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The coordination sequence {S(n)} of a lattice or net gives the number of nodes 
that are n bonds away from a given node. S(1) is the familiar coordination number. 
Extending the work of O'Keeffe and others, we give explicit formulae for the coordi- 
nation sequences of the root lattices Ad, Dd, E6, E7, E8 and their duals. Proofs are 
given for many of the formulae and for the fact that, in every case, S(n) is a polyno- 
mial in n, although some of the individual formulae are conjectural. In the majority 
of cases, the set of nodes that are at most n bonds away from a given node form a 
polytopal cluster whose shape is the same as that of the contact polytope for the 
lattice. It is also shown that among all the Barlow packings in three dimensions the 
hexagonal close packing has the greatest coordination sequence, and the face-centred 
cubic lattice the smallest, as conjectured by O'Keeffe. 

1. Introduction 

The coordination sequence of an infinite vertex-transitive graph 9 is the sequence 
{S(O), S(1), S(2),...}, where S(n) is the number of vertices at distance n from some 
fixed vertex of 9. The partial sums G(n) = S(0) + S(1) + ? . + S(n) are called the 
crystal ball numbers. As in the work of Brunner & Laves (1971), O'Keeffe (1991, 
1995), Grosse-Kunstleve (1996) and others, in our examples 9 will usually be the 
contact graph of a d-dimensional lattice packing (Conway & Sloane 1993) or net 
(Wells 1977), formed by taking the vertices to be the points of the lattice or net and 
joining each point to its closest neighbours. 

Although we will not study it here, there is another way to construct a graph from a 
lattice that has some advantages over the contact graph. This is the Voronoi graph; 
again, the vertices represent lattice points, but now two vertices are joined if the 
corresponding Voronoi cells (Conway & Sloane 1993, p. 33) are adjacent. The contact 
graph is always a subgraph. The chief advantage of the Voronoi graph is that it is 
meaningful for any lattice, whereas the contact graph is of little use for general lattices 
(consider for instance a two-dimensional lattice in which the generating vectors have 
different lengths). The Voronoi graph may also provide a better model for crystal 
growth. Consider the body-centred cubic (BCC) lattice D3, for example, in which 
the Voronoi cells are truncated octahedra. The vertices within distance n of a given 
vertex in the Voronoi graph are the lattice points that can be reached by stacking 
truncated octahedra to depth n around a fixed truncated octahedron. These points 
Proc. R. Soc. Lond. A (1997) 453, 2369-2389 ? 1997 The Royal Society 
Printed in Great Britain 2369 TJX Paper 



J. H. Conway and N. J. A. Sloane 

form a roughly spherical cluster, whereas as we shall see in ? 3 the vertices at distance 
n from a given vertex in the contact graph form a cluster with the shape of a cube. 

The contact graph has been used by the authors cited above as a way of defining 
the density of a lattice or net. It is worth mentioning that the theta series (Sloane 
& Teo 1985; Sloane 1987; Conway & Sloane 1993) may be more appropriate for that 
purpose, since it exactly gives the numbers of points in ever-increasing spheres about 
a particular point. 

Nevertheless, for lattices and nets that are related to the root lattices Ad, Dd, Ed, 
the contact graphs and the associated coordination sequences are of considerable 
interest in their own right, and we shall investigate their properties in this paper, 
extending the work of O'Keeffe (1991, 1995). 

Throughout this paper, if g is a distance-transitive graph with some fixed choice 
of origin, and u is a vertex of 9, the height of u, ht(u), is the number of edges in the 
shortest path from u to the origin. Also, for n = 0, 1, 2,..., we set 

G(n) = #{u E : ht(u) < n}, 
I(n) = #{ u C : ht(u) < n}, 
S(n) = #{u E : ht(u) = n} = G(n) - I(n). 

Then S(0), S(1),... is the coordination sequence of g. 
The paper is arranged as follows. In ? 2 we study the contact graphs of lattices and 

introduce the notion of the fractional height of a lattice point u. This measures by 
how much the contact polytope of the lattice must be magnified before it contains 
u. The fractional height never exceeds the height (theorem 2.2) and differs from it 
by a bounded amount (theorem 2.3). 

A lattice is called well-coordinated if the fractional heights are the same as the 
heights. Well-coordinated lattices have many desirable properties that make them 
easier to analyse. Although the root lattices Ad and Dd are well-coordinated (theo- 
rems 3.1 and 3.2), lattices that are not well-coordinated exist in all dimensions above 
four (theorem 2.6 and subsequent paragraphs). In particular, the lattices E7, E7 and 
Es are not well-coordinated (theorems 3.5-3.7). 

An extreme example of a lattice that is not well-coordinated is the 11-dimensional 
'anabasic' lattice described in ?2; this contains vectors u with the property that 
ht(2u) < ht(u)! 

Section 3 studies the coordination sequences of the lattices Ad, Dd, E6, E7, E8, 
their duals and some related nets. It is worth remarking that in this section we will 
see graphs in which the crystal ball numbers G(n) are equinumerous with centred 
simplices (the sodalite net), centred cubes (the generalized BCC net) and centred 
orthoplexes (Zd), representing all the regular polytopes in high dimensions (cf. Cox- 
eter (1971)). 

In ? 4 it is shown that among all Barlow packings, that is, those formed from layers 
of the hexagonal lattice, the hexagonal close packing (or h.c.p.) has both the highest 
coordination sequence and the highest crystal ball sequence, while the face-centred 
cubic (or FCC) lattice has the lowest. This establishes a conjecture made in O'Keeffe 
(1995). 

The highest crystal ball numbers for packings in dimensions d < 4 have a concise 
description in terms of the function 

Ak(n) = (n + )k-nk 
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as follows: 

d = 1: for , G(n)= A2(n) = 2n +1, 
d = 2: for A2, G(n) = Z3(n) = 3n2 + 3n + 1, 
d = 3: for h.c.p., G(n) = A4(n) + (- 1)n = nearest integer to 7(n), 
d = 4: for D4, G(n) = A5(n) + = nearest integer to 4A5 (n). 

(1.1) 
However, in higher dimensions this notation is not especially useful. The formula 
(3.42) for E8, for example, does not simplify when expressed in terms of Ak(n). 

The following symbols will be used: L J for integer part or floor, F ~ for ceiling, Z 
for the integers, Q for the rationals, IR for the reals. For undefined terms from lattice 
theory see Conway & Sloane (1993) and for the definition of less familiar polytopes 
(see as the 'ambo-simplex') see Conway & Sloane (1991). This paper is part of series 
dealing with the prc -rties of low-dimensional lattices f i various points of view, 
the previous part belml Ch .way & Sloane (1992). 

2. Contact graphs of lattices 
Most of this paper will be concerned witl tihe case when 9 is the contact graph 

of a d-dimensional lattice A that is spanned by its minimal vectors. Let P denote 
the contact polytope of the lattice; that is, the convex hull of the minimal vectors 
(Conway & Sloane 1991). 

We define the fractional height of a vector u C A (or of the corresponding node of 
9) to be 

fht(u) = min{u hP}, 
h?O 

where hP = {hx : x E P}, h > 0. Let G'(h) = #{u E A : fht(u) < h}, '(h) = 
#{u E A: fht(u) < h}, and S'(h) = #{u E A: fht(u) = h} = G'(h) - I'(h). 

In fact, it seems that there are three reasonable ways of measuring height: 
(1) the fractional height, fht(u); 
(2) the fractional height rounded up, [fht(u)]; and 
(3) the height, ht(u). Obviously we have 

fht(u) < Ffht(u)], (2.1) 
and we shall prove in a moment that 

[fht(u)l < ht(u), (2.2) 
and so 

fht(u) < ht(u). (2.3) 
A lattice for which equality holds in (2.1) is called well-placed, because each point 
appears on the boundary of some nP, for n > 0, n E Z. A lattice for which equality 
holds in (2.2) is called well-rounded, because its heights are obtained just by the 
appropriate rounding of the fractional heights. Finally, if equality holds in (2.3), 
or equivalently if equality holds in both (2.1) and (2.2), we call the lattice well- 
coordinated. 

Theorem 2.1. A point u c A has fractional height h if and only if it can be 
written in the form 

d 

u= ZCiVi, (2.4) 
i=1 

Proc. R. Soc. Lond. A (1997) 

2371 



J. H. Conway and N. J. A. Sloane 

where ci E Q, ci / O, E ci = h and vl, ... , Vd are distinct minimal vectors of A 
belonging to a face of the contact polytope. 

Proof. If fht(u) = h then, as we magnify the contact polytope, forming aP for 
increasing a, u first belongs to aP when a = h, at which point u is on the boundary of 
hP. Since the faces of hP are convex (d-1)-dimensional polytopes, by Caratheodory's 
theorem (Stoer & Witzgall 1970, theorem 2.2.12), we can write u as a linear combi- 
nation of at most d of the vertices of that face: 

d 
u?= Ai (hvi), 

i=1 

with Ai > 0, Ai = 1, from which (2.4) follows. The converse is immediate. m 

On the other hand, the points of height n (n E Z, n ) 0) are exactly the points 
that can be written as a linear combination of minimal vectors of A with non-negative 
coefficients that sum to n. If, instead, we allowed real coefficients with sum at most 
n, we would obtain all of nP. Of course the vertices of nP have height n. Thus we 
have established the following. 

Theorem 2.2. The points of fractional height at most h (h > 0) are all the 
lattice points in or on hP. The points of height at most n (n E Z, n ) 0) are a 
subset-which necessarily includes the vertices-of the lattice points in or on nP. 
Furthermore, fht(u) < ht(u) for all u E A, G'(n) > G(n) for integers n > 0, and the 
lattice is well-rounded if and only if G'(n) = G(n) for all integers n ) 0. 

Theorem 2.3. There is a constant C depending only on the lattice A such that 

ht(u) - fht(u) ( C, for all u E A. (2.5) 

Furthermore, 

fht(u) = lim ht(nu) (2.6) n--oo n 

Proof. Consider a vector u E A with fractional height n. From theorem 2.1 we can 
write u = Ed civi with ci > 0, E ci = n. If u' = L[ciJvi, then ht(u') < ELcij ( 
fht(u). However, u and u' differ only by a lattice vector in P, of which there are 
only finitely many. Equation (2.5) follows, and (2.6) is an immediate consequence. 
Note that the limit in (2.6) exists, since height is a subadditive function. U 

Theorem 2.3 can be interpreted as saying that, for large n, the clusters of points of 
fractional height < n and of height < n look roughly the same, except that the faces 
of the latter may be somewhat 'pitted'. For well-rounded lattices they are exactly 
the same. 

We shall make frequent use of the following result, which is a immediate conse- 
quence of Ehrhart's reciprocity law (Ehrhart 1960, 1967, 1973, 1977; see also Stanley 
1980, 1986). 

Theorem 2.4. For integral n > 0, G'(n) and I'(n) are respectively given by 
polynomials g'(n) and i'(n) in n of degree d, satisfying 

g'(-n) = (-l)di'(n), n C Z. (2.7) 

Furthermore, S'(O) = 1 while, for n > O, S'(n) is a polynomial s'(n) of degree d - 1 
satisfying s'(0) = 1 -(-l)d 
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Since, obviously, S(n) = G(n) - G(n - 1) for n > 0, it follows from theorem 2.4 
that for well-rounded lattices (for which G(n) = G'(n)), S(n) for n > 0 is also a 
polynomial s(n) in n of degree d - 1. If this is so then the generating function 

00 

S(x) = S(n)xn 
n=O 

can be written as 
Pd(x) S(x) = (2.8) 

for some polynomial Pd(x), which we call the coordinator polynomial. These polyno- 
mials usually provide the most concise specification of the coordination sequences. 
Equation (2.8) implies that the generating function for the crystal ball numbers 
G(n) is 

S(x) = Pd(x) 
n 1 - x- (1x)d+ 

Note that if a lattice A is the direct product of lattices M and N, then the cor- 
responding generating functions satisfy SA(X) = SM(X)SN(X), and the coordinator 
polynomial for A is the product of those for M and N. 

It follows from the definition that 9 is well-placed if any one of these three equiv- 
alent conditions holds: 

(a) fht(u) E 2, for all u E 9; 
(b) I'(n) = G'(n - 1), for n = 1, 2,...; (2.9) 
(c) S'(n) = G'(n) - G'(n - 1), for n = 1, 2,.... (2.10) 

These conditions amount to saying that every point lies on the boundary of nP, for 
some integral n > 0. 

The polynomials g'(n), s'(n) and i'(n) that give the values of G'(n), S'(n) and 
I'(n) for integral n > 0 are also interesting for negative n. 

Theorem 2.5. 9 is well-placed if and only if either 

(d) g'(-n) = (-1)g'(n - 1), for all n E Z, (2.11) 
or 

(e) s'(-n) = (-l)d-ls/(n), for all n E Z, n = 0 (2.12) 
holds. 

Equation (2.11) asserts that the values of |g'(n)l are symmetric about n = - and 
(2.12) asserts that s'(n) is an even polynomial in n if d is odd and an odd polynomial 
in n if d is even. 

Proof. If 9 is well-placed then g'(-n) = (-l)di'(n) (from theorem 2.4) = 
(-1)dg'(n - 1) (from (2.10)). Let u(x) = g'(x)- g'(x- 1), so that s'(n) = a(n) 
for n = 1,2,.... Then or(x1)= (-)-- 1)-'(-x)} = (-l)d-l(-), so 
s'(-n) = (-l)d-ls'(n), n $ O. Conversely, if (2.12) holds, there is an even (if d is 
odd) or odd (if d is even) polynomial a(x) of degree d- 1 such that s'(h) = cr(h) for 
h > 0. Then g'(h) = ,,<h (t) is a sum of linear combinations of Bernoulli polyno- 
mials of degrees d, d- 2, d - 4,... and (2.11) follows from the symmetry property of 
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Bernoulli polynomials (Abramowitz & Stegun 1964, equation (23.1.8)). Thus (2.12) 
implies (2.11), and (2.11) and (2.7) imply (2.10), showing that g is well-placed. U 

For example, the FCC lattice is well-coordinated, since G'(n) = G(n) = 
3(2n + 1)(5n2 + 5n + 3) satisfies G'(-n) = -G'(n - 1): its values at 

.* -3 -2 -10123 ... 

being respectively 
*. - 55 - 13 -1 1 13 55 147 .. 

Also, 
S'(n) = G'(n) - G'(n - 1) = 10n2 + 2 = S(n), 

for n > 1, an even polynomial. 
Theorem 2.6. Every lattice of dimension d at most 4 is well-coordinated. 

Proof. The cases d = 1 and 2 are easy. The case d = 3 follows from the- 
orem 2.5 and the fact (cf. O'Keeffe 1995) that for a three-dimensional lattice, 
S(n) = (S(1) - 2)n2 + 2, n > 0. The proof for d = 4 is longer and will be given 
elsewhere. U 

It follows from theorem 2.4 that the coordination sequence for any four- 
dimensional lattice is given by 

S(n) = (S(2 ) )) - (S(2) 4S(1) n, (2.13) 6 3 6 3 

for n > 0 (compare O'Keeffe 1995, p. 906). 
On the other hand, the following five-dimensional lattice is not well-placed, and 

so not well-coordinated. We start from the lattice D*, generated by the vectors 
vl = (1, 0, 0, 0,0),..., v5 = (0, 0, 0, 0, 1) and V6 = ( 2 , 2 , 222and 'squash' it in the 
v6 direction until v,..., v6 all have the same length. The resulting lattice has Gram 
matrix 

20 -1 -1 -1 8 
1 -1 20 -1 -1 8 

-1 -1 20 -1 8 
21 -1 -1 -1 20 8 

8 8 8 8 20 
the entries in which are the inner products of the new vectors v1, v2, v3, v4, V6. It is 
easy to check that w = v - vl - v2 has height 3 but fractional height 2.5 (in fact, 
ht(2w) = 5), showing that the lattice is not well-placed. Further investigation shows 
that this lattice is well-rounded, with 

G'(n) = G(n) = n5 + 4n4 + |n3 + 1n2 + 2n + 

which is indeed not symmetric about -, and that 

'(n) = S(n) = 0 n4 -5 3 +2 2 +n +1 (n> 0). 

Thus lattices that are not well-placed (hence not well-coordinated) exist in all 
dimensions above four. As we will see, the lattices E7, E7 and E8 are also not well- 
placed. 
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Remark 2.7. Well-coordinated lattices are well-rounded, and it is at first tempt- 
ing to conjecture that the converse is also true. However, we believe that a counter- 
example (a well-placed lattice that is not well-rounded) will be found in perhaps as 
low as five dimensions. The next example shows that, in general, the set of lattice 
points of height < n need not even be lattice-convex, i.e. need not have the property 
that every lattice point in the convex hull of the points of height n has height < n. 

Definition 2.8. A d-dimensional lattice A is anabasic if it has the property that, 
although it is generated by its minimal vectors, no subset of d of the minimal vectors 
generates it. A particular 11-dimensional lattice, which we call 'the' anabasic lattice 
B, was described in Conway & Sloane (1995a). 

The anabasic lattice B has precisely 24 minimal vectors ?U1,... ,, u7, ?i1 
...,?V5, satisfying 2E7ui = 3E5lvi = 6w (say). Then 2w = vvi E B, 

3w = E ui E B, so w E B. The heights of the multiples of w are 

vector: w 2w 3w 4w 5w 6w 7w 8w 9w ... 
height: 12 5 7 10 12 14 17 19 21 ... 

and fht(w) = 7. The set of points of height < 5 is not lattice-convex, since it contains 
2w but not w. 

In this example, fht(w) = 7 while ht(w) = 12, so the anabasic lattice is neither 
well-placed nor well-rounded. However, most of the lattices A we consider in this 
paper are well-rounded. 

Theorem 2.9. If a d-dimensional lattice A is well-rounded, then the set of u E A 
with ht(u) < n is lattice-convex and the crystal balls are magnified versions of 
the contact polytope. For integral n > 0, G(n) and I(n) are respectively given by 
polynomials g(n) and i(n) of degree d, satisfying 

g(-n) = (-l)di(n), n E Z. 

Furthermore, S(O) = 1, while for n > O, S(n) is a polynomial s(n) of degree d - 1 
satisfying s(O) = 1- (-l)d 

Proof. The hypothesis implies that the set of points of height < n is convex and 
the other assertions follow from Ehrhart's reciprocity law (cf. theorem 4). U 

In particular, theorem 2.9 applies if the lattice is well-coordinated. 

3. Root lattices and their duals 

In this section we discuss the coordination sequences of the root lattices, their 
duals and some related nets. 

The cubic lattice Zd 

The contact polytope for Zd is a d-dimensional cube, and a typical point x = 
(Xl,... d) E Zd has 

d 

fht(x) = ht(x) = E lxil. (3.1) 
i=1 

The coordination sequence for the 1-dimensional integer lattice Z is {1, 2, 2, 2,...}, 
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with generating function S(x) = (1+x)/(1-x). Therefore, for Zd, the direct product 
of d copies of 2, we have S(x) = (1 + x)d/(l - x)d, 

S() d ( n-k +d-1 (3.2) d d - ' k 

G(n) = i k d (3-3) 
k=-0 

and Pd(x) = (1 + x)d. From (3.1), (3.2) we have the identity 

d!2d-a0o ai! = ?( d)(n- 1td-l (3.4) 
(ao,a, ...) i=O k=O 

the sum being over all (ao, a1,..., an,) E Z2n+ satisfying E ai = d, iai = n. 
The crystal balls are orthoplexes (cf. Conway & Sloane 1991) and the G(n) are 

centred orthoplex numbers. 
The structure of the coordinator polynomials both here and in subsequent exam- 

ples becomes clearer if the coefficients of the successive polynomials Pd(x) for 
d = 0,1, 2,... are displayed in a triangular array (with coefficients of highest powers 
on the right). We call this the coordinator triangle: 

1 1 
1 2 1 

1 3 3 1 
1 4 6 4 1 

In this case, of course, the coordinator triangle is simply Pascal's triangle of binomial 
coefficients (k). O'Keeffe (1991, table 6) gave the coordination sequences for d < 10, 
but the present description is both simpler and holds for all d. It follows from (3.2) 
that the coefficient of nd-l in S(n) is 2d/(d- 1)!, as conjectured in O'Keeffe (1991). 

The root lattice Ad 
The contact polytopes of the lattices An, Dn, E6, E7, E8 and their duals were 

described in Conway & Sloane (1991). 
We define Ad to consist of the points x = (ox, xl, .. ,Xd) E Zd+l with E xi = 0. 

The contact polytope has d(d + 1) vertices of the form (1, -1, Od-). These are at 
the midpoints of the shorter edges of the diplo-simplex formed by the vectors (from 
coset [1] of Ad in A*) 

((d 1y 7 (d +d 1 
+ (d+l + I d+l1' 

The contact polytope was incorrectly described as an 'ambo-diplo-simplex' in Con- 
way & Sloane (1991); a better name would be 'shorter ambo-diplo-simplex'. 

A fundamental simplex for the Weyl group W(An) of order (n + 1)! is described in 
figsures 21.1 and 21.6 of Conway & Sloane (1993). It consists of the points satisfying 

XO l * * * Xd, Xi = 0. (3.5) 

Proc. R. Soc. Lond. A (1997) 

2376 



Low-dimensional lattices. VII. Coordination sequences 
This simplex is an infinite cone which meets the contact polytope in d faces, one 

for each non-zero glue vector of Ad (cf. Conway & Sloane 1993, ch. 4 and 21). The 
face corresponding to the glue vector 

_ __ _i i d+l:-i d 
i]--= d+l 'd+l' d+ t d +l 

d+l-i i 

for 1 < i < d, has equation 
i (d+1 i)( ?) 1.(3.)(d + 1 - i) 

2(d ) (x + + Xd-i) 2(d + 1) (xd-i+ + * + Zd) = 1 (3.6) 

This face contains i(d - i) vertices of the contact polytope, those with a single +1 in 
any of the first d +1 - i coordinates and a single -1 in any of the last i coordinates. 

Consider a point x E Ad lying in the fundamental simplex, in the cone above the 
face defined by (3.6). The reflecting planes of the affine (infinite) Weyl group of type 
An partition the whole space into simplices. The height of x, and also its fractional 
height, is given by the number of reflecting planes between x and the origin, which 
is [i] * x. 

For an arbitrary point x E Ad in the fundamental simplex (3.5), the height is 
max [i] ? x, i=l, ...,)d 2 

which is simply 1 i |zi|. Thus a point such as (7,3, 0, -5, -5) E A4 can be written 
as the sum of 2 txil = 10 minimal vectors, and no fewer. From collecting these 
results and applying theorem 2.9, we obtain the following. 

Theorem 3.1. Any point x = (o,... ., Xd) E Ad is equivalent under the Weyl 
group to one with coordinates satisfying (3.5). For such a point we have 

fht(x) = ht(x) = E lxii. 
The number of points in Ad equivalent to this point is (d + 1)!/ ILn___ a!, where at 
is the number of components xj that are equal to i, for -n < i < n, n = ht(x). The 
lattice is well-coordinated and G(n), S(n) (n > 0) are polynomials in n of degrees d, 
d - 1 respectively. The crystal balls are shorter ambo-diplo-simplices. 

O'Keeffe (1995) empirically determined the coordination sequences for Ad for d < 
7, in each case finding that S(n) is a polynomial in n of degree d- 1. The correctness 
of these expressions is now justified. Using theorem 3.1, we have extended O'Keeffe's 
results to d = 10 and find that the coordinator triangle is 

1 1 
1 4 1 

1 9 9 1 
1 16 36 16 1 

1 25 100 100 25 1 

The kth entry in the dth row is () (for k = 0,1...), so that 

S(x) = )xk(l-x (3.7) 
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and hence 

S(n) = ( 
d n - k + d- ) (3.8) S(n) cj k d-1 '3 8 

k=0 
with a similar expression for G(n). The following elegant proof of (3.8) is due to C. 
L. Mallows. From theorem 3.1, equation (3.8) is equivalent to the identity 

(d+1)! ai!-n - + d k (3.9) 
a i-n k=O 

where the sum on the left extends over all a = (a_,,..., an) satisfying 
n 

a = d+ , a ia_i a n. 
=i--n i>0 i<0 

If we multiply the left-hand side summand of (3.9) by 
ao (xy)a (XZ)a- (xy2)a2 (xz2)a-2 ... 

we see that the left-hand side of (3.9) is equal to the coefficient of xd+lynzn in 

(d+l)!exp x{ + i+ }= (d+ )! exp{(l y)( z)} 
{ 

xy xI }=(d+l),xp1 1-yz ( 1 

or, in other words, to 
( 1 - x d+1 

coefficient of yzn in { 1-y(z (3.10) 

On the other hand, the right-hand side of (3.9) is 

o -n 
\ ~d 

coefficient of yn in { (1 y( z) (3.11) 

Call these two expressions cL(n, d) and cR(n, d). Contour integration now shows that 
0oo oo oo 1 + -1/2 

5EcL(n, d)un= E R(n,d)nd= - 2v + (3.12) 
n=O d=O nO= d=O 

completing the proof. 
It is curioust that equation (3.7) is the expansion of Ld((1 + x)/(1 - x)) in powers 

of x, where Ld is the dth order Legendre polynomial (see Polya & Szeg6 1976, p. 86). 
We are not aware of any other connections between the root system Ad and the 
Legendre polynomial Ld. 

The dual lattice Ad 
The contact polytope for A* is a diplo-simplex (Conway & Sloane 1991, p. 88) 

with 2d + 2 vertices ?vi, 0 < i < d, where 
(Q 01 d (-d )1) 

t We are grateful to Herb Wilf for this remark. 
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with the -d/(d+ 1) entry in the ith coordinate. A typical face of the contact polytope 
contains 

2d +vis and -d -vis 
if d is even and either 

(d + 1) +vis and (d - 1) -vis 
or 

2(d- 1) +vs and (d+1)-vis 
if d is odd. 

We will now show that A* is well-coordinated. We use A* as an illustration, the 
general case being precisely similar. The face defined by r * x = 1, where 7r = 
(1, 1, 0, -1, -1), contains the vertices vo, vl, -v3 and -v4. All faces of the contact 
polytope are of this type. 

Consider a point x = (xO, 1X,2, x3, 4) E A1 in the cone from the origin that 
contains this face. Let x have fractional height h, so that r x = h. We claim that 
ht(x) = h. By theorem 2.1, 

x = covo + clvl - C3v3 - C4v4, (3.13) 
where c? E Q, ci O 0 and Z ci = h. Since x E A* and v1, v 3, 4 span A,, x can 
also be written as 

x = mrovo mlvl - m3v3 - m4v4, (3.14) 
where the mi are integers. Since vo, vl, v3, v4 are linearly independent, the represen- 
tation of x is unique and (3.13) and (3.14) agree. Therefore h = E mi is an integer 
and, since (3.14) displays x as a sum of h minimal vectors, ht(x) = fht(x) = h, 
showing that this lattice is well-coordinated. 

O'Keeffe (1995) gave polynomials for the coordination sequences for d < 7, and 
the preceding argument now justifies these formulae. Using O'Keeffe's results, we 
find that the coordinator triangle is 

1 1 
1 4 1 

1 5 5 1 
1 6 16 6 1 

1 7 22 22 7 1 
1 8 29 64 29 8 1 

1 9 37 93 93 37 9 1 
1 10 46 130 256 130 46 10 1 

1 11 56 176 386 386 176 56 11 1 

The last two rows, corresponding to d = 8 and 9, were obtained by extrapolating the 
pattern of the earlier rows, which appears to be 

P2m(x) = k )X (1 + X)2m-2k, (3.15) 
k=0 

P2m+l(x) = (1 + x)P2m(x). (3.16) 
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Assuming these expressions hold in general, by expanding (2.8) we find that 

d^ n - +i d- 2i 
S(n) - ( 

n 
- 1 E ) ( d- ) (3-17) 

k=O i=O 

This agrees with O'Keefe's empirical results for d < 7 and presumably for general d 
could be established in a similar manner to equation (3.9). 

The root lattice Dn 
We take Dd to consist of the points x = (xl,... ,xd) E Zd with xi even. The 

contact polytope is an 'ambo-orthoplex' (Conway & Sloane 1991, p. 90), having 
2d(d - 1) vertices, all of the form (12, 0d-2). The Weyl group W(Dd) has order 
2d-ld! and contains all permutations and all even sign changes of the coordinates. 

Any point x E Dd is equivalent under this group to one satisfying 

X1 ) X2 ) *-* dXd-1 >XdI, 

these inequalities defining the fundamental simplex. As in the case of Ad, the inter- 
section of this simplex with the contact polytope has a face for each non-zero glue 
vector of Dd. There are three faces, defined by 

Xl = 1, 
(x1 + +* * + d-+ Xd) 1 (3.18) 

2(Xl + + Xd-I - Xd) = 1. ) 

The expressions x1, (x1 +... + Xd), (x + .. - Xd) then give the fractional heights 
of points in the cones above these three faces, and the fractional height of a general 
point in the fundamental simplex is the maximum of these three expressions, which 
is always an integer. Furthermore, it is easy to show that a point with fractional 
height n can actually be written as a sum of n minimal vectors and so the lattice is 
well-coordinated. 

Finally, the last two faces in (3.18) are equivalent under the full automorphism 
group of Dd, since this includes all sign changes of the coordinates. 

We collect these results in the following theorem. 

Theorem 3.2. Any point x = (xl,..., Xd) c Dd is equivalent to one satisfying 

xl I X2 ''' > Xd. 

For such a point we have 

fht(x)= ht(x) = max xi, xi . 

The number of points in Dd equivalent to x is 
n 

2d-od! Jai!, (3.19) 
i=O 

where ai is the number of components xj that are equal to i, for 0 < i < n = ht(x). 
The lattice is well-coordinated, G(n) and S(n) (n > 0) are polynomials of degrees d 
and d- 1, respectively, and the crystal balls are ambo-orthoplexes. 

We had already determined the coordination sequence for D4 some years ago (see 
Proc. R. Soc. Lond. A (1997) 

2380 



Low-dimensional lattices. VII. Coordination sequences 

Sequence M5182 of Sloane & Plouffe 1995t, also (1.1)) and it was given independently 
by O'Keeffe (1995), who also found the coordination sequences for D5 and D6. We 
have extended this work to D12, finding that the coordinator triangle is 

1 
1 1 

1 2 1 
1 9 9 1 

1 20 54 20 1 
1 35 180 180 35 1 

1 54 447 852 447 54 1 
1 77 931 2863 2863 931 77 1 

The rows of this triangle suggest thatt 
Pd(x) = { (1 + /)2d + (1 - /)2d} - 2dx(1 + x)d2, (3.20) 

an expression which is certainly valid for d < 12. Assuming (3.20) holds in general, 
we find from (2.8) that 

S(n) {(2 d( -2\) n-k+d-l ) (3.21) 
^ k=0[[2k k- d - 1 

Again, an equivalent combinatorial identity could be written down using (3.19) (com- 
pare (3.9)). 

The dual lattice D* and the generalized BCC net 
As was pointed out in O'Keeffe (1995), the contact graph for Dd, for d >i 5, is 

simply the union of two disjoint copies of the contact graph for Zd. 
However, a more interesting graph is obtained if-using the standard coordinates 

for D* (see Conway & Sloane 1993, ? 7.4 of ch. 4)-each point is joined to those points 
that differ from it by the vectors (i, ,..., ). This generalizes the contact 
graph for the BCC lattice D3 and we shall refer to it as the generalized BCC net. 
The coordination number is 2d and the crystal balls are cubes, with 

S(n) = (n + 1)d -(n- 1)d, n > O, (3.22) 
G(n) = (n + 1)d +nd, n ? 0. (3.23) 

The G(n) are centred cube numbers. The coordinator triangle is 
1 

1 1 
1 2 1 

1 5 5 1 
1 12 22 12 1 

1 27 92 92 27 1 

t We remark in passing that most of the sequences mentioned in the paper have been added to the 
electronically accessible version of this table (Sloane 1994). 

t We are grateful to Colin Mallows for this formula. 
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and 
d-1 

Pd(x) =(1+ X) E ( , (3.24) 
k=-0 

where the (k) are Eulerian numbers (Comtet 1974, p. 243; Graham et al. 1990, 
p. 254; Riordan 1958, p. 215). In Comtet's notation (Comtet 1974, p. 244), Pd(x) = 
(x + 1)An(x)/x, where An(x) is an Eulerian polynomial. 

The root lattices E6, E7, E8 and their duals 
The coordination sequences for E6 and E6 were found experimentally by O'Keeffe 

(1995) so for these lattices we give only enough information to justify his results. 

E6. The contact polytope for the root lattice E6 is the polytope called 122 in 
Coxeter's notation (Conway & Sloane 1991, p. 104; Coxeter 1971, p. 201). There 
are 54 faces, all 5-dimensional hemicubes. If we define E6 to consist of the points in 
the standard Es (see below) in which the first three coordinates are equal, then the 
typical face has equation r . x = 1, where 7r = (j, j, j, 0, 0, 0, 0 0). The vertices of E6 
on this face have coordinates (())3, (?i)5+), the exponent 5+ indicating that only 
even sign combinations are permitted. The fractional height of a point x E E6 in the 
cone above this face is fht(x) = 7r x. This is an integer, so E6 is well-placed, and it 
is also easy to see that 7r x = ht(x). Thus we have proved: 

Theorem 3.3. E6 is well-coordinated. 

This establishes the coordination sequence 

S(n) = 17n5 + 36n3 + 3n (n > 0) (3.25) 
found empirically in O'Keeffe (1995). Also, 

G(n) = 3n6 + 17n5 + 75n4 + 18n3 + 267n2 + 63 + 1. (3.26) 

E6. The contact polytope for the dual lattice E6 is a diplo-Schliifli polytope (Con- 
way & Sloane 1991, p. 104) and coincides with the Voronoi polytope for E6. The 
contact polytope has 72 faces, one for each minimal vector of E6. For example, the 
face defined by the minimal vector 7r = (1 , , 1 1 1- , , - 1 ) c E6 has 2' 2' 2' 2' 2' 2' 2' 2' 
equation 7r x = 1. This face contains 12 points of E6, forming a diplo-simplex. All 
faces are of this type. From this, it is easy to obtain the following. 

Theorem 3.4. E6 is well-coordinated. 

This establishes the coordination, sequence 

S(n) = 18n5 + 30n3 + 6n (n > 0) (3.27) 
found empirically in O'Keeffe (1995). Also, 

G(n) = 3n6 + 9n5 + 15n4 + 15n3 + 9n2 + 3n + 1. (3.28) 
The remaining three lattices are not well-placed, although they are well-rounded. 

E7. We define E7 to consist of the points x = (xl,...,x8) in the standard Es, 
for which the first two coordinates are equal. The contact polytope is the polytope 
231 (Conway & Sloane 1991, p. 100). There are two types of faces: 56 faces that are 
Schlafli polytopes (also called 221 polytopes) and 576 simplicial faces. We use the 
extended Coxeter-Dynkin diagram shown in figure 1. 
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001 + -0000 00100 + -00 

oooo0oo + - 

Figure 1. Extended Coxeter-Dynkin diagram for E7, labelled to show walls of fundamental 
simplex. 

The extending node in figure 1 is shaded and the other nodes are labelled with 
the equations that define the walls of the fundamental simplex (compare Conway 
& Sloane 1993, figure 21.3(b), where slightly different coordinates were used). In 
figure 1, +1 and -1 have been abbreviated to + and -. The left-most node, for 
example, defines the wall x3 - x4 0. 

The points in the fundamental simplex therefore satisfy 

X1 = X2, X3 > X4 > X5 ? X6 , X7 > 1X8s, 1X+X2 , X3+X4+X5+X6+X7+X8. (3.29) 
The two faces in which the contact polytope meets this fundamental simplex corre- 
spond to the left and bottom nodes of figure 1 and have equations 

rl.x=l1, , 7rl =(,1,0,0,0,0,0), (3.30) 
72 =1, 72=(, 1 1 1 1 1 _1 ), (3.31) 

respectively. The face defined by (3.30) contains 27 points of E7; namely 1106, 
001(?1, 05) and 2 2(+I)5+, forming a Schlifli polytope. These 27 points span E7. 
If x is a point of E7 in the cone above this face, 

fht(x) = rl . x = x2 + x3 E Z 

and ht(x) = fht(x). On the other hand, the face defined by (3.31) contains seven 
points of E7; namely 1106, ( )6 and 2 1(- )- 1 forming a regular simplex. Now, 
however, the points on the face only generate a sublattice A7, of index 2 in E7 and, 
if x E E7 is in the cone above this face, 

fht(x) = 7r2 X = X2 + (x3 + x4 +5 +x6 +X7- xs)/4 E cZ 
and ht(x) = fht(x)l. 

For a general point of E7 satisfying (3.29), we have 

fht(x) = max{x2 + x3, x2 + (x3 + x4 + x5 + x6 + x7 - 8x)/4}, (3.32) 
and 

ht(x) = fht(x)l. (3.33) 
By applying theorem 2.9, we obtain: 

Theorem 3.5. Let E7 consist of the points x = (xl,..., xs) of Es, in which the 
first two coordinates are equal. Any such point of E7 is equivalent under the Weyl 
group of E7 to one satisfying (3.29), for which the fractional height is given by (3.32) 
and the height by (3.33). E7 is well-rounded but not well-coordinated. G(n) and S(n) 
(n > 0) are polynomials in n of degrees 7 and 6, respectively. 
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Table 1. Numbers of points of fractional height exactly h (S'(h)) and at most h (G'(n)) in E7 
lattice 

h S'(h) G'(h) 

0 1 1 
0.5 0 1 
1 126 127 
1.5 0 127 
2 2898 3025 
2.5 0 3025 
3 25886 28911 
3.5 576 29487 
4 132930 162417 
4.5 4032 166449 
5 485982 652431 

A computer was now used to determine the numbers of points of fractional height 
up to 6.5, making use of knowledge of the subgroups of the Weyl group to calculate 
the number of lattice points equivalent to a given point. The results are partly shown 
in table 1. 

Using theorem 3.5, these computed values suffice to determine S(n) and G(n). 
From S(n) = S'(n) + S'(n - ), (n > 1), G(n) = G'(n) (n > 0), n E Z, we find 

S(n) = 48n6 -12n5 + 52n4 + 12n3 + 21n2 4n + 2 (n > ), (3.34) 
G(n) = 148n7 + 7n6 + 24n5 + 28n4 + 488n3 + 9n2 + 8n + 1. (3.35) 

E7. The contact polytope for E7 is a Hesse polytope E21 (Conway & Sloane 1991, 
p. 101). There are two types of faces: simplices, whose vertices span a sublattice of 
index 3 in E* and orthoplexes, whose vertices span a sublattice of index 2. We omit 
the details and just summarize the result. 

Theorem 3.6. The dual lattice E7 is well-rounded but not well-coordinated, the 
fractional heights are in 6Z and G(n), S(n) (n > 0) are polynomials in n of degrees 
7 and 6, respectively. 

With the aid of a computer we found sufficiently many values to establish that 

S(n) =6n6 216n5 +148n4-192n3+- 902n2 264n+2 (n> ), (3.36) 

G(n) = 8 7 2 n6 + 74n5 8n4 + n3 + 972 + n + 1. (3.37) 
Notice that the formulae (3.34) and (3.36) for S(n) for these lattices are much 

more complicated than the corresponding formula (3.25) and (3.27) for E6 and E6, 
reflecting the fact that E7 and E7 are not well-coordinated. 

E8. The 'standard' Es consists of the points x = (xl,..., x8) whose coordinates are 
either all integers or all halves of odd integers and whose sum is even. The contact 
polytope is the Gosset polytope 421 (Conway & Sloane 1991, p. 94). There are two 
types of faces: 2160 faces that are orthoplexes and 17280 simplicial faces. We use the 
extended Coxeter-Dynkin diagram shown in figure 2, where we have adopted the 
same conventions as in figure 1. 
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1 1 1 1 1 1 11 
22 2 2 2 22 2 2 0000 + -0 000 + -00 0 + -00000 

0 0 0 0 O 0 
000000 + - 0000 + -0 00 + -0000 

0 
000000 + + 

Figure 2. Extended Coxeter-Dynkin diagram for Eg, labelled to show walls of fundamental 
simplex. 

From the planes defined by the nodes in figure 2, we see that the points in the 
fundamental simplex satisfy 

X2 ) X 3 X4 - X5 X X7 > X X81, X1 V X2 + X3 + Z4 + 5 + X6 + X7 - Xs. 

However, these together imply xl > x2 and so we can conclude that the fundamental 
simplex consists of the points satisfying 

xI1 > x2 > - * - X7 > X1, 1 + xs > x2 + * * * + X7. (3.38) 
The two faces in which the contact polytope meets this fundamental simplex cor- 

respond to the left and bottom nodes of figure 2 and have equations: 

7rl*x = 1, rl = (1, 0,0,0,0,0,0,0), (3.39) 
72 * X = 1, 7T2 =(5 111 (3.40) 6 61 6) 6 61 6 6~ 6 

respectively. The face defined by (3.39) contains 14 points of Es, forming an ortho- 
plex, and spanning a sublattice D8 of index 2 in Es. The face defined by (3.40) 
contains eight points, forming a regular simplex and spanning a sublattice A3 of 
index 3 in Es. The fractional heights of points in the cones above these two faces are 
given by 7rl x andr2 * x, respectively. The final result of this analysis is the following. 

Theorem 3.7. Any point of E8 is equivalent under the Weyl group to one satis- 
fying (3.38), for which the fractional height is 

fht(x) = max{xl, (5x1 + x2 + x3 + * * * x8)/6}. 

E8 is well-rounded but not well-coordinated and G(n) and S(n) (n > 0) are polyno- 
mials of degrees 8 and 7, respectively. 

With the help of a computer, we determined the numbers of points of fractional 
height < 13. In order to do this we precomputed a list of the 256 different types 
of stabilizers of points satisfying (3.38). The results of the enumeration are partly 
shown in table 2. 

Using theorem 3.7, these values suffice to determine S(n) and G(n). We have 
G(n) = G'(n), n > 0, n E Z and S(n) = G(n) - G(n- 1), n > 1, n e Z, from which 
it follows that 

S(n) = 6n7 - 120n6 + 312n5 - 120n4 - 48n3 + 240n2 _ 64n (n > 0), (3.41) 
G(n) = 57n8 + 18n7 + 30n6 + 72n5 + 39n4 + 36n3 + 300n2 - n + 1. (3.42) 

Besides verifying that these polynomials matched the computer results for n < 13, we 
also checked that G(-n) = I(n) for n < 13 (cf. theorem 2.9). For n > 4, our values 
for the coordination sequence S(n) do not agree with those given in O'Keefe (1995); 
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Table 2. Numbers of points in Es lattice by fractional height 

(G'(h) is the number with fractional height ( h, and I'(h) is the number with fractional height 
< h. The final column gives the coordination sequence.) 

h # G'(h) I(h) S(h) 

0 1 1 0 1 
between 0 & 1 0 

1 240 241 1 240 
between I & 2 0 

2 9120 9361 241 9120 
between 2 & 3 17280 

3 657600 131041 26641 121680 
between 3 & 4 1244160 

4 9 773 280 996 001 338401 864960 
between 4 & 5 16 623 360 

5 69467520 5109841 2240161 4113840 

we believe the latter are incorrect. Again, the fact that E8 is not well-coordinated is 
responsible for the complicated formula in (3.41). 

We display the coordinator triangle for E3 = A1 ? A2, E4 = A4, E5 = D5, E6, E7 
and E8, followed by the coordinator polynomials for E7* and E6 (the row for E2 is 
omitted since that lattice is not generated by its minimal vectors): 

1 
1 

5 
16 

1 35 
66 645 

119 2037 

5 
36 

180 

1 
16 

180 
1384 

8211 
7228 55 384 

49 567 2263 
48 519 

35 
645 

1 
1 

66 1 
8787 2037 119 1 

133 510 107224 24 508 232 1 
3703 2583 625 1 

1024 519 48 1 

In contrast to the An and Dn cases, there is no apparent pattern to these coefficients. 
Note that the last four lines of this table are not palindromic, displaying again the 

fact that these lattices are not well-coordinated. 

Root lattices in general 
Looking back over this section, we observe several properties that hold for all root 

lattices. 

Theorem 3.8. Let A be one of Ad, Dd or E6, E7, E8. 
(i) Consider the faces in which the contact polytope meets the fundamental sim- 

plex. These faces are in one-to-one correspondence with the nodes of the extended 
Coxeter-Dynkin diagram (Conway & Sloane 1993, figures 21.1 to 21.3) that are not 
the extending node and whose removal does not make the diagram disconnected. 

(ii) The fractional height of a lattice point in the cone above such a face is an 
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integer if and only if the weight ci associated with that node is 1 (see Conway & 
Sloane 1993, p. 483 and figure 23.1; Coxeter 1971, p. 194). 

(iii) A is well-placed if and only if the vertices on any face of the contact polytope 
span A. 

The explanation for (ii) is that the ci give the index of the sublattice spanned by 
the vertices of the corresponding face. 

We suspect that (iii) may hold for all lattices, but do not have a proof. 

The d-dimensional sodalite net 
O'Keeffe (1991) defines the d-dimensional sodalite net to consist of the holes in 

the A* lattice, with each point joined to its d + 1 nearest neighbours. The case 
d = 2 gives the familiar 63 hexagonal net. From the coordination sequences of these 
nets for d < 6 given in O'Keeffe (1991), Grosse-Kunstleve (1996) observed that the 
coordinator polynomial appears to be 1 + x + x2 + + xd. If this is true in general 
it implies 

?(?, n+d n 
- 

4 S(n)= (n )- (n 1) (3.43) d d ) 

G(n) = 
d+ 13 d+l (344) 

The expression on the right-hand side of (3.44) is the number of points in a d- 
dimensional centred simplex. It should therefore be possible to establish the validity 
of (3.43) and (3.44) by finding a bijection between the crystal balls in d-dimensional 
sodalite and the points of a d-dimensional centred simplex. This is easy to do for d = 2 
but, for higher d, the expressions (3.43) and (3.44) are at present only conjectures. 
(Theorems 2.4 and 2.9 do not apply.) 

4. The Barlow packings 
Let L denote any three-dimensional packing formed by stacking layers of the hexag- 

onal lattice A2. As in Conway & Sloane (1995b), we shall refer to these as the Barlow 
packings. Let S(N), G(n) denote the nth terms in the coordination and crystal ball 
sequences with respect to an arbitrary point in any such L. 

Theorem 4.1. For any Barlow packing L, 

10n2 + 2 < S(n) < L21n2/2J + 2 (n > 0), (4.1) 

A4(n) + nA(n) ? G(n) 7 4(n) + (-1)nl (n 0). (4.2) 
For any n > 1, the only Barlow packing that achieves either the left-hand value or 
the right-hand value for all choices of central sphere is the face-centred cubic lattice 
or hexagonal close-packing, respectively. 

Remark 4.2. This interesting result was conjectured by O'Keeffe (1995); it had, 
in fact, already been established (Conway & Sloane 1993, unpublished notes). The 
assertion on p. 801 of Hsiang (1993) that any Barlow packing has G(2) = 57 is 
plainly incorrect: as shown in Conway & Sloane (1995b), there are Barlow packings 
with G(2) = 55, 56 and 57. 
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Proof. Let H(a, b) denote a hexagonal arrangement of points in which the edges 
of the hexagon contain, respectively, a + 1, b + 1, a + 1, b + 1, a + 1, b + 1 points. For 
example, H(3, 2) is 

* * * * 

* * * * * 

* ? ? ? ? ? 

* * * * * ? ? ? 

The number of points in H(a, b) is P(a, b) = Ta+b+l + ab, where Tn = n(n + 1)/2 is a 
triangular number, and its perimeter is 3(a + b). The nth crystal ball with respect to 
an arbitrary point of L consists of a stack of 2n+1 hexagons {H(ai, bi): -n < i < n}, 
for some choice of integers a-n < a-n+ < ... < a,, b-n < b-n+i < *. < bn. 
Furthermore, ao = bo = n, al+ bl = a_ +b_l = 2n-- 1,..., an+bn = an +b_n = n. 
At each stage, as we proceed from H(ai, bi) to H(ai+l, bi+1), for 0 < i < n, just one 
of ai and bi drops by 1; a similar assertion holds for negative values of i. The crystal 
ball for the FCC is obtained if we always reduce b (say), and that for the h.c.p. if we 
alternately reduce a and b. In any case, we have 

S(n) = P(a-n, b_n) + 3(an+l + bn+l) +* + 3(ao + bo) + * * 

+3(an-1 + bn-1) + P(an, bn) 
n-1 

= 2Tn+1 + 6n + 2 C 3(2n - i) + a_nb_ + anbn 
i=l 

= fcc(n) + a-nb-n + anbn (4.3) 

and, similarly, 
n 

G(n) = Gf(n) + E aibi. (4.4) 
i=-n 

The assertions of the theorem follow from (4.3), (4.4) after some elementary algebra 
which we omit. i 

5. Concluding remarks 

Several open questions remain. Is there a well-placed lattice that is not well- 
coordinated? (See remark following theorem 2.6.) Can the reader find a general proof 
of the formulae for the coordination sequences of A* (equation (3.17)), Dd (equation 
(3.21)) and the sodalite net (equation (3.43))? 

The Voronoi graphs (defined at the beginning of ? 1) should also be investigated. It 
follows from the work of Rajan & Shende (Rajan & Shende 1997; Conway & Sloane 
1993, p. xxviii) that, except for root lattices, the Voronoi graph always properly 
contains the contact graph. What are the analogues of the coordination sequences 
for the Voronoi graphs of A*, D*, E6, E7, for example? 
We thank W. A. Schneeberger and H. Wilf for helpful conversations and C. L. Mallows for 
proving equation (3.8) and for discovering equation (3.20). 
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