Low-dimensional lattices. VII Coordination sequences

By J. H. Conway ${ }^{1}$ and N. J. A. Sloane ${ }^{2}$
${ }^{1}$ Mathematics Department, Princeton University, Princeton, NJ 08540, USA
${ }^{2}$ Information Sciences Research, ATBT Research, 180 Park Avenue, Florham Park, NJ 07932-0971, USA

The coordination sequence $\{S(n)\}$ of a lattice or net gives the number of nodes that are n bonds away from a given node. $S(1)$ is the familiar coordination number. Extending the work of O'Keeffe and others, we give explicit formulae for the coordination sequences of the root lattices $A_{d}, D_{d}, E_{6}, E_{7}, E_{8}$ and their duals. Proofs are given for many of the formulae and for the fact that, in every case, $S(n)$ is a polynomial in n, although some of the individual formulae are conjectural. In the majority of cases, the set of nodes that are at most n bonds away from a given node form a polytopal cluster whose shape is the same as that of the contact polytope for the lattice. It is also shown that among all the Barlow packings in three dimensions the hexagonal close packing has the greatest coordination sequence, and the face-centred cubic lattice the smallest, as conjectured by O'Keeffe.

1. Introduction

The coordination sequence of an infinite vertex-transitive graph \mathcal{G} is the sequence $\{S(0), S(1), S(2), \ldots\}$, where $S(n)$ is the number of vertices at distance n from some fixed vertex of \mathcal{G}. The partial sums $G(n)=S(0)+S(1)+\cdots+S(n)$ are called the crystal ball numbers. As in the work of Brunner \& Laves (1971), O'Keeffe (1991, 1995), Grosse-Kunstleve (1996) and others, in our examples \mathcal{G} will usually be the contact graph of a d-dimensional lattice packing (Conway \& Sloane 1993) or net (Wells 1977), formed by taking the vertices to be the points of the lattice or net and joining each point to its closest neighbours.

Although we will not study it here, there is another way to construct a graph from a lattice that has some advantages over the contact graph. This is the Voronoi graph; again, the vertices represent lattice points, but now two vertices are joined if the corresponding Voronoi cells (Conway \& Sloane 1993, p. 33) are adjacent. The contact graph is always a subgraph. The chief advantage of the Voronoi graph is that it is meaningful for any lattice, whereas the contact graph is of little use for general lattices (consider for instance a two-dimensional lattice in which the generating vectors have different lengths). The Voronoi graph may also provide a better model for crystal growth. Consider the body-centred cubic (BCC) lattice D_{3}^{*}, for example, in which the Voronoi cells are truncated octahedra. The vertices within distance n of a given vertex in the Voronoi graph are the lattice points that can be reached by stacking truncated octahedra to depth n around a fixed truncated octahedron. These points
form a roughly spherical cluster, whereas as we shall see in $\S 3$ the vertices at distance n from a given vertex in the contact graph form a cluster with the shape of a cube.

The contact graph has been used by the authors cited above as a way of defining the density of a lattice or net. It is worth mentioning that the theta series (Sloane \& Teo 1985; Sloane 1987; Conway \& Sloane 1993) may be more appropriate for that purpose, since it exactly gives the numbers of points in ever-increasing spheres about a particular point.

Nevertheless, for lattices and nets that are related to the root lattices A_{d}, D_{d}, E_{d}, the contact graphs and the associated coordination sequences are of considerable interest in their own right, and we shall investigate their properties in this paper, extending the work of O'Keeffe (1991, 1995).

Throughout this paper, if \mathcal{G} is a distance-transitive graph with some fixed choice of origin, and u is a vertex of \mathcal{G}, the height of $u, h t(u)$, is the number of edges in the shortest path from u to the origin. Also, for $n=0,1,2, \ldots$, we set

$$
\begin{aligned}
G(n) & =\#\{u \in \mathcal{G}: h t(u) \leqslant n\} \\
I(n) & =\#\{u \in \mathcal{G}: h t(u)<n\} \\
S(n) & =\#\{u \in \mathcal{G}: h t(u)=n\}=G(n)-I(n)
\end{aligned}
$$

Then $S(0), S(1), \ldots$ is the coordination sequence of \mathcal{G}.
The paper is arranged as follows. In $\S 2$ we study the contact graphs of lattices and introduce the notion of the fractional height of a lattice point u. This measures by how much the contact polytope of the lattice must be magnified before it contains u. The fractional height never exceeds the height (theorem 2.2) and differs from it by a bounded amount (theorem 2.3).

A lattice is called well-coordinated if the fractional heights are the same as the heights. Well-coordinated lattices have many desirable properties that make them easier to analyse. Although the root lattices A_{d} and D_{d} are well-coordinated (theorems 3.1 and 3.2), lattices that are not well-coordinated exist in all dimensions above four (theorem 2.6 and subsequent paragraphs). In particular, the lattices E_{7}, E_{7}^{*} and E_{8} are not well-coordinated (theorems 3.5-3.7).

An extreme example of a lattice that is not well-coordinated is the 11-dimensional 'anabasic' lattice described in $\S 2$; this contains vectors u with the property that $h t(2 u)<h t(u)$!

Section 3 studies the coordination sequences of the lattices $A_{d}, D_{d}, E_{6}, E_{7}, E_{8}$, their duals and some related nets. It is worth remarking that in this section we will see graphs in which the crystal ball numbers $G(n)$ are equinumerous with centred simplices (the sodalite net), centred cubes (the generalized BCC net) and centred orthoplexes $\left(\mathbb{Z}^{d}\right)$, representing all the regular polytopes in high dimensions (cf. Coxeter (1971)).

In $\S 4$ it is shown that among all Barlow packings, that is, those formed from layers of the hexagonal lattice, the hexagonal close packing (or h.c.p.) has both the highest coordination sequence and the highest crystal ball sequence, while the face-centred cubic (or FCC) lattice has the lowest. This establishes a conjecture made in O'Keeffe (1995).

The highest crystal ball numbers for packings in dimensions $d \leqslant 4$ have a concise description in terms of the function

$$
\Delta_{k}(n)=(n+1)^{k}-n^{k}
$$

Proc. R. Soc. Lond. A (1997)
as follows:

$$
\begin{align*}
& d=1: \text { for } \mathbb{Z}, G(n)=\Delta_{2}(n)=2 n+1, \\
& d=2: \text { for } A_{2}, G(n)=\Delta_{3}(n)=3 n^{2}+3 n+1, \\
& d=3: \text { for h.c.p., } G(n)=\frac{7}{8} \Delta_{4}(n)+(-1)^{n} \frac{1}{8}=\text { nearest integer to } \frac{7}{8} \Delta_{4}(n), \\
& d=4: \text { for } D_{4}, G(n)=\frac{4}{5} \Delta_{5}(n)+\frac{1}{5}=\text { nearest integer to } \frac{4}{5} \Delta_{5}(n) . \tag{1.1}
\end{align*}
$$

However, in higher dimensions this notation is not especially useful. The formula (3.42) for E_{8}, for example, does not simplify when expressed in terms of $\Delta_{k}(n)$.

The following symbols will be used: \rfloor for integer part or floor, \rceil for ceiling, \mathbb{Z} for the integers, \mathbb{Q} for the rationals, \mathbb{R} for the reals. For undefined terms from lattice theory see Conway \& Sloane (1993) and for the definition of less familiar polytopes (see as the 'ambo-simplex') see Conway \& Sloane (1991). This paper is part of series dealing with the pro ${ }^{\circ}$ rties of low-dimensional lattices f i various points of view, the previous part bemg Cinway \& Sloane (1992).

2. Contact graphs of lattices

Most of this paper will be concerned witl the case when \mathcal{G} is the contact graph of a d-dimensional lattice Λ that is spanned by its minimal vectors. Let \mathcal{P} denote the contact polytope of the lattice; that is, the convex hull of the minimal vectors (Conway \& Sloane 1991).

We define the fractional height of a vector $u \in \Lambda$ (or of the corresponding node of \mathcal{G}) to be

$$
f h t(u)=\min _{h \geqslant 0}\{u \in h \mathcal{P}\},
$$

where $h \mathcal{P}=\{h x: x \in \mathcal{P}\}, h \geqslant 0$. Let $G^{\prime}(h)=\#\{u \in \Lambda: f h t(u) \leqslant h\}, I^{\prime}(h)=$ $\#\{u \in \Lambda: f h t(u)<h\}$, and $S^{\prime}(h)=\#\{u \in \Lambda: f h t(u)=h\}=G^{\prime}(h)-I^{\prime}(h)$.

In fact, it seems that there are three reasonable ways of measuring height:
(1) the fractional height, $f h t(u)$;
(2) the fractional height rounded up, $\lceil f h t(u)\rceil$; and
(3) the height, $h t(u)$. Obviously we have

$$
\begin{equation*}
f h t(u) \leqslant\lceil f h t(u)\rceil \tag{2.1}
\end{equation*}
$$

and we shall prove in a moment that

$$
\begin{equation*}
\lceil f h t(u)\rceil \leqslant h t(u), \tag{2.2}
\end{equation*}
$$

and so

$$
\begin{equation*}
f h t(u) \leqslant h t(u) . \tag{2.3}
\end{equation*}
$$

A lattice for which equality holds in (2.1) is called well-placed, because each point appears on the boundary of some $n \mathcal{P}$, for $n \geqslant 0, n \in \mathbb{Z}$. A lattice for which equality holds in (2.2) is called well-rounded, because its heights are obtained just by the appropriate rounding of the fractional heights. Finally, if equality holds in (2.3), or equivalently if equality holds in both (2.1) and (2.2), we call the lattice wellcoordinated.

Theorem 2.1. A point $u \in \Lambda$ has fractional height h if and only if it can be written in the form

$$
\begin{equation*}
u=\sum_{i=1}^{d} c_{i} v_{i} \tag{2.4}
\end{equation*}
$$

Proc. R. Soc. Lond. A (1997)
where $c_{i} \in \mathbb{Q}, c_{i} \geqslant 0, \sum c_{i}=h$ and v_{1}, \ldots, v_{d} are distinct minimal vectors of Λ belonging to a face of the contact polytope.

Proof. If $f h t(u)=h$ then, as we magnify the contact polytope, forming $a \mathcal{P}$ for increasing a, u first belongs to $a \mathcal{P}$ when $a=h$, at which point u is on the boundary of $h \mathcal{P}$. Since the faces of $h \mathcal{P}$ are convex ($d-1$)-dimensional polytopes, by Carathéodory's theorem (Stoer \& Witzgall 1970, theorem 2.2.12), we can write u as a linear combination of at most d of the vertices of that face:

$$
u=\sum_{i=1}^{d} \lambda_{i}\left(h v_{i}\right),
$$

with $\lambda_{i} \geqslant 0, \sum \lambda_{i}=1$, from which (2.4) follows. The converse is immediate.
On the other hand, the points of height $n(n \in \mathbb{Z}, n \geqslant 0)$ are exactly the points that can be written as a linear combination of minimal vectors of Λ with non-negative coefficients that sum to n. If, instead, we allowed real coefficients with sum at most n, we would obtain all of $n \mathcal{P}$. Of course the vertices of $n \mathcal{P}$ have height n. Thus we have established the following.

Theorem 2.2. The points of fractional height at most $h(h \geqslant 0)$ are all the lattice points in or on $h \mathcal{P}$. The points of height at most $n(n \in \mathbb{Z}, n \geqslant 0)$ are a subset-which necessarily includes the vertices-of the lattice points in or on $n \mathcal{P}$. Furthermore, $f h t(u) \leqslant h t(u)$ for all $u \in \Lambda, G^{\prime}(n) \geqslant G(n)$ for integers $n \geqslant 0$, and the lattice is well-rounded if and only if $G^{\prime}(n)=G(n)$ for all integers $n \geqslant 0$.
Theorem 2.3. There is a constant C depending only on the lattice Λ such that

$$
\begin{equation*}
h t(u)-f h t(u) \leqslant C, \quad \text { for all } u \in \Lambda \tag{2.5}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
f h t(u)=\lim _{n \rightarrow \infty} \frac{h t(n u)}{n} \tag{2.6}
\end{equation*}
$$

Proof. Consider a vector $u \in \Lambda$ with fractional height n. From theorem 2.1 we can write $u=\sum_{i=1}^{d} c_{i} v_{i}$ with $c_{i} \geqslant 0, \sum c_{i}=n$. If $u^{\prime}=\sum\left\lfloor c_{i}\right\rfloor v_{i}$, then $h t\left(u^{\prime}\right) \leqslant \sum\left\lfloor c_{i}\right\rfloor \leqslant$ $f h t(u)$. However, u and u^{\prime} differ only by a lattice vector in \mathcal{P}, of which there are only finitely many. Equation (2.5) follows, and (2.6) is an immediate consequence. Note that the limit in (2.6) exists, since height is a subadditive function.

Theorem 2.3 can be interpreted as saying that, for large n, the clusters of points of fractional height $\leqslant n$ and of height $\leqslant n$ look roughly the same, except that the faces of the latter may be somewhat 'pitted'. For well-rounded lattices they are exactly the same.

We shall make frequent use of the following result, which is a immediate consequence of Ehrhart's reciprocity law (Ehrhart 1960, 1967, 1973, 1977; see also Stanley 1980, 1986).

Theorem 2.4. For integral $n \geqslant 0, G^{\prime}(n)$ and $I^{\prime}(n)$ are respectively given by polynomials $g^{\prime}(n)$ and $i^{\prime}(n)$ in n of degree d, satisfying

$$
\begin{equation*}
g^{\prime}(-n)=(-1)^{d} i^{\prime}(n), \quad n \in \mathbb{Z} \tag{2.7}
\end{equation*}
$$

Furthermore, $S^{\prime}(0)=1$ while, for $n>0, S^{\prime}(n)$ is a polynomial $s^{\prime}(n)$ of degree $d-1$ satisfying $s^{\prime}(0)=1-(-1)^{d}$.

Proc. R. Soc. Lond. A (1997)

Since, obviously, $S(n)=G(n)-G(n-1)$ for $n>0$, it follows from theorem 2.4 that for well-rounded lattices (for which $G(n)=G^{\prime}(n)$), $S(n)$ for $n>0$ is also a polynomial $s(n)$ in n of degree $d-1$. If this is so then the generating function

$$
\mathcal{S}(x)=\sum_{n=0}^{\infty} S(n) x^{n}
$$

can be written as

$$
\begin{equation*}
\mathcal{S}(x)=\frac{P_{d}(x)}{(1-x)^{d}}, \tag{2.8}
\end{equation*}
$$

for some polynomial $P_{d}(x)$, which we call the coordinator polynomial. These polynomials usually provide the most concise specification of the coordination sequences. Equation (2.8) implies that the generating function for the crystal ball numbers $G(n)$ is

$$
\sum_{n=0}^{\infty} G(n) x^{n}=\frac{\mathcal{S}(x)}{1-x}=\frac{P_{d}(x)}{(1-x)^{d+1}}
$$

Note that if a lattice Λ is the direct product of lattices M and N, then the corresponding generating functions satisfy $\mathcal{S}_{\Lambda}(x)=\mathcal{S}_{M}(x) \mathcal{S}_{N}(x)$, and the coordinator polynomial for Λ is the product of those for M and N.

It follows from the definition that \mathcal{G} is well-placed if any one of these three equivalent conditions holds:
(a) $\operatorname{fht}(u) \in \mathbb{Z}, \quad$ for all $u \in \mathcal{G}$;
(b) $I^{\prime}(n)=G^{\prime}(n-1), \quad$ for $n=1,2, \ldots$;
(c) $S^{\prime}(n)=G^{\prime}(n)-G^{\prime}(n-1), \quad$ for $n=1,2, \ldots$

These conditions amount to saying that every point lies on the boundary of $n \mathcal{P}$, for some integral $n \geqslant 0$.

The polynomials $g^{\prime}(n), s^{\prime}(n)$ and $i^{\prime}(n)$ that give the values of $G^{\prime}(n), S^{\prime}(n)$ and $I^{\prime}(n)$ for integral $n>0$ are also interesting for negative n.

Theorem 2.5. \mathcal{G} is well-placed if and only if either

$$
\begin{equation*}
\text { (d) } g^{\prime}(-n)=(-1)^{d} g^{\prime}(n-1), \quad \text { for all } n \in \mathbb{Z} \tag{2.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { (e) } s^{\prime}(-n)=(-1)^{d-1} s^{\prime}(n), \quad \text { for all } n \in \mathbb{Z}, \quad n \neq 0 \tag{2.12}
\end{equation*}
$$

holds.
Equation (2.11) asserts that the values of $\left|g^{\prime}(n)\right|$ are symmetric about $n=-\frac{1}{2}$ and (2.12) asserts that $s^{\prime}(n)$ is an even polynomial in n if d is odd and an odd polynomial in n if d is even.

Proof. If \mathcal{G} is well-placed then $g^{\prime}(-n)=(-1)^{d} i^{\prime}(n)$ (from theorem 2.4) $=$ $(-1)^{d} g^{\prime}(n-1)\left(\right.$ from (2.10)). Let $\sigma(x)=g^{\prime}(x)-g^{\prime}(x-1)$, so that $s^{\prime}(n)=\sigma(n)$ for $n=1,2, \ldots$ Then $\sigma(x)=(-1)^{d}\left\{g^{\prime}(-x-1)-g^{\prime}(-x)\right\}=(-1)^{d-1} \sigma(-x)$, so $s^{\prime}(-n)=(-1)^{d-1} s^{\prime}(n), n \neq 0$. Conversely, if (2.12) holds, there is an even (if d is odd) or odd (if d is even) polynomial $\sigma(x)$ of degree $d-1$ such that $s^{\prime}(h)=\sigma(h)$ for $h>0$. Then $g^{\prime}(h)=\sum_{t<h} \sigma(t)$ is a sum of linear combinations of Bernoulli polynomials of degrees $d, d-2, d-4, \ldots$ and (2.11) follows from the symmetry property of

Bernoulli polynomials (Abramowitz \& Stegun 1964, equation (23.1.8)). Thus (2.12) implies (2.11), and (2.11) and (2.7) imply (2.10), showing that \mathcal{G} is well-placed.

For example, the FCC lattice is well-coordinated, since $G^{\prime}(n)=G(n)=$ $\frac{1}{3}(2 n+1)\left(5 n^{2}+5 n+3\right)$ satisfies $G^{\prime}(-n)=-G^{\prime}(n-1)$: its values at

$$
\cdots-3-2-10123 \cdots
$$

being respectively

$$
\cdots-55-13-111355147 \cdots
$$

Also,

$$
S^{\prime}(n)=G^{\prime}(n)-G^{\prime}(n-1)=10 n^{2}+2=S(n)
$$

for $n \geqslant 1$, an even polynomial.
Theorem 2.6. Every lattice of dimension d at most 4 is well-coordinated.
Proof. The cases $d=1$ and 2 are easy. The case $d=3$ follows from theorem 2.5 and the fact (cf. O'Keeffe 1995) that for a three-dimensional lattice, $S(n)=(S(1)-2) n^{2}+2, n>0$. The proof for $d=4$ is longer and will be given elsewhere.

It follows from theorem 2.4 that the coordination sequence for any fourdimensional lattice is given by

$$
\begin{equation*}
S(n)=\left(\frac{S(2)}{6}-\frac{S(1)}{3}\right) n^{3}-\left(\frac{S(2)}{6}-\frac{4 S(1)}{3}\right) n \tag{2.13}
\end{equation*}
$$

for $n>0$ (compare O'Keeffe 1995, p. 906).
On the other hand, the following five-dimensional lattice is not well-placed, and so not well-coordinated. We start from the lattice D_{5}^{*}, generated by the vectors $v_{1}=(1,0,0,0,0), \ldots, v_{5}=(0,0,0,0,1)$ and $v_{6}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, and 'squash' it in the v_{6} direction until v_{1}, \ldots, v_{6} all have the same length. The resulting lattice has Gram matrix

$$
\frac{1}{21}\left[\begin{array}{ccccc}
20 & -1 & -1 & -1 & 8 \\
-1 & 20 & -1 & -1 & 8 \\
-1 & -1 & 20 & -1 & 8 \\
-1 & -1 & -1 & 20 & 8 \\
8 & 8 & 8 & 8 & 20
\end{array}\right]
$$

the entries in which are the inner products of the new vectors $v_{1}, v_{2}, v_{3}, v_{4}, v_{6}$. It is easy to check that $w=v_{6}-v_{1}-v_{2}$ has height 3 but fractional height 2.5 (in fact, $h t(2 w)=5$), showing that the lattice is not well-placed. Further investigation shows that this lattice is well-rounded, with

$$
G^{\prime}(n)=G(n)=\frac{2}{3} n^{5}+\frac{5}{4} n^{4}+\frac{5}{2} n^{3}+\frac{15}{2} n^{2}+\frac{23}{6} n+1,
$$

which is indeed not symmetric about $-\frac{1}{2}$, and that

$$
S^{\prime}(n)=S(n)=\frac{10}{3} n^{4}-\frac{5}{3} n^{3}+\frac{20}{3} n^{2}+\frac{5}{3} n+1 \quad(n>0) .
$$

Thus lattices that are not well-placed (hence not well-coordinated) exist in all dimensions above four. As we will see, the lattices E_{7}, E_{7}^{*} and E_{8} are also not wellplaced.

Proc. R. Soc. Lond. A (1997)

Remark 2.7. Well-coordinated lattices are well-rounded, and it is at first tempting to conjecture that the converse is also true. However, we believe that a counterexample (a well-placed lattice that is not well-rounded) will be found in perhaps as low as five dimensions. The next example shows that, in general, the set of lattice points of height $\leqslant n$ need not even be lattice-convex, i.e. need not have the property that every lattice point in the convex hull of the points of height n has height $\leqslant n$.

Definition 2.8. A d-dimensional lattice Λ is anabasic if it has the property that, although it is generated by its minimal vectors, no subset of d of the minimal vectors generates it. A particular 11-dimensional lattice, which we call 'the' anabasic lattice B, was described in Conway \& Sloane (1995a).

The anabasic lattice B has precisely 24 minimal vectors $\pm u_{1}, \ldots, \pm u_{7}, \pm v_{1}$, $\ldots, \pm v_{5}$, satisfying $2 \sum_{i=1}^{7} u_{i}=3 \sum_{i=1}^{5} v_{i}=6 w$ (say). Then $2 w=\sum v_{i} \in B$, $3 w=\sum u_{i} \in B$, so $w \in B$. The heights of the multiples of w are

vector:	w	$2 w$	$3 w$	$4 w$	$5 w$	$6 w$	$7 w$	$8 w$	$9 w$	\ldots
height:	12	5	7	10	12	14	17	19	21	\ldots

and $f h t(w)=\frac{7}{3}$. The set of points of height $\leqslant 5$ is not lattice-convex, since it contains $2 w$ but not w.

In this example, $f h t(w)=\frac{7}{3}$ while $h t(w)=12$, so the anabasic lattice is neither well-placed nor well-rounded. However, most of the lattices Λ we consider in this paper are well-rounded.

Theorem 2.9. If a d-dimensional lattice Λ is well-rounded, then the set of $u \in \Lambda$ with $h t(u) \leqslant n$ is lattice-convex and the crystal balls are magnified versions of the contact polytope. For integral $n \geqslant 0, G(n)$ and $I(n)$ are respectively given by polynomials $g(n)$ and $i(n)$ of degree d, satisfying

$$
g(-n)=(-1)^{d} i(n), \quad n \in \mathbb{Z} .
$$

Furthermore, $S(0)=1$, while for $n>0, S(n)$ is a polynomial $s(n)$ of degree $d-1$ satisfying $s(0)=1-(-1)^{d}$.

Proof. The hypothesis implies that the set of points of height $\leqslant n$ is convex and the other assertions follow from Ehrhart's reciprocity law (cf. theorem 4).

In particular, theorem 2.9 applies if the lattice is well-coordinated.

3. Root lattices and their duals

In this section we discuss the coordination sequences of the root lattices, their duals and some related nets.

The cubic lattice \mathbb{Z}^{d}
The contact polytope for \mathbb{Z}^{d} is a d-dimensional cube, and a typical point $x=$ $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}^{d}$ has

$$
\begin{equation*}
f h t(x)=h t(x)=\sum_{i=1}^{d}\left|x_{i}\right| . \tag{3.1}
\end{equation*}
$$

The coordination sequence for the 1 -dimensional integer lattice \mathbb{Z} is $\{1,2,2,2, \ldots\}$,
with generating function $\mathcal{S}(x)=(1+x) /(1-x)$. Therefore, for \mathbb{Z}^{d}, the direct product of d copies of \mathbb{Z}, we have $\mathcal{S}(x)=(1+x)^{d} /(1-x)^{d}$,

$$
\begin{align*}
& S(n)=\sum_{k=0}^{d}\binom{d}{k}\binom{n-k+d-1}{d-1}, \tag{3.2}\\
& G(n)=\sum_{k=0}^{d}\binom{d}{k}\binom{n-k+d}{d} \tag{3.3}
\end{align*}
$$

and $P_{d}(x)=(1+x)^{d}$. From (3.1), (3.2) we have the identity

$$
\begin{equation*}
\sum_{\left(a_{0}, a_{1}, \ldots\right)} d!2^{d-a_{0}} / \prod_{i=0}^{n} a_{i}!=\sum_{k=0}^{d}\binom{d}{k}\binom{n-k+d-1}{d-1} \tag{3.4}
\end{equation*}
$$

the sum being over all $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n+1}$ satisfying $\sum a_{i}=d, \sum i a_{i}=n$.
The crystal balls are orthoplexes (cf. Conway \& Sloane 1991) and the $G(n)$ are centred orthoplex numbers.

The structure of the coordinator polynomials both here and in subsequent examples becomes clearer if the coefficients of the successive polynomials $P_{d}(x)$ for $d=0,1,2, \ldots$ are displayed in a triangular array (with coefficients of highest powers on the right). We call this the coordinator triangle:

In this case, of course, the coordinator triangle is simply Pascal's triangle of binomial coefficients $\binom{d}{k}$. O'Keeffe (1991, table 6) gave the coordination sequences for $d \leqslant 10$, but the present description is both simpler and holds for all d. It follows from (3.2) that the coefficient of n^{d-1} in $S(n)$ is $2^{d} /(d-1)$!, as conjectured in O'Keeffe (1991).

The root lattice A_{d}

The contact polytopes of the lattices $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$ and their duals were described in Conway \& Sloane (1991).

We define A_{d} to consist of the points $x=\left(x_{0}, x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}^{d+1}$ with $\sum x_{i}=0$. The contact polytope has $d(d+1)$ vertices of the form $\left(1,-1,0^{d-1}\right)$. These are at the midpoints of the shorter edges of the diplo-simplex formed by the vectors (from $\operatorname{coset}[1]$ of A_{d} in A_{d}^{*})

$$
\pm\left(\left(\frac{1}{d+1}\right)^{d},\left(\frac{-d}{d+1}\right)^{1}\right)
$$

The contact polytope was incorrectly described as an 'ambo-diplo-simplex' in Conway \& Sloane (1991); a better name would be 'shorter ambo-diplo-simplex'.

A fundamental simplex for the Weyl group $W\left(A_{n}\right)$ of order $(n+1)$! is described in figsures 21.1 and 21.6 of Conway \& Sloane (1993). It consists of the points satisfying

$$
\begin{equation*}
x_{0} \geqslant x_{1} \geqslant \cdots \geqslant x_{d}, \quad \sum x_{i}=0 \tag{3.5}
\end{equation*}
$$

Proc. R. Soc. Lond. A (1997)

This simplex is an infinite cone which meets the contact polytope in d faces, one for each non-zero glue vector of A_{d} (cf. Conway \& Sloane 1993, ch. 4 and 21). The face corresponding to the glue vector

$$
[i]=(\underbrace{\frac{i}{d+1}, \ldots, \frac{i}{d+1}}_{d+1-i}, \underbrace{-\frac{d+1-i}{d+1}, \ldots,-\frac{d+1-i}{d+1}}_{i}),
$$

for $1 \leqslant i \leqslant d$, has equation

$$
\begin{equation*}
\frac{1}{2}[i] \cdot x=\frac{i}{2(d+1)}\left(x_{0}+\cdots+x_{d-i}\right)-\frac{(d+1-i)}{2(d+1)}\left(x_{d-i+1}+\cdots+x_{d}\right)=1 \tag{3.6}
\end{equation*}
$$

This face contains $i(d-i)$ vertices of the contact polytope, those with a single +1 in any of the first $d+1-i$ coordinates and a single -1 in any of the last i coordinates.

Consider a point $x \in A_{d}$ lying in the fundamental simplex, in the cone above the face defined by (3.6). The reflecting planes of the affine (infinite) Weyl group of type A_{n} partition the whole space into simplices. The height of x, and also its fractional height, is given by the number of reflecting planes between x and the origin, which is $\frac{1}{2}[i] \cdot x$.

For an arbitrary point $x \in A_{d}$ in the fundamental simplex (3.5), the height is

$$
\max _{i=1, \ldots, d} \frac{1}{2}[i] \cdot x
$$

which is simply $\frac{1}{2} \sum\left|x_{i}\right|$. Thus a point such as $(7,3,0,-5,-5) \in A_{4}$ can be written as the sum of $\frac{1}{2} \sum\left|x_{i}\right|=10$ minimal vectors, and no fewer. From collecting these results and applying theorem 2.9, we obtain the following.

Theorem 3.1. Any point $x=\left(x_{0}, \ldots, x_{d}\right) \in A_{d}$ is equivalent under the Weyl group to one with coordinates satisfying (3.5). For such a point we have

$$
f h t(x)=h t(x)=\frac{1}{2} \sum\left|x_{i}\right| .
$$

The number of points in A_{d} equivalent to this point is $(d+1)!/ \prod_{i=-n}^{n} a_{i}!$, where a_{i} is the number of components x_{j} that are equal to i, for $-n \leqslant i \leqslant n, n=h t(x)$. The lattice is well-coordinated and $G(n), S(n)(n>0)$ are polynomials in n of degrees d, $d-1$ respectively. The crystal balls are shorter ambo-diplo-simplices.

O'Keeffe (1995) empirically determined the coordination sequences for A_{d} for $d \leqslant$ 7 , in each case finding that $S(n)$ is a polynomial in n of degree $d-1$. The correctness of these expressions is now justified. Using theorem 3.1, we have extended O'Keeffe's results to $d=10$ and find that the coordinator triangle is

The k th entry in the d th row is $\binom{d}{k}$ (for $k=0,1, \ldots$), so that

$$
\begin{equation*}
\mathcal{S}(x)=\sum_{k=0}^{d}\binom{d}{k}^{2} x^{k} /(1-x)^{d} \tag{3.7}
\end{equation*}
$$

Proc. R. Soc. Lond. A (1997)
and hence

$$
\begin{equation*}
S(n)=\sum_{k=0}^{d}\binom{d}{k}^{2}\binom{n-k+d-1}{d-1} \tag{3.8}
\end{equation*}
$$

with a similar expression for $G(n)$. The following elegant proof of (3.8) is due to C. L. Mallows. From theorem 3.1, equation (3.8) is equivalent to the identity

$$
\begin{equation*}
\sum_{a}(d+1)!/ \prod_{i=-n}^{n} a_{i}!=\sum_{k=0}^{d}\binom{d}{k}^{2}\binom{n-k+d-1}{d-1} \tag{3.9}
\end{equation*}
$$

where the sum on the left extends over all $a=\left(a_{-n}, \ldots, a_{n}\right)$ satisfying

$$
\sum_{i=-n}^{n} a_{i}=d+1, \quad \sum_{i>0} i a_{i}=\sum_{i<0} i a_{-i}=n
$$

If we multiply the left-hand side summand of (3.9) by

$$
x^{a_{0}}(x y)^{a_{1}}(x z)^{a_{-1}}\left(x y^{2}\right)^{a_{2}}\left(x z^{2}\right)^{a_{-2}} \ldots
$$

we see that the left-hand side of (3.9) is equal to the coefficient of $x^{d+1} y^{n} z^{n}$ in

$$
(d+1)!\exp \left\{x+\frac{x y}{1-y}+\frac{x z}{1-z}\right\}=(d+1)!\exp \left\{x \frac{1-y z}{(1-y)(1-z)}\right\}
$$

or, in other words, to

$$
\begin{equation*}
\text { coefficient of } y^{n} z^{n} \text { in }\left\{\frac{1-y z}{(1-y)(1-z)}\right\}^{d+1} \tag{3.10}
\end{equation*}
$$

On the other hand, the right-hand side of (3.9) is

$$
\begin{equation*}
\text { coefficient of } y^{n} z^{n} \text { in }\left\{\frac{1-y z}{(1-y)(1-z)}\right\}^{-d} \tag{3.11}
\end{equation*}
$$

Call these two expressions $c_{\mathrm{L}}(n, d)$ and $c_{\mathrm{R}}(n, d)$. Contour integration now shows that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{d=0}^{\infty} c_{\mathrm{L}}(n, d) u^{n} v^{d}=\sum_{n=0}^{\infty} \sum_{d=0}^{\infty} c_{\mathrm{R}}(n, d) u^{n} v^{d}=\left\{1-2 v \frac{1+u}{1-u}+v^{2}\right\}^{-1 / 2} \tag{3.12}
\end{equation*}
$$

completing the proof.
It is curious \dagger that equation (3.7) is the expansion of $L_{d}((1+x) /(1-x))$ in powers of x, where L_{d} is the d th order Legendre polynomial (see Pólya \& Szegö 1976, p. 86). We are not aware of any other connections between the root system A_{d} and the Legendre polynomial L_{d}.

The dual lattice A_{d}^{*}

The contact polytope for A_{d}^{*} is a diplo-simplex (Conway \& Sloane 1991, p. 88) with $2 d+2$ vertices $\pm v_{i}, 0 \leqslant i \leqslant d$, where

$$
v_{i}=\left(\left(\frac{1}{d+1}\right)^{d},\left(\frac{-d}{d+1}\right)^{1}\right)
$$

\dagger We are grateful to Herb Wilf for this remark.
with the $-d /(d+1)$ entry in the i th coordinate. A typical face of the contact polytope contains

$$
\frac{1}{2} d+v_{i} \mathrm{~s} \quad \text { and } \quad \frac{1}{2} d-v_{i} \mathrm{~s}
$$

if d is even and either

$$
\frac{1}{2}(d+1)+v_{i} \mathrm{~S} \quad \text { and } \quad \frac{1}{2}(d-1)-v_{i} \mathrm{~S}
$$

or

$$
\frac{1}{2}(d-1)+v_{i} \mathrm{~s} \quad \text { and } \quad \frac{1}{2}(d+1)-v_{i} \mathrm{~s}
$$

if d is odd.
We will now show that A_{d}^{*} is well-coordinated. We use A_{4}^{*} as an illustration, the general case being precisely similar. The face defined by $\pi \cdot x=1$, where $\pi=$ $(1,1,0,-1,-1)$, contains the vertices $v_{0}, v_{1},-v_{3}$ and $-v_{4}$. All faces of the contact polytope are of this type.

Consider a point $x=\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \in A_{4}^{*}$ in the cone from the origin that contains this face. Let x have fractional height h, so that $\pi \cdot x=h$. We claim that $h t(x)=h$. By theorem 2.1,

$$
\begin{equation*}
x=c_{0} v_{0}+c_{1} v_{1}-c_{3} v_{3}-c_{4} v_{4}, \tag{3.13}
\end{equation*}
$$

where $c_{i} \in \mathbb{Q}, c_{i} \geqslant 0$ and $\sum c_{i}=h$. Since $x \in A_{4}^{*}$ and $v_{0}, v_{1}, v_{3}, v_{4}$ span A_{4}^{*}, x can also be written as

$$
\begin{equation*}
x=m_{0} v_{0}+m_{1} v_{1}-m_{3} v_{3}-m_{4} v_{4}, \tag{3.14}
\end{equation*}
$$

where the m_{i} are integers. Since $v_{0}, v_{1}, v_{3}, v_{4}$ are linearly independent, the representation of x is unique and (3.13) and (3.14) agree. Therefore $h=\sum m_{i}$ is an integer and, since (3.14) displays x as a sum of h minimal vectors, $h t(x)=f h t(x)=h$, showing that this lattice is well-coordinated.

O'Keeffe (1995) gave polynomials for the coordination sequences for $d \leqslant 7$, and the preceding argument now justifies these formulae. Using O'Keeffe's results, we find that the coordinator triangle is

The last two rows, corresponding to $d=8$ and 9 , were obtained by extrapolating the pattern of the earlier rows, which appears to be

$$
\begin{align*}
P_{2 m}(x) & =\sum_{k=0}^{m}\binom{2 k}{k} x^{k}(1+x)^{2 m-2 k}, \tag{3.15}\\
P_{2 m+1}(x) & =(1+x) P_{2 m}(x) . \tag{3.16}
\end{align*}
$$

Proc. R. Soc. Lond. A (1997)

Assuming these expressions hold in general, by expanding (2.8) we find that

$$
\begin{equation*}
S(n)=\sum_{k=0}^{d}\binom{n-k+d-1}{d-1} \sum_{i=0}^{k}\binom{2 i}{i}\binom{d-2 i}{k-i} \tag{3.17}
\end{equation*}
$$

This agrees with O'Keefe's empirical results for $d \leqslant 7$ and presumably for general d could be established in a similar manner to equation (3.9).

The root lattice D_{n}

We take D_{d} to consist of the points $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}^{d}$ with $\sum x_{i}$ even. The contact polytope is an 'ambo-orthoplex' (Conway \& Sloane 1991, p. 90), having $2 d(d-1)$ vertices, all of the form $\left(\pm 1^{2}, 0^{d-2}\right)$. The Weyl group $W\left(D_{d}\right)$ has order $2^{d-1} d!$ and contains all permutations and all even sign changes of the coordinates.

Any point $x \in D_{d}$ is equivalent under this group to one satisfying

$$
x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{d-1} \geqslant\left|x_{d}\right|,
$$

these inequalities defining the fundamental simplex. As in the case of A_{d}, the intersection of this simplex with the contact polytope has a face for each non-zero glue vector of D_{d}. There are three faces, defined by

$$
\left.\begin{array}{c}
x_{1}=1 \tag{3.18}\\
\frac{1}{2}\left(x_{1}+\cdots+x_{d-1}+x_{d}\right)=1 \\
\frac{1}{2}\left(x_{1}+\cdots+x_{d-1}-x_{d}\right)=1
\end{array}\right\}
$$

The expressions $x_{1}, \frac{1}{2}\left(x_{1}+\cdots+x_{d}\right), \frac{1}{2}\left(x_{1}+\cdots-x_{d}\right)$ then give the fractional heights of points in the cones above these three faces, and the fractional height of a general point in the fundamental simplex is the maximum of these three expressions, which is always an integer. Furthermore, it is easy to show that a point with fractional height n can actually be written as a sum of n minimal vectors and so the lattice is well-coordinated.

Finally, the last two faces in (3.18) are equivalent under the full automorphism group of D_{d}, since this includes all sign changes of the coordinates.

We collect these results in the following theorem.
Theorem 3.2. Any point $x=\left(x_{1}, \ldots, x_{d}\right) \in D_{d}$ is equivalent to one satisfying

$$
x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{d}
$$

For such a point we have

$$
f h t(x)=h t(x)=\max \left\{x_{1}, \frac{1}{2} \sum x_{i}\right\} .
$$

The number of points in D_{d} equivalent to x is

$$
\begin{equation*}
2^{d-a_{0}} d!/ \prod_{i=0}^{n} a_{i}! \tag{3.19}
\end{equation*}
$$

where a_{i} is the number of components x_{j} that are equal to i, for $0 \leqslant i \leqslant n=h t(x)$. The lattice is well-coordinated, $G(n)$ and $S(n)(n>0)$ are polynomials of degrees d and $d-1$, respectively, and the crystal balls are ambo-orthoplexes.

We had already determined the coordination sequence for D_{4} some years ago (see

Sequence M5182 of Sloane \& Plouffe $1995 \dagger$, also (1.1)) and it was given independently by O'Keeffe (1995), who also found the coordination sequences for D_{5} and D_{6}. We have extended this work to D_{12}, finding that the coordinator triangle is

The rows of this triangle suggest that \ddagger

$$
\begin{equation*}
P_{d}(x)=\frac{1}{2}\left\{(1+\sqrt{x})^{2 d}+(1-\sqrt{x})^{2 d}\right\}-2 d x(1+x)^{d-2} \tag{3.20}
\end{equation*}
$$

an expression which is certainly valid for $d \leqslant 12$. Assuming (3.20) holds in general, we find from (2.8) that

$$
\begin{equation*}
S(n)=\sum_{k=0}^{d}\left\{\binom{2 d}{2 k}-2 d\binom{d-2}{k-1}\right\}\binom{n-k+d-1}{d-1} \tag{3.21}
\end{equation*}
$$

Again, an equivalent combinatorial identity could be written down using (3.19) (compare (3.9)).

The dual lattice D_{d}^{*} and the generalized $B C C$ net

As was pointed out in O'Keeffe (1995), the contact graph for D_{d}^{*}, for $d \geqslant 5$, is simply the union of two disjoint copies of the contact graph for \mathbb{Z}^{d}.

However, a more interesting graph is obtained if-using the standard coordinates for D_{d}^{*} (see Conway \& Sloane 1993, $\S 7.4$ of ch. 4) - each point is joined to those points that differ from it by the vectors $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \ldots, \pm \frac{1}{2}\right)$. This generalizes the contact graph for the BCC lattice D_{3}^{*} and we shall refer to it as the generalized BCC net. The coordination number is 2^{d} and the crystal balls are cubes, with

$$
\begin{align*}
& S(n)=(n+1)^{d}-(n-1)^{d}, \quad n>0, \tag{3.22}\\
& G(n)=(n+1)^{d}+n^{d}, \quad n \geqslant 0 . \tag{3.23}
\end{align*}
$$

The $G(n)$ are centred cube numbers. The coordinator triangle is

[^0]Proc. R. Soc. Lond. A (1997)
and

$$
P_{d}(x)=(1+x) \sum_{k=0}^{d-1}\left\langle\begin{array}{l}
d \tag{3.24}\\
k
\end{array}\right\rangle x^{k}
$$

where the $\left\langle\begin{array}{l}d \\ k\end{array}\right\rangle$ are Eulerian numbers (Comtet 1974, p. 243; Graham et al. 1990, p. 254; Riordan 1958, p. 215). In Comtet's notation (Comtet 1974, p. 244), $P_{d}(x)=$ $(x+1) A_{n}(x) / x$, where $A_{n}(x)$ is an Eulerian polynomial.

The root lattices E_{6}, E_{7}, E_{8} and their duals
The coordination sequences for E_{6} and E_{6}^{*} were found experimentally by O'Keeffe (1995) so for these lattices we give only enough information to justify his results.
$\boldsymbol{E}_{\mathbf{6}}$. The contact polytope for the root lattice E_{6} is the polytope called 1_{22} in Coxeter's notation (Conway \& Sloane 1991, p. 104; Coxeter 1971, p. 201). There are 54 faces, all 5 -dimensional hemicubes. If we define E_{6} to consist of the points in the standard E_{8} (see below) in which the first three coordinates are equal, then the typical face has equation $\pi \cdot x=1$, where $\pi=\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}, 0,0,0,0,0\right)$. The vertices of E_{6} on this face have coordinates $\left(\left(\frac{1}{2}\right)^{3},\left(\pm \frac{1}{2}\right)^{5+}\right)$, the exponent $5+$ indicating that only even sign combinations are permitted. The fractional height of a point $x \in E_{6}$ in the cone above this face is $\operatorname{fht}(x)=\pi \cdot x$. This is an integer, so E_{6} is well-placed, and it is also easy to see that $\pi \cdot x=h t(x)$. Thus we have proved:

Theorem 3.3. E_{6} is well-coordinated.
This establishes the coordination sequence

$$
\begin{equation*}
S(n)=\frac{117}{5} n^{5}+36 n^{3}+\frac{63}{5} n \quad(n>0) \tag{3.25}
\end{equation*}
$$

found empirically in O'Keeffe (1995). Also,

$$
\begin{equation*}
G(n)=\frac{39}{10} n^{6}+\frac{117}{10} n^{5}+\frac{75}{4} n^{4}+18 n^{3}+\frac{267}{20} n^{2}+\frac{63}{10} n+1 . \tag{3.26}
\end{equation*}
$$

$\boldsymbol{E}_{\mathbf{6}}^{*}$. The contact polytope for the dual lattice E_{6}^{*} is a diplo-Schläfli polytope (Conway \& Sloane 1991, p. 104) and coincides with the Voronoi polytope for E_{6}. The contact polytope has 72 faces, one for each minimal vector of E_{6}. For example, the face defined by the minimal vector $\pi=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\right) \in E_{6}$ has equation $\pi \cdot x=1$. This face contains 12 points of E_{6}^{*}, forming a diplo-simplex. All faces are of this type. From this, it is easy to obtain the following.

Theorem 3.4. E_{6}^{*} is well-coordinated.
This establishes the coordination sequence

$$
\begin{equation*}
S(n)=18 n^{5}+30 n^{3}+6 n \quad(n>0) \tag{3.27}
\end{equation*}
$$

found empirically in O'Keeffe (1995). Also,

$$
\begin{equation*}
G(n)=3 n^{6}+9 n^{5}+15 n^{4}+15 n^{3}+9 n^{2}+3 n+1 . \tag{3.28}
\end{equation*}
$$

The remaining three lattices are not well-placed, although they are well-rounded.
\boldsymbol{E}_{7}. We define E_{7} to consist of the points $x=\left(x_{1}, \ldots, x_{8}\right)$ in the standard E_{8}, for which the first two coordinates are equal. The contact polytope is the polytope 2_{31} (Conway \& Sloane 1991, p. 100). There are two types of faces: 56 faces that are Schläfli polytopes (also called 2_{21} polytopes) and 576 simplicial faces. We use the extended Coxeter-Dynkin diagram shown in figure 1.

Figure 1. Extended Coxeter-Dynkin diagram for E_{7}, labelled to show walls of fundamental simplex.

The extending node in figure 1 is shaded and the other nodes are labelled with the equations that define the walls of the fundamental simplex (compare Conway \& Sloane 1993, figure $21.3(b)$, where slightly different coordinates were used). In figure $1,+1$ and -1 have been abbreviated to + and - . The left-most node, for example, defines the wall $x_{3}-x_{4} \geqslant 0$.

The points in the fundamental simplex therefore satisfy

$$
\begin{equation*}
x_{1}=x_{2}, x_{3} \geqslant x_{4} \geqslant x_{5} \geqslant x_{6} \geqslant x_{7} \geqslant\left|x_{8}\right|, \quad x_{1}+x_{2} \geqslant x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8} . \tag{3.29}
\end{equation*}
$$

The two faces in which the contact polytope meets this fundamental simplex correspond to the left and bottom nodes of figure 1 and have equations

$$
\begin{array}{ll}
\pi_{1} \cdot x=1, & \pi_{1}=\left(\frac{1}{2}, \frac{1}{2}, 1,0,0,0,0,0\right) \\
\pi_{2} \cdot x=1, & \pi_{2}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right) \tag{3.31}
\end{array}
$$

respectively. The face defined by (3.30) contains 27 points of E_{7}; namely 110^{6}, $001\left(\pm 1,0^{5}\right)$ and $\frac{1}{2} \frac{1}{2} \frac{1}{2}\left(\pm \frac{1}{2}\right)^{5+}$, forming a Schläfli polytope. These 27 points span E_{7}. If x is a point of E_{7} in the cone above this face,

$$
f h t(x)=\pi_{1} \cdot x=x_{2}+x_{3} \in \mathbb{Z}
$$

and $h t(x)=f h t(x)$. On the other hand, the face defined by (3.31) contains seven points of E_{7}; namely $110^{6},\left(\frac{1}{2}\right)^{6}$ and $\frac{1}{2} \frac{1}{2}\left(-\frac{1}{2} \frac{1}{2}{ }^{4}\right)-\frac{1}{2}$, forming a regular simplex. Now, however, the points on the face only generate a sublattice A_{7}, of index 2 in E_{7} and, if $x \in E_{7}$ is in the cone above this face,

$$
f h t(x)=\pi_{2} \cdot x=x_{2}+\left(x_{3}+x_{4}+x_{5}+x_{6}+x_{7}-x_{8}\right) / 4 \in \frac{1}{2} \mathbb{Z}
$$

and $h t(x)=\lceil f h t(x)\rceil$.
For a general point of E_{7} satisfying (3.29), we have

$$
\begin{equation*}
f h t(x)=\max \left\{x_{2}+x_{3}, x_{2}+\left(x_{3}+x_{4}+x_{5}+x_{6}+x_{7}-x_{8}\right) / 4\right\} \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
h t(x)=\lceil f h t(x)\rceil . \tag{3.33}
\end{equation*}
$$

By applying theorem 2.9, we obtain:
Theorem 3.5. Let E_{7} consist of the points $x=\left(x_{1}, \ldots, x_{8}\right)$ of E_{8}, in which the first two coordinates are equal. Any such point of E_{7} is equivalent under the Weyl group of E_{7} to one satisfying (3.29), for which the fractional height is given by (3.32) and the height by (3.33). E_{7} is well-rounded but not well-coordinated. $G(n)$ and $S(n)$ ($n>0$) are polynomials in n of degrees 7 and 6 , respectively.

Table 1. Numbers of points of fractional height exactly $h\left(S^{\prime}(h)\right)$ and at most $h\left(G^{\prime}(n)\right)$ in E_{7} lattice

h		$S^{\prime}(h)$	$G^{\prime}(h)$
0	1	1	
0.5	0	1	
1	126	127	
1.5	0	127	
2	2898	3025	
2.5	0	3025	
3	25886	28911	
3.5	576	29487	
4	132930	162417	
4.5	4032	166449	
	5	485982	652431
\cdots	\cdots	\cdots	

A computer was now used to determine the numbers of points of fractional height up to 6.5 , making use of knowledge of the subgroups of the Weyl group to calculate the number of lattice points equivalent to a given point. The results are partly shown in table 1.

Using theorem 3.5, these computed values suffice to determine $S(n)$ and $G(n)$. From $S(n)=S^{\prime}(n)+S^{\prime}\left(n-\frac{1}{2}\right),(n \geqslant 1), G(n)=G^{\prime}(n)(n \geqslant 0), n \in \mathbb{Z}$, we find

$$
\begin{align*}
& S(n)=\frac{148}{5} n^{6}-\frac{12}{5} n^{5}+52 n^{4}+12 n^{3}+\frac{212}{5} n^{2}-\frac{48}{5} n+2 \quad(n>0), \tag{3.34}\\
& G(n)=\frac{148}{35} n^{7}+\frac{72}{5} n^{6}+24 n^{5}+28 n^{4}+\frac{488}{15} n^{3}+\frac{98}{5} n^{2}+\frac{68}{21} n+1 . \tag{3.35}
\end{align*}
$$

\boldsymbol{E}_{7}^{*}. The contact polytope for E_{7}^{*} is a Hesse polytope E_{21} (Conway \& Sloane 1991, p. 101). There are two types of faces: simplices, whose vertices span a sublattice of index 3 in E_{7}^{*} and orthoplexes, whose vertices span a sublattice of index 2 . We omit the details and just summarize the result.

Theorem 3.6. The dual lattice E_{7}^{*} is well-rounded but not well-coordinated, the fractional heights are in $\frac{1}{6} \mathbb{Z}$ and $G(n), S(n)(n>0)$ are polynomials in n of degrees 7 and 6, respectively.

With the aid of a computer we found sufficiently many values to establish that

$$
\begin{gather*}
S(n)=\frac{68}{5} n^{6}-\frac{216}{5} n^{5}+148 n^{4}-192 n^{3}+\frac{902}{5} n^{2}-\frac{264}{5} n+2 \quad(n>0), \tag{3.36}\\
G(n)=\frac{68}{35} n^{7}-\frac{2}{5} n^{6}+\frac{74}{5} n^{5}+8 n^{4}+\frac{56}{5} n^{3}+\frac{97}{5} n^{2}+\frac{37}{35} n+1 . \tag{3.37}
\end{gather*}
$$

Notice that the formulae (3.34) and (3.36) for $S(n)$ for these lattices are much more complicated than the corresponding formula (3.25) and (3.27) for E_{6} and E_{6}^{*}, reflecting the fact that E_{7} and E_{7}^{*} are not well-coordinated.
$\boldsymbol{E}_{8} . \quad$ The 'standard' E_{8} consists of the points $x=\left(x_{1}, \ldots, x_{8}\right)$ whose coordinates are either all integers or all halves of odd integers and whose sum is even. The contact polytope is the Gosset polytope 4_{21} (Conway \& Sloane 1991, p. 94). There are two types of faces: 2160 faces that are orthoplexes and 17280 simplicial faces. We use the extended Coxeter-Dynkin diagram shown in figure 2, where we have adopted the same conventions as in figure 1.

Proc. R. Soc. Lond. A (1997)

Figure 2. Extended Coxeter-Dynkin diagram for E_{8}, labelled to show walls of fundamental simplex.

From the planes defined by the nodes in figure 2, we see that the points in the fundamental simplex satisfy

$$
x_{2} \geqslant x_{3} \geqslant x_{4} \geqslant x_{5} \geqslant x_{6} \geqslant x_{7} \geqslant\left|x_{8}\right|, \quad x_{1} \geqslant x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}-x_{8} .
$$

However, these together imply $x_{1} \geqslant x_{2}$ and so we can conclude that the fundamental simplex consists of the points satisfying

$$
\begin{equation*}
x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{7} \geqslant\left|x_{8}\right|, \quad x_{1}+x_{8} \geqslant x_{2}+\cdots+x_{7} . \tag{3.38}
\end{equation*}
$$

The two faces in which the contact polytope meets this fundamental simplex correspond to the left and bottom nodes of figure 2 and have equations:

$$
\begin{array}{ll}
\pi_{1} \cdot x=1, & \pi_{1}=(1,0,0,0,0,0,0,0) \\
\pi_{2} \cdot x=1, & \pi_{2}=\left(\frac{5}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right), \tag{3.40}
\end{array}
$$

respectively. The face defined by (3.39) contains 14 points of E_{8}, forming an orthoplex, and spanning a sublattice D_{8} of index 2 in E_{8}. The face defined by (3.40) contains eight points, forming a regular simplex and spanning a sublattice A_{3} of index 3 in E_{8}. The fractional heights of points in the cones above these two faces are given by $\pi_{1} \cdot x$ and $\pi_{2} \cdot x$, respectively. The final result of this analysis is the following.

Theorem 3.7. Any point of E_{8} is equivalent under the Weyl group to one satisfying (3.38), for which the fractional height is

$$
f h t(x)=\max \left\{x_{1},\left(5 x_{1}+x_{2}+x_{3}+\cdots x_{8}\right) / 6\right\}
$$

E_{8} is well-rounded but not well-coordinated and $G(n)$ and $S(n)(n>0)$ are polynomials of degrees 8 and 7, respectively.

With the help of a computer, we determined the numbers of points of fractional height $\leqslant 13$. In order to do this we precomputed a list of the 256 different types of stabilizers of points satisfying (3.38). The results of the enumeration are partly shown in table 2.

Using theorem 3.7, these values suffice to determine $S(n)$ and $G(n)$. We have $G(n)=G^{\prime}(n), n \geqslant 0, n \in \mathbb{Z}$ and $S(n)=G(n)-G(n-1), n \geqslant 1, n \in \mathbb{Z}$, from which it follows that

$$
\begin{align*}
& S(n)=\frac{456}{7} n^{7}-120 n^{6}+312 n^{5}-120 n^{4}-48 n^{3}+240 n^{2}-\frac{624}{7} n \quad(n>0) \tag{3.41}\\
& G(n)=\frac{57}{7} n^{8}+\frac{108}{7} n^{7}+30 n^{6}+72 n^{5}+39 n^{4}+36 n^{3}+\frac{300}{7} n^{2}-\frac{24}{7} n+1 \tag{3.42}
\end{align*}
$$

Besides verifying that these polynomials matched the computer results for $n \leqslant 13$, we also checked that $G(-n)=I(n)$ for $n \leqslant 13$ (cf. theorem 2.9). For $n \geqslant 4$, our values for the coordination sequence $S(n)$ do not agree with those given in O'Keefe (1995);

Proc. R. Soc. Lond. A (1997)

Table 2. Numbers of points in E_{8} lattice by fractional height
($G^{\prime}(h)$ is the number with fractional height $\leqslant h$, and $I^{\prime}(h)$ is the number with fractional height $<h$. The final column gives the coordination sequence.)

h	$\#$	$G^{\prime}(h)$	$I^{\prime}(h)$	$S(h)$
0	1	1	0	1
between $0 \& 1$	0			
1	240	241	1	240
between $1 \& 2$	0			
2	9120	9361	241	9120
between $2 \& 3$	17280			
3	657600	131041	26641	121680
between $3 \& 4$	1244160			
4	9773280	996001	338401	864960
between $4 \& 5$	16623360			
5	69467520	5109841	2240161	4113840
\cdot	\cdots	\cdots	\cdots	\cdots

we believe the latter are incorrect. Again, the fact that E_{8} is not well-coordinated is responsible for the complicated formula in (3.41).

We display the coordinator triangle for $E_{3}=A_{1} \oplus A_{2}, E_{4}=A_{4}, E_{5}=D_{5}, E_{6}, E_{7}$ and E_{8}, followed by the coordinator polynomials for E_{7}^{*} and E_{6}^{*} (the row for E_{2} is omitted since that lattice is not generated by its minimal vectors):

In contrast to the A_{n} and D_{n} cases, there is no apparent pattern to these coefficients.
Note that the last four lines of this table are not palindromic, displaying again the fact that these lattices are not well-coordinated.

Root lattices in general

Looking back over this section, we observe several properties that hold for all root lattices.

Theorem 3.8. Let Λ be one of A_{d}, D_{d} or E_{6}, E_{7}, E_{8}.
(i) Consider the faces in which the contact polytope meets the fundamental simplex. These faces are in one-to-one correspondence with the nodes of the extended Coxeter-Dynkin diagram (Conway \& Sloane 1993, figures 21.1 to 21.3) that are not the extending node and whose removal does not make the diagram disconnected.
(ii) The fractional height of a lattice point in the cone above such a face is an
integer if and only if the weight c_{i} associated with that node is 1 (see Conway \& Sloane 1993, p. 483 and figure 23.1; Coxeter 1971, p. 194).
(iii) Λ is well-placed if and only if the vertices on any face of the contact polytope span Λ.

The explanation for (ii) is that the c_{i} give the index of the sublattice spanned by the vertices of the corresponding face.

We suspect that (iii) may hold for all lattices, but do not have a proof.

The d-dimensional sodalite net

O'Keeffe (1991) defines the d-dimensional sodalite net to consist of the holes in the A_{d}^{*} lattice, with each point joined to its $d+1$ nearest neighbours. The case $d=2$ gives the familiar 6^{3} hexagonal net. From the coordination sequences of these nets for $d \leqslant 6$ given in O'Keeffe (1991), Grosse-Kunstleve (1996) observed that the coordinator polynomial appears to be $1+x+x^{2}+\cdots+x^{d}$. If this is true in general it implies

$$
\begin{align*}
& S(n)=\binom{n+d}{d}-\binom{n-1}{d}, \tag{3.43}\\
& G(n)=\binom{n+d+1}{d+1}-\binom{n}{d+1} . \tag{3.44}
\end{align*}
$$

The expression on the right-hand side of (3.44) is the number of points in a d dimensional centred simplex. It should therefore be possible to establish the validity of (3.43) and (3.44) by finding a bijection between the crystal balls in d-dimensional sodalite and the points of a d-dimensional centred simplex. This is easy to do for $d=2$ but, for higher d, the expressions (3.43) and (3.44) are at present only conjectures. (Theorems 2.4 and 2.9 do not apply.)

4. The Barlow packings

Let L denote any three-dimensional packing formed by stacking layers of the hexagonal lattice A_{2}. As in Conway \& Sloane (1995b), we shall refer to these as the Barlow packings. Let $S(N), G(n)$ denote the nth terms in the coordination and crystal ball sequences with respect to an arbitrary point in any such L.

Theorem 4.1. For any Barlow packing L,

$$
\begin{gather*}
10 n^{2}+2 \leqslant S(n) \leqslant\left\lfloor 21 n^{2} / 2\right\rfloor+2 \quad(n>0), \tag{4.1}\\
\frac{5}{6} \Delta_{4}(n)+\frac{1}{6} \Delta_{2}(n) \leqslant G(n) \leqslant \frac{7}{8} \Delta_{4}(n)+(-1)^{n} \frac{1}{8} \quad(n \geqslant 0) . \tag{4.2}
\end{gather*}
$$

For any $n>1$, the only Barlow packing that achieves either the left-hand value or the right-hand value for all choices of central sphere is the face-centred cubic lattice or hexagonal close-packing, respectively.

Remark 4.2. This interesting result was conjectured by O'Keeffe (1995); it had, in fact, already been established (Conway \& Sloane 1993, unpublished notes). The assertion on p. 801 of Hsiang (1993) that any Barlow packing has $G(2)=57$ is plainly incorrect: as shown in Conway \& Sloane (1995b), there are Barlow packings with $G(2)=55,56$ and 57 .

Proc. R. Soc. Lond. A (1997)

Proof. Let $H(a, b)$ denote a hexagonal arrangement of points in which the edges of the hexagon contain, respectively, $a+1, b+1, a+1, b+1, a+1, b+1$ points. For example, $H(3,2)$ is

The number of points in $H(a, b)$ is $P(a, b)=T_{a+b+1}+a b$, where $T_{n}=n(n+1) / 2$ is a triangular number, and its perimeter is $3(a+b)$. The nth crystal ball with respect to an arbitrary point of L consists of a stack of $2 n+1$ hexagons $\left\{H\left(a_{i}, b_{i}\right):-n \leqslant i \leqslant n\right\}$, for some choice of integers $a_{-n}<a_{-n+1}<\cdots<a_{n}, b_{-n}<b_{-n+1}<\cdots<b_{n}$. Furthermore, $a_{0}=b_{0}=n, a_{1}+b_{1}=a_{-1}+b_{-1}=2 n-1, \ldots, a_{n}+b_{n}=a_{-n}+b_{-n}=n$. At each stage, as we proceed from $H\left(a_{i}, b_{i}\right)$ to $H\left(a_{i+1}, b_{i+1}\right)$, for $0 \leqslant i<n$, just one of a_{i} and b_{i} drops by 1 ; a similar assertion holds for negative values of i. The crystal ball for the FCC is obtained if we always reduce b (say), and that for the h.c.p. if we alternately reduce a and b. In any case, we have

$$
\begin{align*}
S(n)= & P\left(a_{-n}, b_{-n}\right)+3\left(a_{n+1}+b_{-n+1}\right)+\cdots+3\left(a_{0}+b_{0}\right)+\cdots \\
& \quad+3\left(a_{n-1}+b_{n-1}\right)+P\left(a_{n}, b_{n}\right) \\
= & 2 T_{n+1}+6 n+2 \sum_{i=1}^{n-1} 3(2 n-i)+a_{-n} b_{-n}+a_{n} b_{n} \\
= & S^{\mathrm{fcc}}(n)+a_{-n} b_{-n}+a_{n} b_{n} \tag{4.3}
\end{align*}
$$

and, similarly,

$$
\begin{equation*}
G(n)=G^{\mathrm{fcc}}(n)+\sum_{i=-n}^{n} a_{i} b_{i} \tag{4.4}
\end{equation*}
$$

The assertions of the theorem follow from (4.3), (4.4) after some elementary algebra which we omit.

5. Concluding remarks

Several open questions remain. Is there a well-placed lattice that is not wellcoordinated? (See remark following theorem 2.6.) Can the reader find a general proof of the formulae for the coordination sequences of A_{d}^{*} (equation (3.17)), D_{d} (equation (3.21)) and the sodalite net (equation (3.43))?

The Voronoi graphs (defined at the beginning of $\S 1$) should also be investigated. It follows from the work of Rajan \& Shende (Rajan \& Shende 1997; Conway \& Sloane 1993, p. xxviii) that, except for root lattices, the Voronoi graph always properly contains the contact graph. What are the analogues of the coordination sequences for the Voronoi graphs of $A_{d}^{*}, D_{d}^{*}, E_{6}^{*}, E_{7}^{*}$, for example?
We thank W. A. Schneeberger and H. Wilf for helpful conversations and C. L. Mallows for proving equation (3.8) and for discovering equation (3.20).

Proc. R. Soc. Lond. A (1997)

References

Abramowitz, M. \& Stegun, I. A. 1964 Handbook of mathematical functions. Washington, DC: National Bureau of Standards.
Brunner, G. O. \& Laves, F. 1971 Zum problem der koordinationszahl. Wiss. Z. Techn. Univ. Dresden 20, 387-390.
Comtet, L. 1974 Advanced combinatorics. Dordrecht: Reidel.
Conway, J. H. \& Sloane, N. J. A. 1991 The cell structures of certain lattices. In Miscellanea mathematica (ed. P. Hilton, F. Hirzeburch \& R. Remmert), pp. 71-107. Berlin: Springer.
Conway, J. H. \& Sloane, N. J. A. 1992 Low-dimensional lattices VI: Voronoi reduction of threedimensional lattices. Proc. R. Soc. Lond. A 436, 55-68.
Conway, J. H. \& Sloane, N. J. A. 1993 Sphere packings, lattices and groups, 2nd edn. Berlin: Springer.
Conway, J. H. \& Sloane, N. J. A. 1995a A lattice without a basis of minimal vectors. Mathematika 42, 175-177.
Conway, J. H. \& Sloane, N. J. A. $1995 b$ What are all the best sphere packings in low dimensions? Discrete Comput. Geom. (László Fejes Tóth Festschrift) 13, 383-403.
Coxeter, H. S. M. 1971 Regular polytopes, 3rd edn. New York: Dover.
Ehrhart, E. 1960 Sur les polyèdres rationnels et les systèmes diophantiens linéaires. Comptes Rendus Acad. Sci. Paris 250, 959-961.
Ehrhart, E. 1967 Démonstration de la loi réciprocité du polyèdre rationnel. Comptes Rendus Acad. Sci. Paris A 265, 91-94.
Ehrhart, E. 1973 Une extension de la loi de réciprocité res polyèdres rationnels. Comptes Rendus Acad. Sci. Paris A 277, 575-577.
Ehrhart, E. 1977 Polyômes arithmétiques et méthode des polyèdres en combinatoire, Internat. Series Numer. Math., vol. 35. Basel: Birkhäuser.
Graham, R. L., Knuth, D. E. \& Patashnik, O. 1990 Concrete mathematics. Reading, MA: Addison-Wesley.
Grosse-Kunstleve, R. W., Brunner, G. O. \& Sloane, N. J. A. 1996 Algebraic description of coordination sequences and exact topological densities for zeolites. Acta Cryst. A 52, 879-889.
Hsiang, W.-Y. 1993 On the sphere packing problem and the proof of Kepler's conjecture. Int. J. Math. 4, 739-831.

O'Keeffe, M. N-dimensional diamond, sodalite and rare sphere packings. Acta Cryst. A 47, 748-753.
O'Keeffe, M. 1995 Coordination sequences for lattices. Zeit. f. Krist. 210, 905-908.
Pólya, G. \& Szegö, G. 1976 Problems and theorems in analysis, vol. 2. Berlin: Springer.
Rajan, D. S. \& Shende, A. M. 1997 Minimally and efficiently generated lattices are root lattices. SIAM J. Discrete Math. (In the press.)
Riordan, J. 1958 An introduction to combinatorial analysis. New York: Wiley.
Sloane, N. J. A. 1987 Theta-series and magic numbers for diamond and certain ionic crystal structures. J. Math. Phys. 28, 1653-1657.
Sloane, N. J. A. 1994 An on-line version of the Encyclopedia of Integer Sequences. Electronic J. Combinatorics 1.
Sloane, N. J. A. \& Plouffe, S. 1995 The encyclopedia of integer sequences. New York: Academic.
Sloane, N. J. A. \& Teo, B. K. 1985 Theta series and magic numbers for close-packed spherical clusters. J. Chem. Phys. 83, 6520-6534.
Stanley, R. P. 1980 Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333342.

Stanley, R. P. 1986 Enumerative combinatorics, vol. 1. Monterey, CA: Wadsworth.
Stoer, J. \& Witzgall, C. 1970 Convexity and optimization in finite dimensions, vol. I. Berlin: Springer.
Wells, A. F. 1977 Three-dimensional nets and polyhedra. New York: Wiley.
Received 10 April 1996; accepted 22 July 1996
Proc. R. Soc. Lond. A (1997)

[^0]: \dagger We remark in passing that most of the sequences mentioned in the paper have been added to the electronically accessible version of this table (Sloane 1994).
 \ddagger We are grateful to Colin Mallows for this formula.

