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Abstract—The problem of designing a multiple-description
vector quantizer with lattice codebook� is considered. A general
solution is given to a labeling problem which plays a crucial role
in the design of such quantizers. Numerical performance results
are obtained for quantizers based on the lattices 2 and ,
= 1 2 4 8 that make use of this labeling algorithm.
The high-rate squared-error distortions for this family of -di-

mensional vector quantizers are then analyzed for a memoryless
source with probability density function (pdf) and differential
entropy ( ) . For any (0 1) and rate pair ( ), it
is shown that the two-channel distortion 0 and the channel 1 (or
channel 2) distortion satisfy

lim 02
2 (1+ ) = 1

4
(�)22 ( )

and

lim 22 (1 ) = ( )22 ( )

where (�) is the normalized second moment of a Voronoi cell
of the lattice� and ( ) is the normalized second moment of a
sphere in dimensions.

Index Terms—Cubic lattice, hexagonal lattice, lattice quanti-
zation, multiple descriptions, quantization, source coding, vector
quantization.

I. INTRODUCTION

WE consider the problem of designing a multiple-descrip-
tion vector quantizer for a memoryless source with prob-

ability density function (pdf) , differential entropy ,
and the squared-error distortion measure. A multiple-descrip-
tion vector quantizer encodes vectors for transmission over a
two-channel communication system. The objective is to send
information about the source vector over each channel in such
a way that good performance is obtained when both channels
work and the degradation is small when either channel fails. It
is assumed that the encoder has no knowledge about the state of
a channel, i.e., it does not know whether a channel has failed or
is working.

The recent interest in the multiple-description problem is
largely due to the application to image, video, and voice com-
munications over packet networks with nonzero probability of
packet loss. The loss of a packet could be significant if it results
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in a loss of a large block of source samples, such as a large
image block or a large block of speech. One way to improve
performance is to place different encoded versions of a given
block of source samples into several packets in such a way that
if some of these packets are received, a degraded version of the
source block may be recovered. This leads to the formulation
of the multiple-description source coding problem.

For the single-description problem, one of the benefits of
vector quantization over scalar quantization is a reduction in
granular distortion. This is because in higher dimensions it is
possible to construct Voronoi cells that are more “spherical”
than the hypercube. To be more specific, uniform scalar quan-
tization coupled with entropy coding is known to have mean
squared error (mse) at entropy bits per sample satis-
fying [16]

(1)

whereas if an -dimensional lattice is used as a codebook, the
distortion satisfies

(2)

where is the normalized second moment of a Voronoi
cell of the lattice. In dimensions greater than one, lattices exist
for which is strictly smaller than . For example, in
eight dimensions, it is possible to gain 0.66 dB by using the
lattice as compared to uniform scalar quantization [11]. It
is also known through a random quantizing argument [31] that
quantizers exist for which the product approaches

as the rate increases. Furthermore, it follows from
rate distortion theory [5] that no smaller value can be achieved
for the above product in the limit of infinite rate. The maximum
gain possible over entropy-coded scalar quantization is 1.53 dB
and lattices provide a useful method for closing this gap.

From now on we will restrict our attention to the case of
two channels. Consider a multiple-description quantizer which
sends information across each channel at a rate ofbits per
sample. The performance of this system is measured in terms of
three distortions: the two-channel distortion, when both de-
scriptions are available to the decoder; the channel 1 distortion

, when only the first description is available; and the channel
2 distortion , when only the second description is available.
We will further assume that and will refer to
this common value as the side distortion. The objective is to
design vector quantizers that minimize under the constraint

, for a given rate pair and a given bound on
the side-channel distortion.

0018–9448/01$10.00 © 2001 IEEE
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Fig. 1. Limiting two-channel and single-channel distortion ratioslim d (R; L)=d (R; 1) andlim d (R; L)=d (R; 1) as a function of the lattice
dimensionL. The reduction in two-channel distortion is lattice dependent and is determined by the normalized second moment of a Voronoi region of the lattice.
The reduction in single-channel distortion depends only on the dimension of the lattice.

It has been shown [27] that for a uniform entropy-coded mul-
tiple-description quantizer, and any , the distortions
satisfy

(3)

On the other hand, by using a random quantizer argument it was
shown [28] that by encoding vectors of infinite block length, it
is possible to achieve distortions

(4)

Thus, by using multiple-description quantization, it is possible
to simultaneously reduce the two-channel and side-channel
granular distortions by 1.53 dB.

In single-description quantization, an extra transmitted bit
reduces the squared error distortion by a factor of(this is
seen in (1)). However, in multiple-description quantization there
is additional flexibility. If each is increased by 1/2 bit, the
two-channel distortion can be decreased by and the side
distortion by , for any . This means that by
using an extra bit, the distortions and can be made to de-
crease by different amounts as long as theproductdecreases by
a factor of .

The goal of this paper is to give constructions for closing this
“1.53-dB” gap and to analyze the resulting performance gains.
Our approach is as follows. From classical quantization theory,
we know that the gap between scalar quantization and the rate-

distortion bound may be closed by using vector quantizers with
lattice codebooks. Certainly, by following this approach we can
also close the gap between the two-channel distortion and the
rate-distortion bound. In particular, this will allow us to replace
the factor in the expression for in (3) with , the
normalized second moment of the Voronoi region of a lattice
point. The main question we address here is that of simultane-
ously reducing . How can such a reduction be achieved and
what is the quantity that will replace the factor in the
expression for in (3)? We will show through a constructive
procedure that the distortion can be reduced by solving a spe-
cific labeling problem. To our surprise, the quantity that replaces

is , the normalized second moment of aspherein
dimensions.
Let and denote the two-channel and

single-channel distortions at ratefor an -dimensional quan-
tizer. Fig. 1 summarizes the main results of the paper. In this
figure, we have plotted the limit of the normalized two-channel
and single-channel distortions
and , respectively, for lattices of
various dimensions. It is seen that the limit for the two-channel
distortion is given by the ratio , which depends
on the lattice, whereas for the side distortion the limit is

, which is independent of the lattice.

II. PREVIOUS WORK

An achievable rate region for the multiple-description
problem was first given in [12] and it was shown in [24]
that this region coincides with the rate-distortion region for a
memoryless Gaussian source with a squared-error distortion
measure. The problem of multiple-description quantizer de-
sign, including a formulation and solution of the underlying
labeling problem in one dimension, was presented in [26].
An asymptotic performance analysis of this quantizer was
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Fig. 2. Block diagram for a MDVQ.

presented in [27]. A preliminary version of the work presented
here was first presented in [25].

Lattice quantizers (for the single-description problem) have
been extensively studied. In [31], a random-quantization argu-
ment is used to give upper and lower bounds on the performance
of quantizers for a fixed dimension. Detailed descriptions of the
Voronoi regions of specific lattices are given in [9] and their
second moments are evaluated. Fast quantizing algorithms for
lattice quantizers are given in [10], [1], [14], and [30]. In [15], it
is conjectured that forth-power difference distortion measures,
any optimal quantizer, in any dimension, has Voronoi regions
that are congruent to some polytope.

Approaches to multiple-description coding based on trellis-
coded quantization are presented in [28], [20]; those based on
vector quantization are presented in [13]; and approaches using
forward error correction are presented in [22].

There are also approaches to multiple-description coding
based on subspace methods. One approach is to design a
predictor or a transform so as to achieve a correlation structure
that allows one half of the prediction error samples or transform
coefficients to be predicted from the other half. Examples of
this approach are presented in [19], [23], and [29].

Another approach to multiple-description coding is based on
using overcomplete expansions. Here, the idea is to construct a
redundant signal representation, in a way that allows the signal
to be estimated with a controlled amount of error when the rep-
resentation is incompletely received [3], [7], [17].

III. ORGANIZATION OF THE PAPER

The multiple-description vector quantizer (MDVQ) is de-
scribed, notation is established, certain regularity assumptions
for the labeling function are stated, and preliminary expressions
are derived for rates and distortions in Section IV. A detailed
example with the two-dimensional hexagonal lattice is
presented along with some general theory in Section V. The
necessary theory for general lattices is presented in Section VI.
An asymptotic analysis for a fixed vector dimension is pre-
sented in Section VII. The paper is summarized along with
conclusions and directions for future work in Section VIII.

IV. PRELIMINARIES

A block diagram of an MDVQ with a lattice codebook is
shown in Fig. 2.

A source of information generates a sequence of indepen-
dent and identically distributed random variables with pdf
This source is blocked off into -dimensional vectors

. The -fold pdf is denoted by , where

The vector is quantized to the nearest vectorin a lattice
. We denote the quantizer mapping by . In-

formation about the selected code vectoris then sent across
the two channels, subject to rate constraints imposed by the indi-
vidual channels. This is done through a labeling functionfol-
lowed by entropy coding. The labeling functionmaps
to a pair , where is a sublattice of with
index . The component functions of are denoted by and

, where and . For simplicity, we
assume that is geometrically similar to , i.e., can be ob-
tained by scaling, rotating, and possibly reflecting. Note that
points in the lattice are denoted by, possibly with subscripts,
whereas sublattice points will be denoted byor , possibly
with subscripts.

In Fig. 3, a portion of the hexagonal lattice is illustrated,
along with a geometrically similar sublattice of index. The
lattice points lie at the intersection of the straight lines in the
hexagonal grid (only some of the points are shown). The sub-
lattice points are marked with upper case letters. Observe that
the lattice is 31 times as dense as the sublattice, i.e., there are 31
lattice points for every sublattice point.

At the decoder, if only channel 1 works, the received infor-
mation is used to decode , and if only channel 2 works, the
information received over channel 2 is used to decode. The
mapping is assumed to be one-to-one so that if both channels
work, can be recovered from . (In practice, if only
one channel is working it may be better to decode the received
vector to some function of or rather than to or itself.
If is received but is not, for instance, we would decode
as the center of mass of all points such that the first com-
ponent of is . We will ignore this complication in order
to simplify the analysis.)

Given , , and , there are three distortions and two rates
associated with an MDVQ. For a givenmapped to the triple

by the MDVQ, thetwo-channel distortion is
given by , the channel 1 distortion by , and
the channel 2 distortion by (we assume that the



VAISHAMPAYAN et al.: MULTIPLE-DESCRIPTION VECTOR QUANTIZATION WITH LATTICE CODEBOOKS 1721

Fig. 3. This figure shows a portion of theA lattice (the points on the grid line intersections), part of a geometrically similar sublattice of index31, a discrete
Voronoi set for a sublattice point (the lattice points in the hexagon) and the Voronoi set of a sublattice point (all the points in the hexagon).

inner product of -dimensional vectors
and is given by

and the corresponding norm is , i.e., the
inner product and norm are dimension-normalized). The cor-
responding average distortions are denoted by, , and .
We assume that an entropy coder is used in order to transmit
the labeled vectors at a rate arbitrarily close to the entropy, i.e.,

where , the entropy of the random variabletaking values
in alphabet with probability distribution , is given by

The problem is to design the labeling functionso as to min-
imize subject to , , and , ,
for specified values of the rate and distortion .

The Voronoi (or nearest neighbor) region of a point
is defined to be

(5)

With each sublattice point we associate a discrete
Voronoi set (with elements)

(6)

In (5) and (6), ties (i.e., points for which equality holds in the
defining condition) are broken in some prearranged manner. The
existence of sublattices for which no ties occur is discussed in
[8]. The Voronoi region and the discrete Voronoi region

are both illustrated in Fig. 3.
We regard the label for as a directed edge

of the graph with vertex set . The cor-
responding unordered pair will be
referred to as the undirected edge or undirected label associated
with . The essential difference between a directed edge or
label and the undirected edge is that for the
directed edge there is an implicit association between edge
component and channel ( is sent on channel 1 and is sent
on channel 2) whereas for the undirected edge no association is
implied. Graphically, an edge connecting two sublattice points

and , with an arrow pointing from to , indicates
that is sent on channel 1 and is sent on channel 2, or,
equivalently, the directed edge is . The two directed
versions of an (undirected) edgewill be denoted and .

For a given labeling function, an associated undirected edge
labeling function is defined as follows: if , then

, i.e., maps to its undirected label. Note that
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Fig. 4. Various edge sets are illustrated for a sublattice ofA with N = 31. For clarity, only the sublattice points are shown. The setE is shown on the
left, E on the right. The origin is located at the center of the circle.

if and , then ,
i.e., is not one-to-one. A directed edge is uniquely associated
with a lattice point whereas an undirected edge will in general be
associated with two lattice points, one for each orientation of the
edge. The main reason for introducing is that its construction
logically precedes that of.

Certain sets associated with the two maps will play a cen-
tral role in the development. The first is ,
the set of all labels for points in (the subscript indi-
cates that the edges are directed). The corresponding set of undi-
rected edges is denoted by . More specifically,

. The set of all (directed) labels is denoted by
and the set of all undirected labels by

. It is also useful to define the restriction

The set of undirected edges in will be denoted by
. The sets and are illustrated in Fig. 4.

The reuse indexassociated with a label and channel is
defined to be , the number of lattice
points for which .

In order to render the problem tractable, we assume that the
labeling function has the following properties.

• Property 1: The reuse index , for all
and . In other words, each channellabel is reused
exactly times.

• Property 2: The shift property: ,
for all and .

• Property 3: Each undirected edge ,
, labels two points, and , and .

The first assumption makes it easy to parameterize the tradeoff
between the side and central distortions. The second assumption
reduces the labeling problem to one of labeling a finite set. The
third assumption is a simple way to achieve exact balance be-
tween the two descriptions (its implications will become clearer
in Section V-B3).

It will prove useful to have the following definitions of equiv-
alence.

Definition 1: Two lattice points and are said to be
equivalent if either and or and lie in the same
coset of relative to the sublattice .

Definition 2: Two sublattice edges and are said to be
equivalent if they are parallel and of equal length, or equiva-
lently if for some .

The equivalence class of an object will be indicated by square
brackets. Thus, is the equivalence class ofand is the
equivalence class of, or, equivalently, and

.

A. Distortion Computation

The average two-channel distortion is given by

(7)

Since the codebook of the quantizer is a lattice, all the Voronoi
regions are congruent. Furthermore, upon assuming that each
Voronoi region is small so that for
and upon letting denote the -dimensional volume of a
Voronoi region, we obtain the following expression for the
two-channel distortion [15]:

(8)

which in terms of the normalized second moment , defined
by

(9)

is given by

(10)

We now derive expressions for the average distortionsand
and
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When only description 1 is available, the distortion is given by

(11)

(12)

where , and follows by assuming
that is thecentroidof its Voronoi region. This is true for the
uniform density. For nonuniform densities, there is an error term
which goes to zero with the size of the Voronoi region. The
first term in (12) is the two-channel distortion and the second
term is the excess distortion which is incurred when channel 2
fails. Note that for a given , only the excess distortion term is
affected by the labeling function. From (12), it follows that

(13)

(14)

We also introduce the following notation:

and

and

where

Note that . Hence, when appropriate, we
will write . Also, when the edge associated with the
lattice point is clear from the context, we will write or

instead of . It is useful (as a design guide and for
the asymptotics which follow) to write down a slightly different
expression for the side distortion where the sum is taken over
the edge set

(15)

where is equal to the probability of the lattice point that
the edge labels, i.e., .

B. Rate Computation

Expressions for the rate (in bits per sample) will be derived
next. Let be the rate required to address the two-channel
codebook for a single-channel system.1 We will first derive an
expression for and then determine the (per-channel) rate
of the multiple-description system.

In order to derive expressions for and , we use the fact
that each quantizer bin has identical volumeand that
is approximately constant over Voronoi regions of the sublat-
tice . The second assumption is valid in the limit as the
Voronoi regions become small and is standard in asymptotic
quantization theory.

The rate is given by [18]

(16)

For , we evaluate the entropy and then use
the approximation that is roughly constant over each
Voronoi region of to get

(17)

Observe that in the above equation, the term is simply the
volume of a fundamental region for the sublattice(since it
has index in ). Upon writing (17) in terms of we obtain

(18)

A single-channel system would have used bits per sample
to achieve the same . Instead, a multiple-description system
uses a total of bits per sample, and
so the rate overhead is .

V. A L ABELING FUNCTION FOR

We now look for a labeling function for which

is minimized and is independent of. Since the details are com-
plicated, we will work out the first example—for the hexagonal

1This quantity is useful for evaluating the two-channel distortion as well as for
evaluating the rate overhead associated with the multiple-description scheme.
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Fig. 5. Example to illustrate the mechanics of the labeling for the hexagonal latticeA .

lattice —quite explicitly. We will then identify certain gen-
eral principles and use them to construct labelings for other lat-
tices.

The lattice may be considered to be a subset ofor as
a subset of . Since each approach has its advantages, we will
switch back and forth between the two representations. We con-
sider the lattice at unit scale to be generated by the vectors

, where . The associated Gram
matrix is

and the fundamental volume is . A sublattice of a lattice
is said to begeometrically similarto if it can be obtained

by scaling and rotating and/or reflecting [11]. To be more
precise, if a matrix generates and generates , then

is geometrically similar to if and only if , for
some nonzero scalar, integer matrix with determinant ,
and real orthogonal matrix . The index is defined as the
ratio of the fundamental volumes of and and is given in
terms of the scale factorby . It can be shown [6] that

is similar to if and only if is of the form ,
; if this holds, then is generated by and

. In addition to this restriction on , we will
require, for convenience only, that , where is

the number of lattice points at squared distancefrom the origin.
In other words, we require that is the number of points in the
first shells of the lattice, for some . There are
heuristic arguments, to be presented elsewhere, which suggest
that there are infinitely many values of with this property. For
example, has this property, since

and is also of the form , with .

A. An Example

We now present an example of a labeling function with a
reuse index . The following are the steps in constructing
the labeling function.

1) Find a sublattice with index equal to the reuse index.

2) Determine the discrete Voronoi set .

3) Determine an undirected label for every point .

4) Extend the labeling to the entire lattice using the shift
property of the undirected labels.

5) Given and its undirected label, determine the correct
directed label (i.e., determine which endpoint ofis to
be sent on channel 1 and which endpoint on channel 2).

A sublattice of index equal to may be obtained by con-
sidering all points of the form , with and
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Fig. 6. The set of undirected edgesE (0) for the example in Section V-A. For clarity, only a subset ofE (0) is shown. The entire set may be obtained by rotating
each edge around the origin (sublattice pointO) by multiples of�=3 radians.E (0) consists of 28 distinct edges obtained by counting six edges for each edge in
the figure, except for the diameter, for which only three edges are counted. The edgefO; Og is not shown.

. A portion of this lattice together with some sub-
lattice points is shown in Fig. 5. Lattice points have been labeled
with lower case letters and sublattice points with
upper case letters . In order to fix the coordi-
nate system, note that the sublattice pointis the origin of the
complex plane and the lattice pointsand have representations

and , respectively. Relative to this basis, the representations
of sublattice points and are and , respec-
tively. The discrete Voronoi set

is also shown in Fig. 5. Note that . Points in
will be labeled usingdirectededges obtained from the following
set of 28undirectededges:

(19)

(20)

which are illustrated in Fig. 6. Three edges in this set, namely,
, , and , will be used twice (i.e., both

orientations will be used) in order to obtain 31 labels.
Each point in is then associated with an undirected edge

in as shown in Table I. This association was done by hand

(but see Section V-B2). The only constraint is that equivalent
points are mapped to equivalent edges—this can be clearly seen
in the table, where equivalent lattice points have been placed in
the same row. In order to complete the labeling we need to assign
a directededge to each lattice point based on the color (
or valued) associated with that edge. If , the endpoint
of which is closer to becomes the channel 1 label and the
endpoint which is farther from becomes the channel 2 label.
On the other hand, if , the endpoint of which is closer
becomes the channel 2 label and that which is farther becomes
the channel 1 label. This is illustrated for two cases—for a point
that lies in and for a point that lies outside .

First consider the point which has been assigned
the edge . This edge has midpoint

. The color of the edge is obtained in
terms of the first component of the midpoint of the edge
and the difference between the first components of the edge end-
points by determining whether is odd or
even. In this case it is even, hence it is assigned the color. (If
it had been odd, it would have been assigned the color. An ex-
pression for the coloring rule is given later in (22).) The specific
orientation of this edge is then obtained by determining which
endpoint of is closer to . In this case, is
closer to than . Since the edge has color equal
to , the closer endpoint becomes the channel 1 label, i.e.,is
assigned the edge (this is the edge direction rule (23),
which is explained in detail in Section V-B5).

Now consider the lattice point . The
nearest lattice point is . We compute the difference

(the point ) and use this to look up the
corresponding undirected label in Table I. This gives
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TABLE I
LABELS FORPOINTS IN THE DISCRETEVORONOI SET V (0) FOR THEHEXAGONAL LATTICE AND SUBLATTICE INDEX N = 31

Using the shift property, the undirected label foris then ob-
tained by shifting the edge by to give

To determine the correct edge orientation, we first determine
the color of the edge using the first component of the midpoint
( ) and the first component of the difference
( ) to obtain a color

Since the color is , the closer endpoint becomes the channel 2
label. Hence is assigned the label .

We now illustrate the decoding procedure. Assume that
and write its undirected version using

the basis vectors of the sublatticeand to get
Look for an equivalent edge in Table I. One such edge is

. Determine the shift required to make the
edges coincide. In this case , with

. Upon looking up Table I, we find that lattice point
with representation has the undirected edge as

label. We shift this point by adding to get one of
the candidate points . The
other candidate point is obtained from the Property 3 of the
labeling function (the sum of the endpoints of an edge is equal
to the sum of the points that it labels), and is . Observe
that there is another edge in Table I which is equivalent to the
edge we wish to decode. We would obtain exactly the same set
of candidate points if we used this edge. In order to determine
the correct point, since , we decode to the point which
is closer to the channel 2 label, namely, .

Several observations can be made at this point. In Table I there
are two kinds of undirected edges (of positive length)—those
which are diameters of a circle centered atand those which are
not. The diameters are the edges , , and .
Both orientations of a diameter are used to label points in ,
whereas only one orientation of a nondiameter is used. For an
edge which is not a diameter, the remaining orientation labels

a lattice point outside as determined by the shift prop-
erty. For example, consider the label . The directed label

is the label for the point . The lat-
tice point which is labeled by is given by

which belongs to the discrete Voronoi set of the sublattice point
.
Notice that the labeling function shown in Table I exhibits an

additional symmetry that we have so far not used. If a point is
rotated by a multiple of radians about the origin, its cor-
responding undirected label is also rotated by the same amount
about the origin. Consider

a rotation group of order . By considering equivalence
classes relative to this group, we can reduce the size of the
table by listing only the undirected edges for the points

.
The above example illustrates the basic steps that are to be

followed in order to label the points in. Additional details and
some underlying theory are presented next.

B. General Principles

The construction of our labeling function involves the fol-
lowing steps.

S1) Selection of a geometrically similar sublattice of given
index .

S2) Construction of , the discrete Voronoi set around
.

S3) Establishing a mapping between elements of and
undirected edges in such a way that certain constraints
are satisfied. The optimal construction requires that a
specific linear programming problem be solved.

S4) Extension of the mapping to the entire lattice.

S5) Identification of a specific directed edge to associate
with a lattice point, once the undirected edge is known.
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Fig. 7. A lattice point� and its label(� ; � ). � is at distancer from the
midpoint of the labels.

Fig. 8. The setE j for N = 31.

In the remainder of this section, we will further describe steps
S3)–S5). But first we state the following guiding principle.

1) A Guiding Principle: Suppose that receives the label
as illustrated in Fig. 7. Then satisfies the

identity

(21)

where . This identity is known as
the parallelogram law (see, for example, [2, p. 3]). From this we
infer that in order to keep small, and should be as
close together as possible, andshould be as close as possible
to their midpoint. This leads to the following:

Choose the shortest possible
edge with midpoint as close as possible to the point
to be labeled.

2) Optimal Construction of and (steps S3) and
S4)): The starting point for determining the set of edges is to
compute , which is chosen to be the set of shortest
undirected sublattice edges of the form . This set is illus-
trated in Fig. 8. The corresponding set is obtained by
replacing each directed edge with its undirected version. Ob-
serve that edges of positive length in occur in equiva-
lent pairs. Next, for every and , deter-
mine

and let be an edge which achieves this min-
imum. In other words, is the “closest” edge to

which lies in the same equivalence class as. Clearly, from the
guiding principle, the “closest” edge will be the one whose mid-
point is closest to . The edge for a given and is
illustrated in Fig. 9.

Consider all one-to-one maps which sat-
isfy the constraint that equivalent points are mapped to equiv-
alent edges. From among all such maps, choose so as to
minimize . The map sends a lattice
point to an edge coset element in in an optimal way,
thus identifying the best edge coset for a given lattice point.
Let . Since identifies the optimal
edge coset for each lattice point andidentifies the best coset
representative, given the lattice point and the coset, we obtain
the optimal edge for each lattice point by composing these two
mappings. It follows that . We
extend the mapping to the latticeusing the rule

.
The constraint imposed on the mappingneeds some expla-

nation. It arises from the third assumption that we made about
the labeling function, namely, that the sum of the endpoints of
an edge is equal to the sum of the two points that it labels. By
requiring that equivalent points map to equivalent edges, it can
be shown that the midpoint of two lattice points that share the
same (undirected) label coincides with the midpoint of the label
itself. A graphical justification for this is provided in Fig. 10.
More formally, the argument is as follows. The points in
occur in equivalent pairs. If two points in are equivalent,
they sum to . Consider the pair and and an edge.
If the edge in which is closest to , say , has midpoint
, then the edge in which is closest to will have mid-

point . Thus, contains the edges and (which
may be identical). Now from the shift property, also lies in

(note that is a sublattice point) and the
point it labels, say , is given by . Thus, the two
points that are labeled using the undirected edge, namely,
and , satisfy , i.e., the midpoint of the edge co-
incides with the midpoint of the points that receive this edge as
label. To summarize, the constraint is a sufficient condition to
ensure that the labeling function has Property 3).

It is to be noted that the optimal mapping can be obtained
using standard techniques from linear programming [21]. Also
observe that if we define the group , we can force

to satisfy the constraint by considering only and
. This problem is one of matching lattice

points to edge classes. Further reductions in com-
plexity may be obtained by using a larger group, in which
case the problem is reduced to matching points
to edge classes, where is the order of the
group. In the case of the lattice, for example, we could take

to be a group of order.
The mapping identifies the edge to be associated with

up to the orientation of the edge. The correct orientation is deter-
mined by an edge orientation rule, designed to maintain balance
between the two descriptions. This is described next.

3) Balance: Given an edge and two points that it
labels, there are two ways to establish a one-to-one correspon-
dence between the points and the two directed edges ,
as described in Fig. 11. The first selection rule favors the second
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Fig. 9. Illustrating the optimal edge selection within a given equivalence class.
Shown is an edgee, another edge in its equivalence class[e], and the optimal
edge in this class for labeling the point�. The points on the hexagonal grid are
sublattice points.

description, the second favors the first description. Note that the
distortions are antisymmetric, i.e., with the first selection
rule is equal to for the second, and for the first rule
is equal to for the second. Because of this antisymmetry,
balance is attainable in an average sense by ensuring that the
two correspondences are used equally often. We achieve this by
requiring that the two correspondences are alternated along any
straight line of the edge graph, as shown in Fig. 12. This is the
purpose of the edge-coloring rule which is described next.

4) An Edge Coloring Rule:Each edge is assigned a bit (or
color2 ) as follows. Consider an edge of the form

. Let and let . Then

if and is even
or if and is even
otherwise.

(22)
This coloring rule ensures that adjacent edges along any straight
line have a different color. Note that the color does not depend
on the orientation of an edge, i.e.,, , and have the same
color. The coloring rule is an ingredient in the edge and point
selection rules that we now define.

5) Edge Direction Rule and Point Selection Rule:Given an
(undirected) edge and a point for which this edge is a label,
we choose an orientation or direction for the edge using a rule
that depends on the color of the edge. Let and let

. The two rules , where or is the
color of the edge, are defined as follows (denotes the cross-
or vector-product of two vectors and their inner product):

or
and

otherwise

(23)

and

2During this research we used red and green to color the edges.

Fig. 10. Explanation of reason for mapping equivalent points inV (0)
to equivalent edges. The latticeA together with a similar sublattice of
index N = 13 is shown. Points� and � in V (� ) are equivalent
and � + � = 2� . � and � are mapped to equivalent edgese
and e . The edgese and e have midpoints� and � , respectively,
which satisfy� + � = 2� and e = e + (� � � ). The point
� + (� � � ) lies inV (� ) and is labeled bye + (� � � ) = e . Thus,
� + (� + (� � � )) = � + � = � + � . The midpoint of two points
labeled by the same undirected edge is equal to the midpoint of the edge.

or
and

otherwise.

(24)

Observe that the result of either rule is the same whether we
write or .

For decoding, since two lattice points receive a label from a
given undirected edge, we need to be able to tell which point
is being labeled, given the edge orientation. This is the reverse
of the edge direction rule. Thus, given a directed edge

with midpoint and a lattice point which could have
received this label, thePoint Selection Rule selects
or based on the edge color, and is given by

or
and

otherwise

(25)

and
or
and

otherwise.

(26)

6) Constructing the Map : Using the notation previously
established, we obtainas follows. Given , let and
let . Then .

7) Proof that the Reuse Index is Correct:We need to show
that for any sublattice point , exactly lattice points have
a label of the form and exactly lattice points have a
label of the form .

To begin, observe i) that if edgelies in then so does
(note that is odd) and ii) . Define

otherwise.
(27)
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Fig. 11. Given an edgee = f� ; � g and the two lattice pointsf� ; � g that it labels, with the midpoint ofe coinciding with the midpoint(� +� )=2, there
are two possibilities for the selection rule. In the figure, the lattice points are joined to the sublattice points by both a single line, indicating the first component, and
a double line, indicating the second component. On the left, the double lines are shorter than the single lines, a selection rule which favors the second description,
that is,d is smaller thand . On the right, the single lines are shorter than the double lines, a rule which favors the first description. Balance is achieved by requiring
that both rules are used equally often.

Fig. 12. An illustration of the alternating structure along a straight line for maintaining balance between the two descriptions. A single line connecting a lattice
point to a sublattice point indicates the channel 1 label for that lattice point, a double line indicates the channel 2 label.

Then , since implies
. Conversely, if , then

, for some . Thus, either , which implies
or , which implies

which in turn implies that . Thus

Furthermore, for any

since the labeling is extended through sublattice shifts. Thus, for
any , there are exactly edges of the form .

Each edge of positive length labels two points, of
which one receives the label the other . Thus,
exactly lattice points receive a label of the form and
exactly receive a label of the form .

8) Further Reduction in Complexity: Group Construction
Instead of imposing the constraint on the mapthat was used
in Section V-B2, we could alternatively regard this map as
an unconstrainedmap between cosets and ,
where is the group of rotations (in complex notation
since we are talking about ). Now we need only establish
a correspondence between two sets of size , where

is the order of the group. Further reductions in complexity
arise from selecting a larger group that contains the group

as a subgroup. For , we used the group of rotations
. This reduces the com-

plexity of matching problem to sets of size . Precise
conditions that the group must satisfy, and further reasons for
using a group, are explained in Section VI.

9) Numerical Results:The results of our optimization pro-
cedure for the hexagonal lattice are displayed in Fig. 13,
along with comparisons with the lattice. These results have
been obtained for a uniformly distributed memoryless source
by computing the optimal labeling function and then evaluating
the expression (obtained from (15) for a uniform pdf)

(28)

where is the edge that labels, is computed using (10)
and known values of [11]. To be comparable with , the
value of shown for the lattice is the square of the actual
reuse index for dimension . To be more specific, let
denote the index for the sublattice, and let be the index
of the sublattice of . Then the value of stated in the figure is

for and for . Also it should be noted that for each
, both lattices have been scaled in order to keep the product

constant, where is the volume of a fundamental region of
the scaledlattice. From (17), this is equivalent to keeping the
rate constant for all points on the graph. It is seen that small
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Fig. 13. A plot ofd versusd for the hexagonal latticeA and the integer lattice.

performance improvements are obtained by usinginstead of
. Another benefit is that we obtain many more points in a given

interval of (say) the side distortion, compared with thelattice.

VI. L ABELING FUNCTIONS FORGENERAL LATTICES

In this section, we describe how to label a general lattice
using a sublattice of index . The basic steps
remain the same as for . The main differences arise in the
selection of the sublattice and in the use of a group to simplify
the construction. We begin by establishing certain general con-
ditions that the group should satisfy. Specific groups and sub-
lattices will then be given for certain particular lattices. We will
use to denote a generator matrix forand for the gener-
ator matrix for the similar sublattice , where is a scalar and

is a unitary matrix. Our convention is that the columns of a
generator matrix are a basis for the lattice.

A. Sufficient Conditions for the Group

The smallest group we can use is , where
is the -dimensional identity matrix. Here we show why a group
is useful for reducing the size of the optimization problem and
derive certain conditions that the group should satisfy.

The motivation for using a group is to make use of inherent
symmetries in the lattice and sublattice. Our objective is to par-
tition the discrete Voronoi set and the edge set into subsets of
equal size with certain distance properties. More specifically,

for any subset of lattice points in this
partition and any subset of edges in the
partition the set of distances

should be independent of. Such sets of points and edges
can be obtained by identifying a group of transformations

and then taking the members of
the partition to be orbits under the action of this group. The
group we look for should have following properties.

1) contains .

2) is an orthogonal group.

3) preserves the lattice.

4) acts fixed-point free on , i.e., for any , not
the identity, .

5) The order of the group divides the g.c.d. of all the shell
sizes.

6) preserves the sublattice.

Property 2) ensures that orbits of the group lie entirely within
a shell of the lattice. Property 3) is obvious, otherwise orbits
would contain points other than lattice points. Property 4) en-
sures that all orbits are of equal size. Property 5) ensures that
each shell is partitioned into an integral number of orbits. Prop-
erty 6) is similar to Property 3).
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We now look at Properties 3) and 6) more closely. Every lat-
tice point can be written in terms of the generator matrixand
an integer vector as . By requiring that
for some , we ensure that the lattice is preserved. Sim-
ilarly, if the sublattice has generator matrix , where is a
scalar, then by requiring , for some , the sub-
lattice will also be preserved. In other words, we require that
normalizes and .

B. Group Construction and Generator Matrices

For the space lattice , we take to be an odd number of
the form where . (It is shown in [8] that similar
sublattices of exist whenever is a sum of two squares.)
The generator matrices are and , where

(29)

For the group we use

(30)

a group of order .
For the lattice we take to be an odd perfect square (again

see [8]). Let , (any
integer can be written this way). The generator matrices are
and , with

(31)

The group is

(32)

a group of order .

For , it is easiest to start by specifying the group. Let

(33)

and

(34)

Then we take the group to be

a group of order . The generators for the lattices are
and , where the th column of is , where

, , the index of , and
.

Numerical computations for the lattices (standard-
ized to have minimal length) for are presented
in Fig. 14. These results have also been obtained for a uniformly
distributed memoryless source. Since the two-channel distor-
tions are identical for all the lattices considered in this figure,
we have only plotted the excess distortion term

against the per-dimension reuse index .

VII. A SYMPTOTIC ANALYSIS

We now derive upper and lower bounds on the distortion
as given by (15). As we have already seen in (28), the regularity
of the labeling function and the high rate assumption lead to the
following simplification for the expression in (15):

(35)

where is the label for the lattice point . Thus, in order to
analyze we only need to consider edges that label points in
the discrete Voronoi set . Our analysis relies on a precise
knowledge of the lengths of these edges. Suppose thatis la-
beled by the edge , as in Fig. 7. Let denote the
length of the edge , i.e., , and let
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Fig. 14. A plot ofd vs. the reuse index (per dimension)N for the lattices , i = 1, 2, 4, 8.

be the distance of the pointfrom the midpoint .
Then

(36)

A simple lower bound for is obtained by setting to zero
in the above equation. In order to obtain an upper bound, observe
that the midpoint of a sublattice edge can always be made to
lie in by a suitable sublattice shift. An upper bound is
then obtained (using the triangle inequality) by replacingwith

, where is the covering radius of the
sublattice. We have

(37)

which by using (35) leads to the bounds

(38)

A. Asymptotic Performance

In order to carry out a rate-distortion analysis, it is necessary
to scale and by a real number . We will use to
denote the volume of a fundamental region for the scaled lattice

. Clearly, . For convenience we will write
for . Upon rewriting (16) for the scaled lattice, we obtain

(39)

Similarly, an expression for is obtained by rewriting (17) in
order to get

(40)

From (10), the two-channel distortion with the scaled lattice
is given by

(41)

where we have used the fact that .
In terms of , the two-channel distortion is thus given by

(42)

Now let . Then and

(43)

For given and , the correct scale factor is obtained by
solving (41) for

(44)



VAISHAMPAYAN et al.: MULTIPLE-DESCRIPTION VECTOR QUANTIZATION WITH LATTICE CODEBOOKS 1733

Consider defined by

(45)

which is the common term in the bounds for given in (38).
The quantity arises because we use the scaled latticesand

. It is understood that is the edge that labels. The edges
in question in (45) (the edges in ) have been obtained by
choosing the shortest edges in , with one endpoint at and
then shifting these edges so that the midpoint is as close to the
origin as possible. Thus, each is of the form for
some . The term is a scale factor that comes from
the fact that and we normalize by because
we are working with normalized square lengths. Let the largest
value of in (45) be equal to and let be the
number of ’s that are equal to . Then

(46)

Our construction of the set implies that the can be
obtained in terms of the coefficients of the theta series of the
lattice . To be specific, if is the theta series3

for the lattice , then we can assert that

(47)

This fact will be used a little later.
Now substitute from (44) and use the fact that

, in order to obtain

(48)

where we have defined

The term can be bounded in terms of the’s by

(49)

Upon defining and using Abel’s summation
formula we obtain

(50)

The term is the number of lattice points in the first
shells of the lattice . This is roughly the ratio of the volume
of , a sphere of radius , to , the volume of the
Voronoi cell of . To be specific, if denotes the volume of a
sphere of unit radius in then

Thus is given by

(51)

3A is the number of lattice points� with Lk�k = i.

where . Using (51) in order to estimate ,
we obtain

(52)

On substituting (52) into (48) and observing from (51) that
we obtain

(53)

But

(54)

and , the normalized second moment of a sphere in
dimensions, is given by

(55)

Thus is given in terms of by

(56)

and from (53) it follows that

(57)

The other terms in (38) are and . The term decays
as and decays like , which in turn
decays as . Thus

and we have obtained our final result

(58)

We end with a comparison with the multiple-description rate
distortion bound (4), by letting in (43) and (58). It is
believed that as , and it is easily shown
from (55) that . Thus our construc-
tions are optimal.

VIII. SUMMARY AND CONCLUSION

The problem of lattice vector quantizer design is addressed
for the two-channel multiple description. The main problem in
the design, a labeling problem, is solved. A systematic construc-
tion technique is developed which is suitable for general lat-
tices. Specific constructions have been provided forand ,

Finally, an asymptotic analysis reveals that per-
formance arbitrarily close to the multiple-description rate dis-
tortion bound can be obtained.



1734 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001

Open issues related to this work are detailed constructions for
other lattices, extensions to the asymmetric case, and extensions
to greater than two descriptions.
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