say), obtained by changing this component to a 
0, has weight one less. This process links the words of F,” 
in triples. 

If U , U , U ‘  belong to different orbits A,,  B,,C,-l, re- 
spectively, we indicate this by a “trident”: 

It turns out that two different U ’ S  obtained from U in this 
way are in the same orbit under 2.M,, just if the corre- 
sponding ~1”s  are. We may therefore label the trident with 
the numbers a,p,y ,  where a is the number of ways to 
choose the nonzero component of u E A ,  that leads to a 
U E B, when its sign is changed and to a U ’  E C,- when 
it is replaced by a 0. 

Similarly y is the number of zero components of U ’  E 

C,- that when replaced by one sign lead to a u E A ,  
and when replaced by the other sign to a U E B,. We then 
have 

alA,I = PIB,I = 7IC,-ll. (2) 
Of course it may happen that U and U are in the same 

orbit, in which case we make the top arms of the trident 
coincide: 

Now 

(3) 

There are 48 orbits in Fi2  under 2.MI2, displayed in 
Figs. 5 and 6, and Table XIII. Unfortunately the graph in 
Fig. 5 (strictly speaking a hypergraph, since the nodes are 
linked in triples) is too complicated to be conveniently 
drawn in one piece. We have therefore broken it up into 
five sections, giving the orbits of weights 12-10, 9, 8, 7, 
and 6-0 separately. As in the binary case, Hamming 
distance between orbits is measured by the distance in the 
graph, only now one must remember that following two of 
the three arms of a trident takes one unit of Hamming 
distance. The Golay code itself is indicated by double 
circles. 

We shall write words in the ternary Golay code 7 in 
3 x 4 MINIMOG arrays; the reader is referred to [4] and 
[SI for the definition. (Note the erratum at the end of this 
section.) 

The second column in Table XI11 gives the number of 
vectors in each orbit. The third column gives the distance 
d from the code, with a subscript describing the minimal 
error pattern($. Fig. 6 gives an example of a vector from 
each orbit. If U is a vector in the orbit and d is at most 2, 
there is a unique closest codeword c E 7. Then the error 
pattern e = U - c is given (for the particular U of the 
example) in Fig. 6, and the third column in Table XI11 
gives di, where i is the number of coordinates where U 

and e are both nonzero. (In Fig. 6 we give only the 
left-hand one or two columns of the MINIMOG array for 
e. The rest of this array is zero.) 

On the other hand if L’ is at distance 3 from 7 then 
there are four codewords c,; . -, c4 all at distance 3 from 
U ,  and four equally likely minimal error patterns e, = U - 

c, (0 5 r 5 3). The four vectors e,, e ,  e3 all have weight 3 
and have disjoint supports, and any difference e, - e, 
( r  # s) is a codeword of weight 6 in 7. In this situation 
the four er’s are called a quartering (analogous to a sextet 
in the binary case). Modulo the code, U is congruent to 
any of e,; e ,  e3. The simplest example of a quartering 
occurs when e,, . . . , e3 are the successive columns of 
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(e) 

Fig. 5 .  Orbits under 2.M,,, separated in five pieces. (a) Weights 12-10, (b) 9, (c) 8, (d) 7, and (e) 6-0. 
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jiriil 
PI2 

+ - -  
QI2 

liiI_I 
RI2 

I p p ' , : I = N  WSE ipT..." 
o + + o  - + + +  0 0  o + - 0  0 0  

p; p7 Q7 R7 

s 7  p6 0 6  R6 

R z F F l s N  m=N 
+ - 0 0  0 - + o  0 0  0 - + +  

s6 U: U, Q5 m.E Inin3.E B E N  m=E 
0 0 0 0  

RS s5 R4 s4 

s3 s 2  SI SO 
Fig. 6. Example of vector from each orbit of 2.MI2, and minimal error 

pattern(s) modulo ternary Golay code. N indicates any column of 
array (4). 

TABLE XI11 
ORBITS UNDER 2.M1 

Orbit Size Error Pattern Orbit Size Error Pattern 

012 440 
PI, 1760 
Q12 1584 
R I ,  288 
S I 2  24 
PI, 5280 
Q I I  15840 
R I ,  3168 
SI, 288 
PI, 2640 
Q& 23760 
Q ,  23760 
R I O  15840 
SI, 1584 
Py 440 
Q, 3960 
Ry 15840 
S: 5280 
S; 31680 
TT 31680 
T; 23760 
P l  3960 
P; 3960 
Q, 31680 

47520 
7920 

23760 
7920 

15840 
15840 
47520 
19008 
3168 
2640 
3960 
1584 
264 

19008 
3 1680 
15840 
7920 
1584 
3960 
3960 
1760 
264 
24 

1 

The symbol N in Fig. 6 stands for any of the columns of 
this array. If U is at distance 3 from F the entry in the 
third column of Table XI11 is 3r0r,r2r3, where i, is the 
number of coordinates where U and e,  are both nonzero 
( O s r s 3 ) .  However, if i , = 3  and U and e, have the 
opposite sign on each of these three coordinates, then we 
put a bar over i,. 

This information is sufficient to determine the signs in 
e,; a ,  e3. For each column of U adds up to the same 
number (a  say) modulo 3, and (+ = - wt(u )  (mod3). So 
we can determine the signs of the coordinates where U 

and e, intersect, except that three agreements in sign are 
indistinguishable from three disagreements. The bar then 
enables us to distinguish these two cases. 

The cosets of F are analyzed in Table XIV. 

TABLE XIV 
COSETS OF [12,6,61 TERNARY GOLAY CODE 7 

N o . 0 1 2 3 4 5  6 7 8 9 10 11 12 

1 1  

24 1 66 
SI SS 

264 1 1.5 30 
s2 s 4  Rs 

440 4 9 36 
S3 R ,  Qs 

SO 
264 

66 

15 + 72 

6+72 

'6 

Rti 

Q.5 U u6+ 
Ph U U,- 

440 

132 165 165 

60+72 120+30+30 60+90 
P; V R ,  Q B U S l  U T ,  R,UT; 
36+108 9+108+54 12+72+72 
P: v Q ,  P l  U R , u S ;  S: US; UT:  

P Y  

s, p; Q, 

24 
s12 

110 12 12 
Pin SI1 RI2 

90+6 20+12 6 
Q & U s i o  P I I U R I I  Q12 

54+36 36 1 + 4  
QGURio Q I I  Oi2uP12 

TABLE XV 
WEIGHT DISTRIBUTION OF COSETS OF [11,6,5] GOLAY CODE 

N o . 0 1 2 3  4 5 6 7 8 9 1 0 1 1  

1 1 0 0 0 0 132 132 0 330 110 0 24 
22 0 1 0 0 30 66 108 180 165 135 32 12 

220 0 0 1 6 21 60 123 174 174 114 48 8 
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Finally, we briefly mention the [11, 6, 51 perfect Golay [21 J. H. Conway, “Three lectures on exceptional groups,” in Finite 
Simple Groups, M. B. Powell and G. Higman, Eds. New York: 
Academic Press, 1971, pp, 215-247. 

[31 -, “The miracle octad generator,” in Topics in Group Theory 
and Computation, M. P. J. Curran, Ed. New York: Academic 
Press, 1977, pp. 62-68. 

141 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. 
Wilson, ATLAS of Finite Groups. New York Oxford Univ. Press, 
1985. 

[51 J. H. Conway, R. A. Parker, and N. J. A. Sloane, “The covering 
radius of the Leech lattice,” Proc. Roy. Soc. London, vol. 380A. 

code, whose automorphism group is 2x MI,. Each trident 
in Fig. 5 yields Just one orbit under 2x  MI^; there are 
therefore 56 orbits. Table XV gives the weight distribu- 

Of this ‘Ode; here we have not 
separated the entries into orbits. 

Of the 

Erratum to “Sphere Packings, Lattices and Groups” 

There is an extensive list (available from the authors) of 
corrections to [8]. One correction is relevant here. In [81, 

[6] J. 1982 H: pp 261-291. and N. J,  A. Sloane, “Laminated lattices,,, Ann, 
Math., vol. 116, pp. 593-620, 1982. 

p. 328, lines 5 and 6 should read [7] -, “Lexicog;aphic codes: Error-correcting codes from game 
theory,” IEEE Trans. Inform. Theory, vol. 32, pp. 337-348, 1986. 

[81 -, Sphere Packings, Lattices and Groups. New York: 
modulo 11: m 1 9 3 4 5 0 8 6 2 X 7 Springer-Verlag, 1988. 
mnemonic: m + 1 - 2  + 3  +4 +5 0 -3 + 6  - 9  - 12 - 15 [91 R. T. Curtis, “On subgroups of 0. 1. Lattice stabilizers,” J. Alg., 

vol. 27, pp. 549-573, 1973. 

out. recting Codes. Amsterdam: North-Holland, 1977.- 
[12] N. J. A. Sloane and R. J. Dick, “On the enumeration of cosets of 

first-order Reed-Muller codes,” IEEE In?. Conf. Commun., Mon- 
treal, P.Q., Canada, 1971, vol. 7, pp. 36-2-36-6. 

[131 J. A. Todd, “A representation of the Mathieu group M2, as a 
collineation group,” Ann. Mat. Pura Appl., vol. 71, pp. 199-238, 
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