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1. INTRODUCTION

The main purpose of this article is to update the tables and the list of constructions for
(t, m, s)-nets and (t, s)-sequences given in Mullen, Mahalanabis, and Niederreiter [35]. To
this end, we begin by giving definitions for the fundamental concepts of (t, m, s)-nets and
(t, s)-sequences in base b as first discussed by Niederreiter in [38].
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Let s ≥ 1 be a fixed integer. For an integer b ≥ 2, an elementary interval in base b is an
interval of the form

E =
s∏

i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and integers 0 ≤ ai < bdi for 1 ≤ i ≤ s. For integers 0 ≤ t ≤ m,
a (t, m, s)-net in base b is a point set of bm points in [0, 1)s such that every elementary
interval E in base b of volume bt−m contains exactly bt points of the point set. For an
integer t ≥ 0, a sequence x1, x2, · · · of points in [0, 1)s is called a (t, s)-sequence in base
b if for all integers k ≥ 0 and m > t, the point set {xn : kbm < n ≤ (k + 1)bm} is
a (t, m, s)-net in base b. We refer to [38] for a systematic development of the theory and
various constructions of such nets and sequences and to [38, 39] for applications of nets
and sequences to various areas of numerical analysis.

There has been considerable progress both in finding constructions as well as in obtaining
bounds on the parameters of (t, m, s)-nets, and so the tables presented here should be of
value to researchers and to those who use nets. We also note that in recent years, considerable
emphasis has been placed by a number of researchers on the subclass of (t, m, s)-nets known
as digital (t, m, s)-nets in base b; see for example [11, 19, 22, 51, 53].

2. NEW (t, m, s)-NET CONSTRUCTIONS

In this section we briefly describe the new constructions for (t, m, s)-nets which have arisen
since the publication of [35]. We continue with the numbering which in [35] ended with
Construction 16.

Construction 17. In [31] the authors show that given a linear [n, l, d] code over the finite
field Fq (q a prime power) with d ≥ 3, one can construct a digital (n − l − d + 1, n − l, s)
-net in base q where s = bn−1

h c if d = 2h + 2; and s = bn
hc if d = 2h + 1. The existing

tables of codes [6] were then electronically scanned and the results are tabulated for bases
q = 2, 3 in [31].

Construction 18. This is, in fact, a whole family of constructions due to Niederreiter and
Xing that are based on algebraic curves over finite fields or, equivalently, on algebraic
function fields over finite fields. These constructions yield (t, s)-sequences in base b, and
nets are obtained by applying the standard principle that the existence of a (t, s)-sequence
in base b implies the existence of a (t, m, s + 1)-net in base b for all integers m ≥ t. We
refer to Section 3 for further information on the construction of (t, s)-sequences by these
methods.

Construction 19. A short article by Clayman and Mullen [8] gives a computer imple-
mentation of the Gilbert–Varshamov bound from coding theory which provides a sufficient
condition for the existence of a linear code with a given set of parameters. Schmid [51, p.
33] provides an analogous sufficient condition for the existence of a digital net. Most of the
improvements arising from [8] are for base 5.

Construction 20. Schmid and Wolf in [53] provide a series of bounds for both digital
(t, m, s)-nets and digital (t, s)-sequences. In addition they obtain a few improvements in
bases 2 and 3 to the tables in [35].
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Construction 21. In [52] Schmid provides a new method for the construction of digital
nets in base 2 which he calls the shift-net method.

Construction 22. The main focus of Lawrence [27] is a combinatorial equivalence be-
tween the existence of a (t, m, s)-net in base b and the existence of what he calls a generalized
orthogonal array (GOA), which may be thought of as a three-dimensional orthogonal array
in which only certain collections of rows are required to have the orthogonal array property.
In addition to this important equivalence, he also provides a new method for constructing
GOAs and hence nets which uses orthogonal arrays (see Section 4 for the definition of
an orthogonal array). In [28], Lawrence exploits the links between orthogonal arrays, fi-
nite projective geometry and both linear and nonlinear error-correcting codes to construct
GOAs via the aforementioned construction method from [27]. With this approach he is able
to obtain a number of improvements in net parameters.

Construction 23. In [1] Adams and Shader use arrays, called M arrays, of elements of
the finite field Fq in which certain collections of rows are linearly independent, along with
linear codes to give a new construction of generalized orthogonal arrays. The authors then
apply the combinatorial equivalence of Lawrence and obtain new classes of (t, m, s)-nets
in base q, where q is a prime power.

Construction 24. Edel in [10] uses ordered orthogonal arrays (which are analogous to
generalized orthogonal arrays) and linear codes over finite fields to construct several classes
of nets in base q where q is any prime power. A number of specific examples are constructed
in bases q = 2, 3, 4, with some being obtained by machine calculation.

Construction 25. In [11] Edel and Bierbrauer provide three families of digital nets in base
b = 2 and one family in base b = 3. The constructions are combinatorial in nature and are
obtained by using ordered orthogonal arrays and BCH codes.

Construction 26. In [45] Niederreiter and Xing provide a new propagation rule for nets.
In particular, if b ≥ 2, h ≥ 1, s ≥ 1, and 0 ≤ u ≤ m are integers, then every (u, m, s)-net
in base bh is a (t, hm, s)-net in base b with t = min(hu + (h − 1)(s − 1), hm).

3. NEW (t, s)-SEQUENCE CONSTRUCTIONS

A family of new methods for the construction of (t, s)-sequences was introduced by Nieder-
reiter and Xing in 1995 and 1996. The basic idea of these methods, namely the use of
algebraic curves over finite fields or, equivalently, of algebraic function fields over fi-
nite fields, was already sketched earlier in Niederreiter [40, 41]. Altogether, the family
of these new methods consists of four different construction principles. In all cases, we
first obtain digital (t, s)-sequences in a prime-power base q, and then by the usual direct-
product construction in the digital method we get digital (t, s)-sequences in an arbitrary
base b.

The first construction principle was introduced in Niederreiter and Xing [44]. It extends
the method of Niederreiter listed as Construction 9 in [35] from the rational function field
to general algebraic function fields over a finite field Fq. For certain choices of the alge-
braic function field this yields better sequence parameters than Construction 9. Dramatic
improvements were obtained by the second construction principle described in Niederreiter
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and Xing [45]. Here the heart of the matter is to work with algebraic curves over Fq with
many Fq-rational points or, equivalently, with global function fields with many places of
degree 1. The third construction principle developed in Xing and Niederreiter [59] offers
more freedom of choice since it works well for global function fields containing many
places of small degree (not necessarily degree 1), and in some cases it can produce even
better sequence parameters than the second construction principle. The fourth construction
principle presented in Niederreiter and Xing [46] is relatively easy to apply and yields com-
petitive values of t at least for small dimensions s. A detailed survey of these construction
principles and tables of sequence parameters can be found in [47].

4. BOUNDS FOR THE EXISTENCE OF (t, m, s)-NETS

Let b ≥ 2 and t ≥ 0 be integers. As noted by Niederreiter in [38], for m = t and m = t+1
a (t, m, s)-net in base b always exists for each s ≥ 1. Mullen and Whittle [37] showed that
for m ≥ t + 2 a (t, m, s)-net in base b can exist only if

s ≤ bt+2 − 1
b − 1

. (1)

The values of this upper bound for s (and the corresponding lower bound for t, when m, s
and b are prescribed) were tabulated in [35].

A substantial improvement to this bound was obtained by Lawrence as a consequence
of the combinatorial equivalence between the existence of a (t, m, s)-net in base b and
a corresponding generalized orthogonal array. Before discussing this new bound, we re-
call the basic notion of an orthogonal array, which is due to Rao [49] (see [15] for more
details).

Let k, N , d be positive integers with k ≥ d and let b ≥ 2 be an integer. A k × N matrix
A with entries from a set of b elements is called an orthogonal array (N, k, b, d) with N
columns, k rows, b levels, strength d and index λ if any d × N submatrix of A contains all
possible d× 1 columns with the same frequency λ = N/bd. We define f(N, b, d) to be the
maximum value of k for which an orthogonal array (N, k, b, d) exists.

We note that the transposed array is sometimes used, as for example in [15]. We now
state the orthogonal array bound for nets, due to Lawrence [27, Thm. 6.1; 29].

Theorem. Let s ≥ 1, b ≥ 2, t ≥ 0 and m be integers with m ≥ t+2. Then a (t, m, s)-net
in base b can exist only if

s ≤ min
t+2≤h≤m

f(bh, b, h − t).

We note that since f(bt+2, b, 2) ≤ (bt+2 − 1)/(b − 1), this bound generalizes the
preceding bound (1) of Mullen and Whittle and can represent a significant improvement
whenm ≥ t+3, particularly when t is large. For example, it is known thatf(248, 2, 26) = 52
and it follows that for m ≥ 48, a (22, m, s)-net in base 2 can exist only if s ≤ 52; the
corresponding bound from (1) is 224 − 1.

The difficulty with calculating numerical values of this orthogonal array bound for nets
is that exact values of the quantities f(bh, b, h − t) are not known in all cases. How-
ever, very good upper bounds for these quantities are available in many cases, as we now
explain.
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A general upper bound on k, the number of rows in an orthogonal array (N, k, b, d), was
obtained by Rao [49] and expressed in the form of certain inequalities which the parameters
of any orthogonal array must satisfy, see [49, 26, 27, 15]. Let R(N, b, d) be the maximum
number of factors or rows, k, such that the existence of an orthogonal array (N, k, b, d) is
not denied by Rao’s inequalities. Then f(N, b, d) ≤ R(N, b, d). Another upper bound on
f(N, b, d) can be obtained from linear programming, following the work of Delsarte [9],
and produces results which are always at least as good as Rao’s bound (see [15]). We write
LP (N, b, d) for the maximum number of rows, k, such that the existence of an orthogonal
array (N, k, b, d) is not denied by the linear programming bound. Then

f(N, b, d) ≤ LP (N, b, d) ≤ R(N, b, d).

The linear programming bound actually gives a lower bound on the number of columns, N ,
in an orthogonal array (N, k, b, d) for fixed values of k, b, and d, from which corresponding
upper bounds on the number of rows can be inferred. Thus for example, by solving an
appropriate linear programming problem we find that in an orthogonal array (N, 30, 2, 4)
we must have N > 29. It follows that no orthogonal array (29, 30, 2, 4) exists and hence that
LP (29, 2, 4) ≤ 29; in fact equality holds. We note that for certain parameter ranges there
is also an explicit lower bound for N , the dual Plotkin bound, which is due to Bierbrauer
[2]. In the binary case, this explicit bound is equivalent to the LP bound, see [3]. Lawrence
has inverted the dual Plotkin bound and obtained explicit upper bounds for the quantities
f(N, b, d) for the same parameter ranges, see [29].

We computed the upper bounds for s which follow from the orthogonal array bound
for nets and appear in the s tables for bases b = 2, 3, 5 by using the following proce-
dure. First, we easily computed the values of R(bh, b, h − t) for all necessary values of
the parameters (up to h = 50) for b = 2, 3, 5. Next, we calculated the upper bounds
for f(bh, b, h − t) where possible, from the explicit bounds due to Lawrence. The lin-
ear programming bounds for certain parameter values were then obtained using Delsarte’s
method, which was implemented in two ways. If the number of rows did not exceed about
40, satisfactory results were obtained very easily using the AMPL mathematical program-
ming language [14] in combination with the CPLEX optimization system [4]. However, for
larger numbers of rows (up to 100) this procedure did not yield results that were accurate
to the nearest integer, and we instead used the simplex algorithm that is implemented in
the MAPLE programming language [7]. This was very much slower, but did produce ex-
act answers in these parameter situations, that is, for orthogonal arrays with 100 or fewer
rows. Consequently, values for LP (bh, b, h − t) could only be inferred when these values
did not exceed 99. The best available upper bound for each term f(bh, b, h − t) was then
used in the computation of the orthogonal array bound for nets, and the resulting upper
bound for s was entered into the appropriate cell in the corresponding s table in base b
(see Section 6 for an explanation of the entries in the tables). We note that for b = 2, we
determined all values of LP (bh, b, h − t) ≤ 99 (for all possible choices of h ≤ 50 and t)
which could affect any entry in the binary table of upper bounds for s; in fact all entries
affected satisfy t ≤ 27. However, in the case b = 3 the values of LP (bh, b, h − t) not
exceeding 99 were determined only for t ≤ 10, and for b = 5 these were computed only for
t ≤ 5.

It is a consequence of the foregoing that for b = 2, 3, 5 many of the upper bounds for s
which appear in these tables for m ≥ t + 4 and which exceed 99 might perhaps be reduced
with knowledge of the linear programming bound for certain orthogonal arrays (with more
than 100 rows). Furthermore, some additional upper bounds for s with t ≥ 11 in case b = 3
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and t ≥ 6 in case b = 5 might also be reduced in a similar manner. However, we observe
that the equality

f(bh, b, h − t) = LP (bh, b, h − t)

is known to hold in many cases, and so further improvement in many of the upper bounds on
s which do not exceed 99 will not be possible solely by using the orthogonal array bound.
We refer the reader to [26, 29] for further discussion of these issues.

It is of special interest to note that the orthogonal array bound for nets cannot always be
attained and so is not best possible, in general. In particular, it follows from this bound that
a (1, 5, s)-net in base 2 can exist only if s ≤ 6. However, Lawrence [30] used properties of
orthogonal arrays and generalized orthogonal arrays, together with further combinatorial
arguments to show that there is no (1, 5, 6)-net in base 2. It follows that if m ≥ 5, a
(1, m, s)-net in base 2 can exist only if s ≤ 5; this upper bound is reflected in the t = 1
row of the s table base 2.

Following Lawrence [26, 29], we next observe that these necessary conditions for the
existence of a (t, m, s)-net in base b which have been conveniently expressed and discussed
above in terms of upper bounds on s, may be equivalently expressed in the form of lower
bounds on t, as we now explain. In general, each s bound implies the nonexistence of a
specific net, which in turn implies a corresponding t bound (and conversely).

More specifically, let t′, m be fixed integers with m ≥ t′+2 and suppose that a (t′, m, s)-
net in base b can possibly exist only if s ≤ s′. Then no (t′, m, s′+1)-net exists and it follows
that a (t, m, s′ +1)-net can possibly exist only if t ≥ t′ +1. For example, from the s table in
base 2 we see that a binary (5, 13, s)-net can possibly exist only if s ≤ 15. Then no binary
(5, 13, 16)-net exists. We conclude that a binary (t, 13, 16)-net can possibly exist only if
t ≥ 6, as is reflected in the corresponding cell of the t table base 2. In this way, the bounds
in the t tables were derived from the bounds in the s tables.

Furthermore, these bounds for the existence of (t, m, s)-nets also immediately imply
corresponding bounds for the existence of (t, s)-sequences, in light of the standard result
that the existence of a (t, s)-sequence in base b implies the existence of a (t, m, s + 1)-net
in base b for all integers m ≥ t. For example, the nonexistence of a (1, 5, 6)-net in base 2
implies the nonexistence of a (1, 5)-sequence in base 2.

We conclude this section by observing that if one considers the subclass of digital
(t, m, s)-nets in base b, necessary conditions for existence which are more restrictive than
the orthogonal array bound have been obtained in certain instances. We refer to Schmid and
Wolf [53] for a series of examples of necessary conditions, some of which are optimal, for
the existence of certain digital nets.

5. RELATED RESULTS

Since the writing of [35] there has been a lot of other work related to (t, m, s)-nets and
(t, s)-sequences. For the sake of completeness we include a brief discussion of this work.

An important aspect is the combinatorial theory of (t, m, s)-nets which leads not only to
some of the constructions listed in Section 2, but also to the bounds for the existence of nets
which were discussed in the previous section. The crucial concepts in this combinatorial
theory are orthogonal arrays, generalized orthogonal arrays and orthogonal hypercubes, and
(as indicated in Section 2) certain types of these combinatorial objects turn out to be equiv-
alent to (t, m, s)-nets. We refer to the work of Lawrence [26, 27, 29], Lawrence and Mullen
[32], Mullen and Schmid [36], and Schmid [51]. A survey of combinatorial constructions of
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(t, m, s)-nets using mutually orthogonal latin squares and mutually orthogonal hypercubes
is given in Mullen [34]. A lower bound on the parameter t in (t, s)-sequences was derived
in Niederreiter and Xing [46] from a combinatorial result of Lawrence [26].

The article of Larcher, Lauss, Niederreiter, and Schmid [20] contains existence results for
(t, m, s)-nets and tables of net parameters obtained from Construction 13 in [35]. An official
ACM software package implementing the (t, s)-sequences of Niederreiter (see Construction
9 in [35]) was announced in Bratley, Fox, and Niederreiter [5]. Another construction of (t, s)-
sequences yielding the same parameters as that of Niederreiter was discussed in Tezuka [54,
Chapter 6] and Tezuka and Tokuyama [55]. An investigation of general digital constructions
of (t, m, s)-nets and (t, s)-sequences with the use of finite rings was carried out in Larcher,
Niederreiter, and Schmid [22].

A generalization of the concept of a (t, s)-sequence was introduced and analyzed in
Larcher and Niederreiter [21]. This article contains also a study of Kronecker-type se-
quences, that is, of nonarchimedean analogs of classical Kronecker sequences. Further
work on Kronecker-type sequences and their connections with generalized (t, s)-sequences
was carried out by Larcher [17] and Niederreiter [42].

A new way of obtaining upper bounds for the star discrepancy of digital (t, m, s)-nets
was developed by Larcher [19], and this method was applied in Larcher [18] to obtain
probabilistic results on the star discrepancy of sequences constructed by the digital method.
Faure and Chaix [13] proved a lower bound of the best possible order of magnitude for the
star discrepancy of a special (0,2)-sequence in base 2. Rote and Tichy [50] gave bounds for
the dispersion of (t, m, s)-nets. The volume discrepancy of (0, s)-sequences was studied by
Xiao [56] and Xiao and Faure [58]. The article of Xiao [57] is devoted to geometric properties
of (0, m, 2)-nets. Further investigations of randomized (t, m, s)-nets were carried out by
Hickernell [16] and Owen [48].

Earlier in this decade it was realized that (t, m, s)-nets provide very effective node sets
for the numerical integration of multivariate Walsh series by quasi-Monte Carlo methods
(see [35] for references). This line of research was continued by Larcher, Niederreiter, and
Schmid [22], Larcher and Schmid [23], Larcher, Schmid, and Wolf [24], and Larcher and
Wolf [25]. Related applications to the numerical integration of multivariate Haar series
were studied by Entacher [12]. Error bounds for the calculation of volumes of Jordan-
measurable sets by quasi-Monte Carlo methods with (t, m, s)-nets were given by Lécot
[33]. Applications of the theory of (t, m, s)-nets to the analysis of pseudorandom numbers
can be found in Larcher [19] and Niederreiter [43].

6. TABLES

For base b = 2 we provide updated versions of the t and s tables from [35]. For bases b = 3
and b = 5, we not only provide an updated version of the corresponding t table from [35],
but we also provide s tables for these bases. We provide these new s tables not given in [35]
since for many if not most combinatorial constructions, the s parameter is very important.
In an effort to keep the tables to a manageable length, we have however not included any
tables in base b = 10 since in this base there have been few if any new results other than
those which arise by use of a product construction from bases 2 and 5.

In an effort to reduce the length of this article, we have only provided here, for the base
b = 2, a t table for the range 1 ≤ m, s ≤ 18 and we have included an s table only for
the range 0 ≤ t ≤ 18 and 1 ≤ m ≤ 18. These rather small tables are included here for
purposes of illustration only.
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T Table Base 2
m/s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 6 6 6 11 2 12 5 5 5 5 5 5 5 5 5 5 5

4 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3
0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3
2 6 6 6 13 13 17 2 2 2 2 2 2 2 12 5 5 5

5 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3
0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3
2 6 6 6 18 16 13 13 13 13 17 17 17 17 17 2 2 2

6 0 0 0 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3
0 0 0 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3
2 6 6 6 18 13 20 20 16 16 17 17 17 17 17 17 17 17

7 0 0 0 1 1 2 2 2 3 3 3 3 3 3 3 4 4 4
0 0 0 1 1 2 2 3 3 3 3 4 4 4 4 4 4 4
2 6 6 6 18 13 21 13 20 20 20 13 17 17 17 17 17 17

8 0 0 0 1 1 2 2 2 3 3 3 3 3 3 3 4 4 4
0 0 0 1 1 2 3 3 3 3 4 4 4 4 4 4 4 5
2 6 6 6 18 18 18 21 3 24 13 20 20 20 2 2 24 17

9 0 0 0 1 1 2 2 2 3 3 3 4 4 4 4 4 4 4
0 0 0 1 1 2 3 3 3 4 4 4 4 4 5 5 5 5
2 6 6 6 18 18 18 2 21 3 3 2 2 24 20 20 20 20

10 0 0 0 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5
0 0 0 1 1 2 3 4 4 4 4 5 5 5 5 5 5 5
2 6 6 6 18 18 18 18 16 21 3 3 16 16 2 2 2 24

11 0 0 0 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5
0 0 0 1 1 2 3 4 4 4 4 5 5 5 6 6 6 6
2 6 6 6 18 18 18 18 2 2 21 3 2 24 17 17 16 16

12 0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5 5
0 0 0 1 1 2 3 4 4 5 5 5 5 6 6 6 6 7
2 6 6 6 18 18 18 18 24 16 16 21 24 3 2 2 24 17

13 0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 6 6 6
0 0 0 1 1 2 3 4 5 5 5 6 6 6 6 6 7 7
2 6 6 6 18 18 18 18 18 2 24 16 21 3 2 24 16 2

14 0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 6 6 6
0 0 0 1 1 2 3 4 5 5 6 6 6 6 7 7 7 7
2 6 6 6 18 18 18 18 18 24 2 2 2 21 3 16 2 2

15 0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 6 6 6
0 0 0 1 1 2 3 4 5 6 6 6 7 7 7 7 8 8
2 6 6 6 18 18 18 18 18 18 2 24 16 16 21 24 3 16

16 0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 6 6 6
0 0 0 1 1 2 3 4 5 6 6 7 7 7 8 8 8 9
2 6 6 6 18 18 18 18 18 18 24 16 2 24 16 21 3 3

17 0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 6 6 6
0 0 0 1 1 2 3 4 5 6 7 8 8 8 8 8 8 9
2 6 6 6 18 18 18 18 18 18 16 2 2 2 2 2 21 3

18 0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 6 6 6
0 0 0 1 1 2 3 4 5 6 8 9 9 9 9 9 9 9
2 6 6 6 18 18 18 18 18 18 18 15 16 16 16 16 16 21
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S Table Base 2
t/m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 999 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
999 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1 999 999 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5

999 999 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5
4 5 12 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18

2 999 999 15 15 8 7 6 6 6 6 6 6 6 6 6 6 6
999 999 15 15 8 8 8 8 8 8 8 8 8 8 8 8 8

4 5 12 17 20 21 18 18 18 18 18 18 18 18 18 18 18
3 999 999 31 31 11 10 9 7 7 7 7 7 7 7 7 7

999 999 31 31 15 15 11 11 11 11 11 11 11 11 11 11
4 5 12 17 20 24 21 18 18 18 18 18 18 18 18 18

4 999 999 63 63 17 14 11 11 9 8 8 8 8 8 8
999 999 63 63 20 20 15 15 14 14 14 14 14 14 14

4 5 12 17 24 24 3 21 24 18 18 18 18 18 18
5 999 999 127 127 23 18 14 13 11 10 9 9 9 9

999 999 127 127 29 29 23 23 15 15 15 15 15 15
4 5 12 17 24 24 24 24 24 24 18 18 18 18

6 999 999 255 255 32 24 17 16 14 12 11 10 10
999 999 255 255 42 42 26 26 20 20 18 18 18

4 5 12 17 24 24 24 24 21 24 24 18 18
7 999 999 511 511 47 36 22 20 16 14 11 10

999 999 511 511 63 63 34 34 25 25 20 20
4 5 12 17 24 24 24 24 24 24 16 16

8 999 999 998 998 65 45 26 22 17 17 11
999 999 998 998 89 89 44 44 33 33 24

4 5 12 17 25 24 24 24 3 21 18
9 999 999 998 998 65 45 32 24 18 18

999 999 998 998 127 127 56 56 40 40
4 5 12 17 23 16 24 24 3 21

10 999 999 998 998 128 64 32 24 20
999 999 998 998 180 180 71 71 48

4 5 12 17 24 17 16 16 3
11 999 999 998 998 129 127 32 24

999 999 998 998 255 255 91 91
4 5 12 17 25 22 16 16

12 999 999 998 998 257 131 32
999 999 998 998 361 361 116
4 5 12 17 25 22 16

13 999 999 998 998 257 139
999 999 998 998 511 511
4 5 12 17 25 22

14 999 999 998 998 510
999 999 998 998 723

4 5 12 17 25
15 999 999 998 998

999 999 998 998
4 5 12 17

16 999 999 998
999 999 998

4 5 12
17 999 999

999 999
4 5

18 999
999

4
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The full tables for each of the bases 2, 3, and 5 for both t and s can be found on the Jour-
nal of Combinatorial Designs web page located at http://www.emba.uvm.edu/∼colbourn/
jcd/T-table-base2.html. In particular the t table for each base covers the range 1 ≤ m, s
≤ 50 while the s tables cover the range 0 ≤ t ≤ 50 and 1 ≤ m ≤ 50. In addition to saving
journal space, by putting the tables on the Journal of Combinatorial Designs web page, we
hope to be able to regularly update the tables as new results are obtained.

As in [35], in the t table base 2, at the intersection of row m and column s, we list
three numbers. The top number is a lower bound for the smallest value of t for which a
(t, m, s)-net in base 2 can possibly exist (see Section 4 for a discussion of these bounds).
The middle value is the smallest value of t which arises from any known construction and
the bottom value is a tag to that construction (see Section 2 for a discussion of the known
constructions). Similar statements hold for the t tables in bases 3 and 5.

In the s table base 2, at the intersection of row t and column m we also provide three
numbers. The top number is the largest value of s for which it is known how to construct a
(t, m, s)-net in base 2, while the bottom number is a tag to that construction (see Section
2). The middle number is an upper bound for the largest value of s for which a (t, m, s)-net
in base 2 can possibly exist (see Section 4). As in [35], due to space limitations we have
restricted the range of values to at most three digits. As a result we have used 999 to represent
the fact that the value of s is arbitrarily large; for example as in the cases of (t, t, s) and
(t, t + 1, s)-nets in base b. If s ≥ 998, but is bounded, we denote this by 998. This occurs
for example in the case of an (8, 10, s)-net in base 2 where s = 210 − 1, which of course
exceeds 998. Similar statements hold for the s tables in bases 3 and 5.
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