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Multiple-Description Vector Quantization with
Lattice Codebooks: Design and Analysis

Vinay A. VaishampayarnMember, IEEEN. J. A. SloaneFellow, IEEE and Sergio D. Servettdlember, IEEE

Abstract—The problem of designing a multiple-description in a loss of a large block of source samples, such as a large
vector qL_Jant_izer with Iatticg codebookA is_considered. A g_eneral image block or a large block of speech. One way to improve
solution is given to a labeling problem which plays a crucial role - e tormance is to place different encoded versions of a given
in the design of such quantizers. Numerical performance results . .
are obtained for quantizers based on the latticesd, and Z7, plock of source samples into sevgral packets in such a way that
i=1,2, 4, 8, that make use of this labeling algorithm. if some of these packets are received, a degraded version of the

The high-rate squared-error distortions for this family of L-di- source block may be recovered. This leads to the formulation
mensiona_ll vector qq_antizers_ are thep analyzed for a r_nemoryless of the multiple-description source coding problem.
source with probability density function (pdf) p and differential For the single-description problem, one of the benefits of

entropy h(p) < oco. Forany a € (0, 1) and rate pair (R, R), it S T N
is shown t(ha)t the two-channel disEoFtiozﬂo and the chgnr;el 1)(or vector quantization over scalar quantization is a reduction in

channel 2) distortion d, satisfy granular distortion. This is because in higher dimensions it is
possible to construct Voronoi cells that are more “spherical”

lim do22f1te) = 1 g(A)22h(®) than the hypercube. To be more specific, uniform scalar quan-

and frmee tization coupled with entropy coding is known to have mean
lim d,22R(1—9) = G(S;)22h® squared error (msej(R) at entropyR bits per sample satis-
R—oo fying [16]

where G(A) is the normalized second moment of a Voronoi cell _ 22h(p)

of the lattice A and G(S) is the normalized second moment of a lim d(R)QQR =5 1)

sphere in L dimensions. R0 12

Index Terms—Cubic lattice, hexagonal lattice, lattice quanti- V\{heregs if arL-ghmensmnaI latticel is used as a codebook, the
zation, multiple descriptions, quantization, source coding, vector distortion satisfies

quantization. _
Jim d(R)2?F = G(A)22P) (2)
|. INTRODUCTION where G(A) is the normalized second moment of a Voronoi
E consider the problem of designing a multiple-descrigell of the lattice. In dimensions greater than one, lattices exist
tion vector quantizer for a memoryless source with protior which G(A) is strictly smaller thari /12. For example, in
ability density function (pdfy, differential entropyh(p) < oo, €ight dimensions, it is possible to gain 0.66 dB by using the
and the squared-error distortion measure. A multiple-descripttice £z as compared to uniform scalar quantization [11]. It
tion vector quantizer encodes vectors for transmission oveisaalso known through a random quantizing argument [31] that
two-channel communication system. The objective is to sefilantizers exist for which the produdfR)2>" approaches
information about the source vector over each channel in sudi®’/(2r¢) as the rate increases. Furthermore, it follows from
a way that good performance is obtained when both channgiée distortion theory [5] that no smaller value can be achieved
work and the degradation is small when either channel fails.far the above product in the limit of infinite rate. The maximum
is assumed that the encoder has no knowledge about the sta@ad1 possible over entropy-coded scalar quantization is 1.53 dB
achannel, i.e., it does not know whether a channel has failedeid lattices provide a useful method for closing this gap.
is working. From now on we will restrict our attention to the case of
The recent interest in the multiple-description problem #&vo channels. Consider a multiple-description quantizer which
largely due to the application to image, video, and voice coriénds information across each channel at a rat& bits per
munications over packet networks with nonzero probability g&mple. The performance of this system is measured in terms of
packet loss. The loss of a packet could be significant if it resulizree distortions: the two-channel distortidn when both de-
scriptions are available to the decoder; the channel 1 distortion
dy, when only the first description is available; and the channel
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Fig. 1. Limiting two-channel and single-channel distortion ratiasy . . do(R, L)/do(R, 1) andlimy_, o, ds(R, L)/d1(R, 1) as a function of the lattice
dimensionL. The reduction in two-channel distortion is lattice dependent and is determined by the normalized second moment of a Voronoi region of the lattice.
The reduction in single-channel distortion depends only on the dimension of the lattice.

It has been shown [27] that for a uniform entropy-coded mutlistortion bound may be closed by using vector quantizers with
tiple-description quantizer, and any< (0, 1), the distortions lattice codebooks. Certainly, by following this approach we can

satisfy also close the gap between the two-channel distortion and the
rate-distortion bound. In particular, this will allow us to replace
.= 9R(14a) _ 1 (22 the factor(1/12) in the expression fad in (3) with G(A), the
lim do(R)2 == . g . .
R—00 4 12 normalized second moment of the Voronoi region of a lattice
o SR 92h(p) point. The maig guestion we address here is that of simultane-
Jim_d,(R)2 (=) = < e ) (3) ously reducingi,. How can such a reduction be achieved and

what is the quantity that will replace the factgr/12) in the

On the other hand, by using a random quantizer argument it vgression for; in (3)7 We will show through a constructive
shown [28] that by encoding vectors of infinite block length, iProcedure that the distortiafy can be reduced by solving a spe-

is possible to achieve distortions cific labeling problem. To our surprise, the quantity that replaces
(1/12)is G(SL,), the normalized second moment adgheren
R oR(14a) _ 1 92h(p) L dimensions. _
Jim do(£)2 =1 < e ) Let do(R, L) and d,(R, L) denote the two-channel and
92h(p) single-channel distortions at ratfor an L-dimensional quan-
Rlim ES(R)22R(1_“) = < T ) (4) tizer. Fig. 1 summarizes the main results of the paper. In this

figure, we have plotted the limit of the normalized two-channel
and single-channel distortionimg—.oc do(R, L)/do(R, 1)
Apdlimp_co ds(R, L)/ds(R, 1), respectively, for lattices of
various dimensions. It is seen that the limit for the two-channel
(fstortion is given by the rati@g7(A)/G(Z), which depends
on the lattice, whereas for the side distortion the limit is
I(é*(SL)/G(Sl), which is independent of the lattice.

Thus, by using multiple-description quantization, it is possib
to simultaneously reduce the two-channel and side-chan
granular distortions by 1.53 dB.

In single-description gquantization, an extra transmitted
reduces the squared error distortion by a factod dthis is
seenin (1)). However, in multiple-description quantization the
is additional flexibility. If eachR is increased by 1/2 bit, the
two-channel distortion can be decrease@b§ +* and the side
distortion by2~(~%), for anya € (0, 1). This means that by ~An achievable rate region for the multiple-description
using an extra bit, the distortionl andd, can be made to de- problem was first given in [12] and it was shown in [24]
crease by different amounts as long asphauctdecreases by that this region coincides with the rate-distortion region for a
a factor of4. memoryless Gaussian source with a squared-error distortion

The goal of this paper is to give constructions for closing thimeasure. The problem of multiple-description quantizer de-
“1.53-dB” gap and to analyze the resulting performance gairggn, including a formulation and solution of the underlying
Our approach is as follows. From classical quantization theolgbeling problem in one dimension, was presented in [26].
we know that the gap between scalar quantization and the rad@& asymptotic performance analysis of this quantizer was

Il. PREVIOUS WORK
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Fig. 2. Block diagram for a MDVQ.

presented in [27]. A preliminary version of the work presented A source of information generates a sequence of indepen-

here was first presented in [25]. dent and identically distributed random variables with pdf
Lattice quantizers (for the single-description problem) havéhis source is blocked off intoL-dimensional vectors

been extensively studied. In [31], a random-quantization argu= (z1, z2, ..., ). TheL-fold pdf is denoted by, where

ment is used to give upper and lower bounds on the performance

of quantizers for a fixed dimension. Detailed descriptions of the

Voronoi regions of specific lattices are given in [9] and their

second moments are evaluated. Fast quantizing algorithms for pr(r) = H p(xi)-

lattice quantizers are given in [10], [1], [14], and [30]. In [15], it =t

is conjectured that forth-power difference distortion measuresthe vectorz is quantized to the nearest vectdrin a lattice

any optimal quantizer, in any dimension, has Voronoi regions - RL. We denote the quantizer mapping by= Q(z). In-

that are congruent to some polytope. formation about the selected code veckois then sent across
Approaches to multiple-description coding based on trellighe two channels, subject to rate constraints imposed by the indi-

coded quantization are presented in [28], [20]; those based\@dual channels. This is done through a labeling functidiol-

vector quantization are presented in [13]; and approaches usiged by entropy coding. The labeling functionrmaps\ € A

forward error correction are presented in [22]. to a pair(\;, \y) € A’ x A/, whereA’ is a sublattice ofs with
There are also approaches to multiple-description codifigiex N. The component functions of are denoted by; and

based on subspace methods. One approach is to desig@Q,awhereal()\) = A andax()) = X,. For simplicity, we

predictor or a transform so as to achieve a correlation struct@gsume that’ is geometrically similar ta\, i.e., A’ can be ob-

that allows one half of the prediction error samples or transforined by scaling, rotating, and possibly reflectingNote that

coefficients to be predicted from the other half. Examples @bints in the lattice\ are denoted by, possibly with subscripts,

this approach are presented in [19], [23], and [29]. whereas sublattice points will be denotedXsyor \”, possibly
Another approach to multiple-description coding is based @¥ith subscripts.

using overcomplete expansions. Here, the idea is to construct & Fig. 3, a portion of the hexagonal lattick is illustrated,

redundant signal representation, in a way that allows the siga@ng with a geometrically similar sublattice of ind&x. The

to be estimated with a controlled amount of error when the reptice points lie at the intersection of the straight lines in the

resentation is incompletely received [3], [7], [17]. hexagonal grid (only some of the points are shown). The sub-

lattice points are marked with upper case letters. Observe that
the lattice is 31 times as dense as the sublattice, i.e., there are 31
I1l. ORGANIZATION OF THE PAPER lattice points for every sublattice point.
At the decoder, if only channel 1 works, the received infor-
tion is used to decod¥ , and if only channel 2 works, the

L

The multiple-description vector quantizer (MDVQ) is de-

scribed, notation is established, certain regularity assumpticm

for the labeling function are stated, and preliminary expressio'r’? Or”?a“‘”.‘ received (;)\t/erbchann(tal 21s use;jht(?[ _(:ebcliiﬁeThhe |
are derived for rates and distortions in Section IV. A detaildg@PP!Ngx IS aSsumed 1o be one-to-one So that It both channels

! ! H H
example with the two-dimensional hexagonal lattidg is work, A can be recovered frorfiy, ;). (In practice, if only

presented along with some general theory in Section V., TRge channel is working it may be better to decode the received

H / / / ! 3
necessary theory for general lattices is presented in Section ;\:/to_r to so_rnedﬂémi:)\t)o_n dflt ofr )‘2. ratther than td; OI[j/\dQ |tseellf.
An asymptotic analysis for a fixed vector dimension is pré— 1 iS received bub; is not, for instance, we would decodg

sented in Section VII. The paper is summarized along wifh the center qu;ass of a!l pom‘tf A.SUCh thgt th_e f|r§t com-
conclusions and directions for future work in Section Vi, POnent ofe(A) is Ay We will ignore this complication in order
to simplify the analysis.)

GivenA, A’, andq, there are three distortions and two rates
associated with an MDVQ. For a givenmapped to the triple
(A, AL, Ay) by the MDVQ, thetwo-channel distortiondy is

A block diagram of an MDVQ with a lattice codebook isgiven by||z— A||?, the channel 1 distortios by ||=—\}||?, and
shown in Fig. 2. the channel 2 distortiol, by ||z — M\ ||? (we assume that the

IV. PRELIMINARIES
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Fig. 3. This figure shows a portion of thé& lattice (the points on the grid line intersections), part of a geometrically similar sublattice of3adexdiscrete
Voronoi set for a sublattice point (the lattice points in the hexagon) and the Voronoi set of a sublattice point (all the points in the hexagon).

inner product ofL-dimensional vectors = (z1, z2, ..., 7,) With each sublattice poink’ € A’ we associate a discrete
andy = (y1, ¥2, - -., yr,) is given by Voronoi set (withV elements)
1 ¢ Vo) EA € A A= N[ S [A= N[ VN e A} (6)
=1

In (5) and (6), ties (i.e., points for which equality holds in the
defining condition) are broken in some prearranged manner. The
existence of sublattices for which no ties occur is discussed in
cfé'] The Voronoi regionV'(0) and the discrete Voronoi region
) are both illustrated in Fig. 3.
e regard the label forA\ as a directed edg@ =
(M), a2(X)) of the graph with vertex sef\’. The cor-
responding unordered pair = {ai(N), aa(A)} will be
referred to as the undirected edge or undirected label associated
with A. The essential difference between a directed edge or
label (A, \}) and the undirected edde\,, A, } is that for the
directed edge there is an implicit association between edge
) component and channel( is sent on channel 1 any, is sent
HU) = - Z Plu)log P(u). on channel 2) whereas f(())(r the undirected edge nng;;\ssociation is
e implied. Graphically, an edge connecting two sublattice points

The problem is to design the labeling functierso as to min- A, and A;, with an arrow pointing from\;, to X;, indicates
imize dy subject tod; < D, d» < D,, andR; < R,i = 1,2, that), is sent on channel 1 ank is sent on channel 2, or,

and the corresponding norm [g| = (z, 2)'/?, i.e., the
inner product and norm are dimension-normalized). The ¢
responding average distortions are denotedfyd;, andd..
We assume that an entropy coder is used in order to transm
the labeled vectors at a rate arbitrarily close to the entropy, i. .,

R; = H(QZ(Q(X)))/Lv i=1,2

whereH(U), the entropy of the random variakiletaking values
in alphabet/ with probability distributionP, is given by

for specified values of the rate and distortionD,. equivalently, the directed edge @8, A;). The two directed
The Voronoi (or nearest neighbor) regidf{\) of a point versions of an (undirected) edgevill be denotede ande.
A € Ais defined to be For a given labeling function, an associated undirected edge

o labeling functione, is defined as follows: iftW(\) = ¢, then
V()\)déf{a:: |z = Al € |l = All, YA € A} (5) au(\) = e, i.e., a, mapsA to its undirected label. Note that
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Fig. 4. Various edge sets are illustrated for a sublatticé pfvith N = 31. For clarity, only the sublattice points are shown. The&sgt., —, is shown on the
left, €4/, =0 ON the right. The origin is located at the center of the circle.

if a(A1) = ¢ anda(A2) = ¢, thena, (A1) = au(X2) = e, Definition 1: Two lattice points\; and A, are said to be
i.e.,a, is not one-to-one. A directed edge is uniquely associateduivalent if either\; and A, or A; and— ). lie in the same
with a lattice point whereas an undirected edge will in general beset ofA relative to the sublattica’.

associated with two lattice points, one for each orientation of the
edge. The main reason for introducing is that its construction
logically precedes that af.

Certain sets associated with the two maps will play a ce
tral role in the development. The first & (\) = a(Vo(X)), The equivalence class of an object will be indicated by square
the set of all labels for points ifp()\') (the subscript indi- brackets. Thus}}] is the equivalence class éfand[e] is the
cates that the edges are directed). The corresponding set of uadisivalence class af, or, equivalently[A] € A/A" and[e] €
rected edges is denoted By()\'). More specifically&, (V) = &€,/A.

o, (Vo(X)). The set of all (directed) labels is denoted&y=

Definition 2: Two sublattice edges; ande, are said to be
equivalent if they are parallel and of equal length, or equiva-
Ilgle_ntly if e + A = ey for some) € A’.

U ea €a(X) and the set of all undirected labels By = A. Distortion Computation
Ealay=0 = {(\], A Eqy N =0}, =
dlar=o = {(%, X) € &0, X, =0} do=) / le = AlPpr () da. @)
Aca V)

The set of undirected edges &|.,—0 Will be denoted by

Eular=0. The sets, |o, —o and&y|q, —o are illustrated in Fig. 4. Since the codebook of the quantizer is a lattice, all the Voronoi
Thereuse indexassociated with a label’ and channel is regions are congruent. Furthermore, upon assuming that each

defined to beV;(X') = [{A: ;(A) = X'}, the number of lattice Voronoi region is small so that,(z) ~ pr(\) for z € V(\)

points A for which «;;(\) = X. and upon lettingr denote theL-dimensional volume of a
In order to render the problem tractable, we assume that ¥ronoi region, we obtain the following expression for the
labeling function has the following properties. two-channel distortion [15]:
* Property 1: The reuse indeXvV;(\) = N, forall X' € A’ _ fV(O)HxHQ dz
and: = 1, 2. In other words, each channigabel is reused do 2 ———— (8)
exactly N times. o o _
« Property 2: The shift propertycr, (A4 X) = an(A\)+ X, which in terms of the normalized second mom@&qt\ ), defined
forall A € Aand) € A'. by
« Property 3: Each undirected edge = {\|, A5}, \| # der o 1211 d
, - it GE Y — ©
A, labels two pointsj, and ), andX, + A, = A + X5 42/

The first assumption makes it easy to parameterize the tradqgf&iven by
between the side and central distortions. The second assumption
reduces the labeling problem to one of labeling a finite set. The do ~ G(A)A/E. (10)
third assumption is a simple way to achieve exact balance be-
tween the two descriptions (its implications will become clearer We now derive expressions for the average distortibrend
in Section V-B3). d, and
It will prove useful to have the following definitions of equiv-
alence. Esdéf(?ll +do)/2.
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When only description 1 is available, the distortion is given bfs. Rate Computation

Expressions for the rate (in bits per sample) will be derived
di = Z / Iz = ca (VPP () da next. Let Ry be the rate required to address the two-channel
Aca V) codebook for a single-channel systérve will first derive an
= Z / |z — A4+ X — ar(V)|*pr(z) dz expression fozy and then determine the (per-channel) r&te
xea TV of the multiple-description system.
In order to derive expressions fé, and R, we use the fact
=> / lz = Al*pr(z) dz that each quantizer bin has identical volumand thatpy,(z)
Aea 7V is approximately constant over Voronoi regions of the sublat-
+ Z / A — s (N)||Ppr(a) da: tice V(X). The second assumption is valid in the limit as the
oA TV \Voronoi regions become small and is standard in asymptotic
quantization theory.
+2 Z /V(A) (£ =A A= a(M)pr(e) de 1) The rateRy = H(Q(X)) is given by [18]
ACA
—do+ Y M- W IEPPY) +2 Y ROZ‘(l/L)Z / pr(z)delog, /m) pr()de
AEA AEA
—(1/L) x)dzlo Ay
. </ zpr(z)dz —/ Apr(z)de, A— al()\)> W/ Z /()\) B2 (A
v v ~ h(p) - (1/L) log; (1) (16)
@EO + Z 1A — ar(V)|2PP(N) (12) For R, we evaluate the entropi/ (a1 (Q(X))) and then use
ACA the approximation thapy,(x) is roughly constant over each

o ,
where P(\) = Pr(Q(X) = \), and(a) follows by assuming Voronoi region ofA’ to get

that A is thecentroidof its Voronoi region. This is true for the
uniform density. For nonuniform densities, there is an errorterﬁw 1/L) ( / N )
which goes to zero with the size of the Voronoi region. The N \acay vy 7V )

first term in (12) is the two-channel distortion and the second

term is the excess distortion which is incurred when channel 2 -log, / pr(z)dz

fails. Note that for a giverh, only the excess distortion term is cart(n) VN

affected by the labeling function. From (12), it follows that

dy = do+(1/2) Y (IA = (WP + 1A = aa(VIP)PY) %—“/L)XEA,( Z. /m )

AEA
(13) -log, (pr.(N)Nv)
=do +(1/2) Z Z
NEA AEVR(A) z—(l/L) / x)logy(pr,(N)) dx
(A= VI + 1A = as (VIR POV, (14) {8 el oo
. : : - (1/L) 1082(N V)
We also introduce the following notation:
4O D I P 4 doh DD 2 = h(p) — (1/L)log,(Nv). a7
1A @) =[A=AL[" an 2(A, €)= [A=X Observe that in the above equation, the té¥m is simply the
and volume of a fundamental region for the sublattite(since it
dy (A, g’) (d (6) + d2( /2. where ¢ = (AL, AD). has indexV in A). Upon writing (17) in terms oR, we obtain
Note thatd, (), ¢) = d,(), ¢). Hence, when appropriate, we R = Ro = (1/L)logy(N). (18)

will write d, ()\ e). Also, when the edge associated with thé Single-channel system would have uskg bits per sample
Iattlce point is clear from the context, we will writé,()\) or © achieve the samé,. Instead, a multiple-description system

d,(<)instead off,(\, ©). Itis useful (as a design guide and for'SeS atotal ./t = 2R — (2/L) logy(N) bits per sample, and
the asymptotics which follow) to write down a slightly differentS® the rate overhead I8 — (2/L)log,(N).

expression for the side distortion where the sum is taken over
the edge sefy = Uy e Ea(N)

d.=do+ Y di(e)P(€)

V. A LABELING FUNCTION FOR A,
We now look for a labeling function: for which

E > di(e)
e C&y -
5 — — € Egd()‘,)
=do+ )\z;\ - Z ds(¢)P(¢) (15) is minimized and is independent ®f. Since the details are com-
N degan) plicated, we will work out the first example—for the hexagonal

whereP( ) is equal tO the prObablllty of the lattice p0|nt that 1This quantity is useful for evaluating the two-channel distortion as well as for
the edge labels, i.eP(¢) = Pr(Q(X) = \). evaluating the rate overhead associated with the multiple-description scheme.
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Fig. 5. Example to illustrate the mechanics of the labeling for the hexagonal ldttice

lattice As—quite explicitly. We will then identify certain gen- the number of lattice points at squared distaifcem the origin.
eral principles and use them to construct labelings for other l&t-other words, we require thaf is the number of points in the
tices. first K shells of the lattice, for som& = K (). There are

The lattice4, may be considered to be a subseRdfor as heuristic arguments, to be presented elsewhere, which suggest
a subset of_. Since each approach has its advantages, we wifiat there are infinitely many values &f with this property. For
switch back and forth between the two representations. We cexxample N = 31 has this property, since
sider the latticed, at unit scale to be generated by the vectorgy _ Ao+ Al +Ag+ Az + Ay =14+6+6+6+12 =31

{1, w} C C, wherew = —1/2 + iv/3/2. The associated Gram
We now present an example of a labeling function with a

matrix is
1 —1/2
(2 1)
reuse indexV = 31. The following are the steps in constructing
and the fundamental volumeyé3 /2. A sublatticeA’ of a lattice  the labeling function.
A is said to begeometrically similato A if it can be obtained
by scaling and rotating and/or reflecting [11]. To be more
precise, if a matrixi’ generates\’ and G generates\, then

ands31 is also of the formu? — ab + b?, witha = 5, b = —1.

A. An Example

1) Find a sublattice with index equal to the reuse index.
2) Determine the discrete Voronoi S&4(0).

A’ is geometrically similar ta\ if and only if &/ = cUGB, for
some nonzero scalar integer matrixt/ with determinantt1,
and real orthogonal matri®. The index/V is defined as the
ratio of the fundamental volumes df andA and is given in
terms of the scale facterby N = . It can be shown [6] that
A’ is similar toA if and only if N is of the forma? — ab + b2,
a, b € Z; if this holds, then\’ is generated by = a + bw and
v = w(a + bw). In addition to this restriction oV, we will

3) Determine an undirected label for every point 14(0).

4) Extend the labeling to the entire lattice using the shift
property of the undirected labels.

5) Given\ and its undirected label determine the correct
directed labelke (i.e., determine which endpoint efis to
be sent on channel 1 and which endpoint on channel 2).

A sublatticeA’ of index equal ta31 may be obtained by con-

require, for convenience only, that = Efio A;, whereA; is sidering all points of the formw + bw, with« = 5 — w and
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Fig. 6. The set of undirected edges(0) for the example in Section V-A. For clarity, only a subse£gf0) is shown. The entire set may be obtained by rotating
each edge around the origin (sublattice p@¥)tby multiples ofr /3 radians£.(0) consists of 28 distinct edges obtained by counting six edges for each edge in
the figure, except for the diameter, for which only three edges are counted. Th¢@dge} is not shown.

v = w(5 — w). A portion of this lattice together with some sub<{but see Section V-B2). The only constraint is that equivalent
lattice points is shown in Fig. 5. Lattice points have been labelpdints are mapped to equivalent edges—this can be clearly seen
with lower case letters, 0, ¢, ..., and sublattice points with in the table, where equivalent lattice points have been placed in
upper case letter®, A, B, C, .... In order to fix the coordi- the same row. In order to complete the labeling we need to assign
nate system, note that the sublattice pdiis the origin of the adirectededge to each lattice point based on the cele) (0
complex plane and the lattice pointandc have representationsor 1 valued) associated with that edgec(#) = 0, the endpoint
1 andw, respectively. Relative to this basis, the representatioote which is closer tox becomes the channel 1 label and the
of sublattice pointsd andC are5 — w andw(5 — w), respec- endpoint which is farther from becomes the channel 2 label.
tively. The discrete Voronoi set On the other hand, f(¢) = 1, the endpoint o€ which is closer
becomes the channel 2 label and that which is farther becomes
Vo(0) ={0, a, b, ¢, ..., y, #, aa, ab, ac, ad} the channel 1 label. This is illustrated for two cases—for a point

is also shown in Fig. 5. Note thito(0)| = 31. Points inVp(0) ~ thatlies inVo(0) and for a point that lies outsidé,(0).
will be labeled usinglirectededges obtained from the following ~ First consider the pointc = 1 — 2w which has been assigned

set of 28undirectededges: the edge{C, L} = {1+ 6w, 4 — 7w}. This edge has midpoint
w=5/2—1/2w. The color of the edg¢C, L} is obtained in
£.(0) ={{0, O}, (19) terms of the first component of the midpoint of the edgg2)
{0, A}, {0, B}, {0, C}, {0, D}, {0, E}, and the difference between the first components of the edge end-
{0, FY, points(4 — 1 = 3) by determining whethelr(5/2)/3] is odd or

even. In this case it is even, hence it is assigned the 6olgf

{4, CH B, D}, {C, E}, {D, F}, {E, A}, it had been odd, it would have been assigned the dolan ex-

{F, B}, pression for the coloring rule is given later in (22).) The specific
{A, D}, {B, E}, {C, F}, orientation of this edge is then obtained by determining which
G. DV {G. E' {H. E\ {H. F\. {I. F endpoint of{C, L} is closer toac. In this caseL = 4 — 7w is
(G Dy AG, By, {H, B} (] )AL I closer toac thanC' = 1 + 6w. Since the edge has color equal
{f, A, to 0, the closer endpoint becomes the channel 1 labelgicas,
{4, B}, {J, A}, {K, C}, {K, B}, {L, C}, assigned the edgd., O) (this is the edge direction rule (23),
{L, D}} (20) which is explained in detail in Section V-B5).

. _ o o Now consider the lattice point = 18 4+ 10w ¢ V(0). The
which are illustrated in Fig. 6. Three edges in this set, namefgarest lattice point i’ = 17+ 9w. We compute the difference
{4, D}, {B, E}, and{C, F}, will be used twice (i.e., both \ _ »» — (1 4 w) (the pointb) and use this to look up the

orientations will be used) in order to obtain 31 labels. corresponding undirected label in Table 1. This gives
Each pointin,(0) is then associated with an undirected edge

in £,(0) as shown in Table I. This association was done by hand a,(1+w)={0, B} ={0, 6+ 5w}.
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TABLE |
LABELS FORPOINTS IN THE DISCRETEVORONOI SET V;(0) FOR THEHEXAGONAL LATTICE AND SUBLATTICE INDEX N = 31

Lattice Label Color Label Lattice Label Color Label

Point | (undirected) (directed) || Point | (undirected) (directed)
A e = a,(A) cle) | € =al) A e = ay(A) cle) | @ =al))
9) {0,0} (0,0)
a {0,A} 0 (0,A) d {0,D} 1 (D,0)
b {0,B} 0 (0,B) e {O,E} 1 (E,0)
c {0,C} 0 (0,C) f {0,F} 1 (F,0)
g {AC} 0 | (AQ) j {D.F} 1 (F,D)
h {B,D} 0 (B,D) k {E,A} 1 (A,E)
1 {F,B} 0 (F,B) i {C,E} 1 (E,C)
n {A,D} 0 (A,D) q {A,D} 0 (D,A)
o {B,E} 0 (B,E) r {B,E} 0 (E,B)
p {CF} 0 (CF) m {C.F} 0 (F,C)
x {A1} 0 (1,A) ad {D,L} 1 (D,L)
s {D,G} 0 (G,D) y (A3} 1 (AJ)
t {E,G} 0 (G,E) z {B,J} 1 (B,J)
u {E,H} 0 (H,E) aa {B,)K} 1 (B,K)
v {F,H} 0 (H,F) ab {C.K} 1 (C.K)
ac {C,L} 0 (L,C) w {F.1} 1 (F,D

Using the shift property, the undirected label fois then ob- a lattice point outsidé/;,(0) as determined by the shift prop-

tained by shifting the edge by to give erty. For example, consider the laljél, C'}. The directed label

(L, ) is the label for the poinkc = 1 — 2w € V(0). The lat-

tice point which is labeled byC, L) is given by

To determine the correct edge orientation, we first determine 2u—(1-2w)=5—-w—-(1-2w)=44w

the color of the edge using the first component of the midpoi@tich belongs to the discrete Voronoi set of the sublattice point

((17 + 23)/2 = 20) and the first component of the differencey4

((23 —17) = 6) to obtain a color Notice that the labeling function shown in Table | exhibits an
({17 + 9w, 23 + 14w}) = |20/6](mod 2) = 1. additional symme_try that we hgve so far not use_d: If a point is

rotated by a multiple ofr/3 radians about the origin, its cor-
Since the color i, the closer endpoint becomes the channeli2sponding undirected label is also rotated by the same amount
label. Hencd 8+ 10w is assigned the labék3+ 14w, 17+9w). about the origin. Consider
We now illustrate the decoding procedure. Assume that I'={vy;, =expikr/3,k=0,1,...,5}

©= (2:.3+14w’ 17-+9w) andw_rite its undirected version using, - ot group of orde6. By considering equivalence
the basis vectors of the sublattigandy to get{du+3v, Sut2v}. classes relative to this group, we can reduce the size of the

Look for an equivalent edge in Table I. One such edge jg 0 1 jisting only the undirected edges for the points
{0, B} = {0, u+v}. Determine the shift required to make the{o a gyn . S% 4 g P
edges coincide. In this cageéu + v} — X' = {u +v, 0}, with The above example illustrates the basic steps that are to be

e ; ) . .
A . Su+2v. Upor_l looking up Table , we find that lattice POIN1owed in order to label the points if. Additional details and
b with representation + w has the undirected edd®, B} as oo underlying theory are presented next

label. We shift this point by adding’ = 3« + 2v to get one of

the candidate points = 3u+ 2v + (1 + w) = 18 + 10w. The B, General Principles

other candidate point is obtained from the Property 3 of the : . L
. . : . The construction of our labeling function involves the fol-

labeling function (the sum of the endpoints of an edge is eqlf%\'/vin Steps

to the sum of the points that it labels), an@#s+ 13w. Observe g steps.

that there is another edge in Table | which is equivalent to the S1) Selection of a geometrically similar sublattice of given

au(A) = {17+ 9w, 23 + 14w}.

edge we wish to decode. We would obtain exactly the same set index V.
of candidate points if we used this edge. In order to determine gy Construction o¥,(0), the discrete Voronoi set around
the correct point, since(e) = 1, we decode to the point which 0.

is closer to the channel 2 label, namelg,+ 10w.

Several observations can be made at this point. In Table I there
are two kinds of undirected edges (of positive length)—those
which are diameters of a circle centered and those which are
not. The diameters are the eddes D}, {B, E}, and{C, F}. i ) ) .
Both orientations of a diameter are used to label point$(0), S4) Extension of the mapping to the entire lattice.
whereas only one orientation of a nondiameter is used. For an S5) Identification of a specific directed edge to associate
edge which is not a diameter, the remaining orientation labels with a lattice point, once the undirected edge is known.

S3) Establishing a mapping between elemenig,¢d) and
undirected edges in such a way that certain constraints
are satisfied. The optimal construction requires that a
specific linear programming problem be solved.
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A which lies in the same equivalence classaSlearly, from the
guiding principle, the “closest” edge will be the one whose mid-
T\ point is closest to\. The edgex*(\, [¢]) for a given\ ande is
illustrated in Fig. 9.
A Ay Consider all one-to-one mapsVy(0) — £,|a, —o Which sat-
isfy the constraint that equivalent points are mapped to equiv-
alent edges. From among all such ma@hshooses* so as to
Fig. 7. A lattice pointk and its label( A7, A3). A is at distance- from the mlplmlzez)\c% © %A, [FA]). The mapﬁ Send.s a lattice
midpoint of the labels. point to an edge coset elementdp|.,—o in an optimal way,
thus identifying the best edge coset for a given lattice point.
Let «,(A) = (A, [B*(N)]). Sinces* identifies the optimal
edge coset for each lattice point astlidentifies the best coset
representative, given the lattice point and the coset, we obtain
the optimal edge for each lattice point by composing these two
mappings. It follows that, (0) = {«.(A): A € Vp(0)}. We
extend the mapping to the lattideusing the rulex,,(A+ \) =
(A + X
The constraint imposed on the mappjfigeeds some expla-
nation. It arises from the third assumption that we made about
the labeling function, namely, that the sum of the endpoints of
an edge is equal to the sum of the two points that it labels. By
requiring that equivalent points map to equivalent edges, it can
be shown that the midpoint of two lattice points that share the
same (undirected) label coincides with the midpoint of the label
itself. A graphical justification for this is provided in Fig. 10.
Fig. 8. The setyla,=o for N = 31. More formally, the argument is as follows. The point34(0)
occur in equivalent pairs. If two points ¥,(0) are equivalent,
In the remainder of this section, we will further describe steppbey sum to0. Consider the pait, and —\, and an edge.
S3)-S5). But first we state the following guiding principle.  If the edge in[e] which is closest to\,, saye,, has midpoint
1) A Guiding Principle: Suppose thah receives the label a, then the edge ife] which is closest to- A, will have mid-
e = (X, \y) as illustrated in Fig. 7. Thed, () satisfies the point —a. Thus,£,(0) contains the edges, and —c, (which
identity may be identical). Now from the shift property, also lies in
2d5(?) =[N = NP+ ]A = )2 8’“.(2a.) =£,(0)+2a '(no.te that?a is a sublattice point) and the
, 2 9 pointit labels, say,, is given by\, = — X, +2a. Thus, the two
=1/2)[[x = All” +2r (21) points that are labeled using the undirected edg@amely\,
wherer? = ||A — (X[ + A,)/2|]. This identity is known as and),, satisfyA, + A, = 2a, i.€., the midpoint of the edge co-
the parallelogram law (see, for example, [2, p. 3]). From this Wgcides with the midpoint of the points that receive this edge as
infer that in order to keeg, (¢ ) small, X| and\; should be as label. To summarize, the constraint is a sufficient condition to
close together as possible, ahdhould be as close as possiblensure that the labeling function has Property 3).
to their midpoint. This leads to the following: It is to be noted that the optimal mappifig can be obtained

Guiding Principle: Choose the shortest possible using standard techniques from linear programming [21]. Also

edge with midpoint as close as possible to the point ~ OPserve that if we define the grolip= {1, —1}, we can force
to be labeled. 3* to satisfy the constraint by considering orif(0)/T" and

Eula,=0/L'. This problem is one of matchin@v — 1)/2 lattice

2) Optimal Construction of,(0) and «, (steps S3) and points to(N — 1)/2 edge classes. Further reductions in com-
S4)): The starting point for determining the set of edges is f@/€Xity may be obtained by using a larger grobipin which
computety|., —o, Which is chosen to be the set f shortest case the problem is reduced to matchig — 1)/o(I") points
undirected sublattice edges of the foftn \'). This setisillus- t0 (V — 1)/o(I') edge classes, whetgl') is the order of the
trated in Fig. 8. The corresponding $&l«,_ is obtained by group. In the case of the, lattice, for example, we could take
replacing each directed edge with its undirected version. Ob10 be a group of ordes.

serve that edges of positive lengthdn|.,—o occur in equiva- ~ The mappingy, identifies the edge to be associated with
lent pairs. Next, for ever\ € V5(0) ande € &,|q, o, deter- upto the orientation of the edge. The correct orientation is deter-

mine mined by an edge orientation rule, designed to maintain balance
between the two descriptions. This is described next.
ds(A, [e]) = Hell[Il} ds(A, €) 3) Balance: Given an edge and two pointg \,, X, } that it

labels, there are two ways to establish a one-to-one correspon-
and leta* (), [¢]) be an edge e [¢] which achieves this min- dence between the points and the two directed edigesc },
imum. In other wordspx*(, [¢]) is the “closest” edge to\ as described in Fig. 11. The first selection rule favors the second
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¥ ¥ * ¥
¥ ¥ + €

Fig.9. lllustrating the optimal edge selection within a given equivalence cladgg. 10. Explanation of reason for mapping equivalent pointstiif0)
Shown is an edge, another edge in its equivalence clysls and the optimal to equivalent edges. The latticd, together with a similar sublattice of
edge in this class for labeling the poikt The points on the hexagonal grid areindex N = 13 is shown. Points\, and A, in V,(A]) are equivalent
sublattice points. and A, + Ay = 2A]. A, and A, are mapped to equivalent edges
and ¢,. The edgese, and e, have midpointsu, and p,, respectively,
which satisfyu, + p» = 2X, ande, = e, + (A, — \,). The point
description, the second favors the first description. Note that t ‘ei ((AAZ jr?;) "ESA',H);/O_(AAZ? in?\,'s_lazelf ; y”TJrhé%Zid_péi},)t of E,”VC',TDZ?;’S
. . . . . . . . a b - — e a b
distortions are antisymmetric, i.el;(e) with the first selection [abeled by the same undirected edge is equal to the midpoint of the edge.
rule is equal talz(e) for the second, ands(e) for the first rule
is equal 'godl(e)_for the second. Because of this antisymmetry, (Mo, A, (M= A5, A=y >0o0r
balance is attainable in an average sense by ensuring thatst e ) = (M — X5, A—p)=0and
two correspondences are used equally often. We achieve thishy” ™/ — sign((AL — A5) x (A —p))
requiring that the two correspondences are alternated along any (X1, A), otherwise.
straight Imfe r?f th;.\ edgel graph, ‘IF"S SE_OVr‘]"? |r(ljF|g. _tz'dTh'S IS tShserve that the result of either rule is the same whether we
purpose of the edge-co orlng rule which is described next. iie o — [V, A ore = {A), M.
4) An Edge Coloring RuleEach edge is assigned a bit (or
color) ¢(e) as follows. Consider an edge of the fo(aH bw,
¢+ dw). Let Ay = |c — a| and letA; = |d — b|. Then

<0 (24)

For decoding, since two lattice points receive a label from a
given undirected edge, we need to be able to tell which point
is being labeled, given the edge orientation. This is the reverse
of the edge direction rule. Thus, given a directed e@ge:

(A}, A%L) with midpointy and a lattice poink which could have
received this label, thBoint Selection Rulg.( ¢, A) selects
(22) Or 2,1 — A based on the edge colerand is given by

0, if A; >0and|(c+a)/(2A1)] is even
cle) = orif Ay =0and|(d+b)/(2A;)] is even
1, otherwise.

This coloring rule ensures that adjacent edges along any straight A, (M =X, A—py>0o0r
line have a different color. Note that the color does not depend— . (AL — A5, A—p) =0and o5
on the orientation of an edge, i.&, <, ande have the same %0 ¢+ ) = sign((X, — A5) X (A — ) > 0 (25)
color. The coloring rule is an ingredient in the edge and point 2,1 — A otherwise
selection rules that we now define. and

5) Edge Direction Rule and Point Selection Rul@iven an 2u—A, (ML=, A—p) >00r
(undirected) edge and a point\ for which this edge is a label, (AL =A%, A— )

ICIPVE =oand  (26)

we choose an orientation or direction for the edge using a rile sign((A] — A5) x (A—p)) >0
that depends on the color of the edge. et {)\;, A5} and let A otherwise.
w= (N +2A5)/2. Thetworules.(e, A), wherec = Oorlisthe 6) Constructing the Mapy: Using the notation previously
color of the edge, are defined as follows @lenotes the cross- established, we obtainas follows. Giver\, lete = «,,(A) and
or vector-product of two vectors aifd -) their inner product): letc = c(e). Thena()) = s.(e, A).

7) Proof that the Reuse Index is CorrectVe need to show
(AL A9), (AL =A%, A= Ni >0or that for any sublattice poink’, exactly V lattice points have

(ML = Az, A—p) =0and a label of the form( X', ) and exactlyV lattice points h
sole, \) = _ 23 ; V. points have a
VT s x 0 - ) >0 e of the form(, ).
(A3, Ap), otherwise To begin, observe i) that if edgdies in&,,., —o then so does
and —¢ (note thatV is odd) and ii)|€,ja, —o| = N. Define

RN} 1, {)\/, /\”} €&,
o IV, N = : : (27)
2During this research we used red and green to color the edges. 0, otherwise.
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Az

Fig. 11.

A

Given an edge = {], A5} and the two lattice point§A.. A} that it labels, with the midpoint of coinciding with the midpointA. + Ay )/2, there

are two possibilities for the selection rule. In the figure, the lattice points are joined to the sublattice points by both a single line, indid¢asingptmponent, and
a double line, indicating the second component. On the left, the double lines are shorter than the single lines, a selection rule which favaisigsespton,

thatis,d- is smaller thaw/, . On the right, the single lines are shorter than the double lines, a rule which favors the first description. Balance is achieved by requiring

that both rules are used equally often.

Lattice

Points Points

Sublattice

Fig. 12. Andillustration of the alternating structure along a straight line for maintaining balance between the two descriptions. A single titiegariatice
point to a sublattice point indicates the channel 1 label for that lattice point, a double line indicates the channel 2 label.

Then o £(0, X) > N, since{0, X'} € &,o, =0 iMplies
I(0, X) = 1. Conversely, iff (0, \') = 1, then{\, X+ X"} €
Eylay=0, for some)”. Thus, either\” = 0, which implies
{0, X'} € Eyjay=0 Or X = =X, which implies{0, —-\'} €
Eujar—=o Which in turn implies tha{0, X'} € £,q, —o. Thus

> I(0, X)=N.

AN CN

Furthermore, for any’ € A’

I()\/7 )\//) — Z
AITCA

10, X' = X)=N
NICA

since the labeling is extended through sublattice shifts. Thus, for

any X € A’, there are exactlyv edges of the form{\’, *}.

2 is the order of the group. Further reductions in complexity
arise from selecting a larger group that contains the group
{1, —1} as a subgroup. Fats, we used the group of rotations
{exp(tkn/6), k = 0, 1,2, 3, 4, 5}. This reduces the com-
plexity of matching problem to sets of siz& — 1)/6. Precise
conditions that the group must satisfy, and further reasons for
using a group, are explained in Section VI.

9) Numerical Results:The results of our optimization pro-
cedure for the hexagonal lattic, are displayed in Fig. 13,
along with comparisons with th# lattice. These results have
been obtained for a uniformly distributed memoryless source
by computing the optimal labeling function and then evaluating
the expression (obtained from (15) for a uniform pdf)

dy=do+(1/N) Y di(e)

A€VL(0)

(28)

Each edgg[ ), )} of positive length labels two points, of wherec is the edge that labels, dy is computed using (10)

which one receives the labgl’, \”) the other(\”, X’). Thus,
exactly N lattice points receive a label of the forf%’, «) and
exactly N receive a label of the forrfi, \').

and known values aff(A) [11]. To be comparable with,, the
value of N shown for theZ lattice is the square of the actual
reuse index for dimensioh = 1. To be more specific, leV.,

8) Further Reduction in Complexity: Group Constructiordenote the index for thd, sublattice, and lelvz be the index
Instead of imposing the constraint on the m@aphat was used of the sublattice of. Then the value ofV stated in the figure is
in Section V-B2, we could alternatively regard this map a&'7 for Z andN 4, for A». Also it should be noted that for each

an unconstrainednap between cosets/A’/I" and &, /A’ /T,

N, both lattices have been scaled in order to keep the product

wherel’ is the group of rotation§l, —1} (in complex notation Nv constant, where is the volume of a fundamental region of
since we are talking about;). Now we need only establishthe scaledlattice. From (17), this is equivalent to keeping the

a correspondence between two sets of §i¥e— 1)/2, where

rate constant for all points on the graph. It is seen that small
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Numerical evaluation of the MSE for the lattice A2

ON=127 : ? ? ? ? ?
2.5_... N‘=:121.":.“..‘..”.‘..>; ............... u .............. I<‘..l ............... ...... -

1.5

d1

0.5}

0 0.002 0.004 0.006 0.008 0.01 0.012
do

Fig. 13. A plot ofd, versusd, for the hexagonal latticel, and the integer lattic&.

performance improvements are obtained by usipgnstead of for any subset of lattice points\;, ¢ = 1, 2, ..., M} in this
7. Another benefitis that we obtain many more points in a givgrartition and any subset of edgfs, i =1, 2, ..., M} inthe
interval of (say) the side distortion, compared with #hiattice. partition the set of distances

VI. LABELING FUNCTIONS FORGENERAL LATTICES Di={ds(Xi, e5), 5 =1,2, ..., M}

In this section, we describe how to label a general lattice . ) .
using a sublattice\’ of index[A : A’] = N. The basic steps should be independent af Such sets of points and edges

. 4 L can be obtained by identifying a group of transformations
remain the same as fot,. The main differences arise in the y fying a group

selection of the sublattice and in the use of a group to sim I'FMZ {o, k= 1,2,..., M} and then taking the members of
the colnstruction l\J/Ve bégin by éstablighing cegtairtjgenerlaliém-e partition to be orbits under the action of this group. The
ditions that the group should satisfy. Specific groups and su%r-OuD we look for shouild have following properties.

lattices will then be given for certain particular lattices. We will 1) I' contains—1I7..
useG to denote a generator matrix fdrandcGG forthe gener- ) T s an orthogonal group.
ator matrix for the similar sublattic&’, wherec is a scalar and

X ) : L 3) I' preserves the lattica.
G is a unitary matrix. Our convention is that the columns of a ) I'p v !

generator matrix are a basis for the lattice. 4) I' acts fixed-point free oit”, i.e., for anyy € I', v not
the identity,yz = x — x = 0.

A. Sufficient Conditions for the Group 5) The order of the group divides the g.c.d. of all the shell
sizes.

The smallest group we can usdis= {I;, —Ir}, wherel,
is theL-dimensional identity matrix. Here we show why a group
is useful for reducing the size of the optimization problem ar@roperty 2) ensures that orbits of the group lie entirely within
derive certain conditions that the group should satisfy. a shell of the lattice. Property 3) is obvious, otherwise orbits

The motivation for using a group is to make use of inheremtould contain points other than lattice points. Property 4) en-
symmetries in the lattice and sublattice. Our objective is to paures that all orbits are of equal size. Property 5) ensures that
tition the discrete Voronoi set and the edge set into subsetseaich shell is partitioned into an integral number of orbits. Prop-
equal size with certain distance properties. More specificalgrty 6) is similar to Property 3).

6) I preserves the sublattide.
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We now look at Properties 3) and 6) more closely. Every lat- ForZ®, it is easiest to start by specifying the group. Let

tice pointA can be written in terms of the generator maiand

an integer vectos asA = Gu. By requiring thaty; Gu = Gy, u 01 0 0
for somey; € I', we ensure that the lattice is preserved. Sim- 00 1 0
ilarly, if the sublattice has generator matri&G, wherec is a 0 0 0 1
scalar, then by requiring;G = G-y;, for somey; € I, the sub- 1 0 0 0
lattice will also be preserved. In other words, we require that mn= 01 0 0 (33)
normalizes@ andG. 0 01 0
0 0 0 1
B. Group Construction and Generator Matrices g -1 000
an
For the space latticg?, we takeN to be an odd number of 1 0 0 0
the forma? + b2 wherea, b € Z. (Itis shown in [8] that similar 0 0 0 -1
sublattices oZ? exist whenevetV is a sum of two squares.) 0 0 -1 0
The generator matrices af&= I, and@ = GG, where 0 -1 0 0
1 0 0 0
0 0 0 1
- —b 0010
a=(" . 29
<b a) (29) 0100
Then we take the group to be
For the group we use
I={y,w,i=0,1,2,...,7}
r:{if2,i<0 1)} (30) _
1 0 a group of ordeil 6. The generators for the lattices ale—= I

and@ = GQ, where theith column ofG is v;v, wherev =
(a0b0c0d0)™, a? +b% + ¢? + d*> = N, the index ofA’, and

a group of orded.

i=01,...,7.

For the latticez* We2take12\7 to b2e an c;dd perfect square (again  Numerical computations for the latticés = Z¢ (standard-
see [8]). LetN = a” + 0" + ¢+ d° a, b, ¢, d € Z(any jzed to have minimal length) for i = 1,2, 4,8, are presented
integer can be written this way). The generator matriced arej, rig. 14. These results have also been obtained for a uniformly

and@ = GG, with

distributed memoryless source. Since the two-channel distor-

tions are identical for all the lattices considered in this figure,

we have only plotted the excess distortion term

a —b —c —d
= b a —d C
G=1. 4 o - (31) ANy Y o)
d —c b a AEV,(0)
. _di . . /L
The groupl is against the per-dimension reuse indéx’' .
VII. A SYMPTOTIC ANALYSIS
0 -1 0 0 We now derive upper and lower bounds on the distortipn
r=dar + 1 0 00 as given by (15). As we have already seen in (28), the regularity
v 0 0 01 of the labeling function and the high rate assumption lead to the
0 0 -1 0 following simplification for the expression in (15):
0 0 -1 0
0 0 0 -1 _ _ 1
+ 1 0 0 0 ds =do+ N Z ds(e) (35)
0 1 0 0 A€VL(0)
0 0 0 -1
0 0 1 0 wheree is the label for the lattice poink. Thus, in order to
+ 0 =1 0 0 (32) analyzed, we only need to consider edges that label points in
1 00 0 the discrete Voronoi séf;(0). Our analysis relies on a precise

a group of ordes.

knowledge of the lengths of these edges. Supposeitimta-
beled by the edge = (A}, %), asin Fig. 7. Let(¢) denote the
length of the edge = {A], A}, i.e.,l{e) = ||A] — AL, and let
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Cost per lattice point per dimension
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T
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0 1 ‘ | |

Fig. 14. A plot ofd, vs. the reuse index (per dimensiaN)./ = for the latticesz?, i = 1, 2, 4, 8.

7 be the distance of the pointfrom the midpoint\; + X5)/2.  BA. Clearly,v(3A) = BLv(A). For convenience we will write

Then v for v(A). Upon rewriting (16) for the scaled lattice, we obtain
2d,(e) = [|A = X, |12 4 |A = |7 = (1/2)l(e)? + 22, (36) Ro =h(p) — (1/L)logy(v(BA))
=h(p) — (1/L)logy (V). (39)

A simple lower bound fotl,(e) is obtained by setting to zero

inthe above equation. In order to obtain an upper bound, obseBimilarly, an expression foR is obtained by rewriting (17) in
that the midpoint of a sublattice edge can always be madearer to get

lie in V5(0) by a suitable sublattice shift. An upper bound is

then obtained (using the triangle inequality) by replagingth R =h(p) — (1/L) logy(N1(BA))
r*(A") = 2R(A’), whereR(A’) is the covering radius of the ‘2 I
sublattice. We have =h(p) — (1/L)logy(NB"v). (40)

From (10), the two-channel distortion with the scaled latfide

(L/9P(e) < ds(e) < /P +r") BT ig given by

. . 5 _ 2/L 32
which by using (35) leads to the bounds do = G(A)v™'2p3 (41)
where we have used the fact tl&@A) = G(SA).
- 1 1 N In terms of Ry, the two-channel distortiod, is thus given b
do+—— Z 12(6) i 0t iv Z l2(6)+7’ (A/)Q. 0 i i 28 ody g Yy
AEVL(0) AEVL(0) do = G(A)27H P27 =", (42)
(38) Now letN = 2L(@R+1) ThenR, = R(1+a)+ 1 and

— G(A)22MD
g = ST )4 2R+, (43)
A. Asymptotic Performance For given N and R, the correct scale factor is obtained by
In order to carry out a rate-distortion analysis, it is necessa#9lving (41) forj
to scaleA and A’ by a real numbeys. We will user(5A) to ;20— LR(1te)
denote the volume of a fundamental region for the scaled lattice 3" = oL, (44)



VAISHAMPAYAN et al. MULTIPLE-DESCRIPTION VECTOR QUANTIZATION WITH LATTICE CODEBOOKS 1733

Considerd defined by wherelim,, .., o(1) = 0. Using (51) in order to estimatg&(m),
G 1 Z 2(e)3? (45) we obtain i
4N | 4 - mBrml/2 T Bpal/?

AEVL(0) Z 1A; = <—L - Z L ) (1 + 0(1))
which is the common term in the bounds fbr given in (38).  iZo v =0 7
The quantity3? arises because we use the scaled latficeand By m—1
BA’. Itis understood that is the edge that labels. The edges - < S nL/2> (1+0(1))
in question in (45) (the edges &(0)) have been obtained by n=0
choosing theV shortest edges ifiA’, with one endpoint &t and _ ﬁ (L/2+41) _ m{L/2+1) +of L/2+1)
then shifting these edges so that the midpoint is as close to the o \" (L/241) o
origin as possible. Thus, eaéH(¢) is of the formiN2/L /L for S(1+0(1))
somei € Z. The termN?/! is a scale factor that comes from B, L (L/241)
the fact thafA : A’] = N and we normalize by, because = 2™ (14 0(1)). (52)

we are working with normalized square lengths. Let the larg
value of?(e) in (45) be equal td{ N2/ /L and letB; be the L2
number ofi?(e)’s that are equal taN% L /L. Then (BLEZZ/v)(1+ o(1)) we obtain

. 1
1 92, B N d= —p—
4N Z i (46) BY/H(L+2)

But

ean substituting (52) into (48) and observing from (51) tivat=

p 22r)g—2R(1=a) (] 4 o(1)). (53)
Our construction of the sdd( ) implies that theB; can be

obtained in terms of the coefficients of the theta series of the B, — 4
lattice A. To be specific, i (2) = 3, A;2' is the theta seriés t I(L/2+41)
for the latticeA, then we can assert that

L/2
(54)

. and G(Sr,), the normalized second moment of a spherd.in
B = A, 0<i<K dimensions, is given by
By <Ag. (47)
This fact will be used a little later.

Now substitute3 from (44) and use the fact that2ef =
4/N?/E | in order to obtain

G(Sr) = I(L/2 + 1%L, (55)

(L+2)
Thus By, is given in terms of7(S,) by

1
_ 92h(p)9—2R(1—a) K ) . — (56)
d= 22/L ]\27(1+2/L)L iB; | Gt
v i=0 and from (53) it follows that
K N
=E) B, (48) d = G(S;)2" P27 E=a)(1 4 o(1)). (57)
o The other terms in (38) a& andr*(A’)2. The termd, decays
where we have defined as2 2+ andr*(A)? decays likes?N?/L, which in turn
= = 22hP)g=2R(=a) )2/ 1 NO+2/ 1) ), decays ag 2%, Thus
The termy 1~ —o ¢B; can be bounded in terms of thg’s by lim d,228(1-9) — |jm ¢22R(1-a)
R—oo R—oo
K-1
> A< Z iB; < Z iA;. (49) and we have obtained our final result
i=0 i=0 lim d,22R80-9) = G(S)22MP), (58)
Upon definingS(m) = Zi:o A; and using Abel’'s summation Reo
formula we obtain We end with a comparison with the multiple-description rate
m m—1 distortion bound (4), by lettind. — o in (43) and (58). Itis
Z tA; = mS(m Z S(n (50) believed that ag — oo, G(A) — 1/27e and it is easily shown
i=0 n=0 from (55) thatlimy, ., G(Sr) = 1/2we. Thus our construc-

The termS(n) is the number of lattice points in the firat tions are optimal.

shells of the lattice\. This is roughly the ratio of the volume

of Sr.(n/?), a sphere of radius'/?, to v, the volume of the VIIl. SUMMARY AND CONCLUSION
Voronoi cell of A. To be specific, ifBr, denotes the volume of a

sphere of unit radius iRZ then The problem of lattice vector quantizer design is addressed

o for the two-channel multiple description. The main problem in
Jlim S(n)/n /2 = Br/v. the design, a labeling problem, is solved. A systematic construc-
ThusS(n) is given by t!on techmqge is develqped which is sunaple for generzal lat-
L)2 tices. Specific constructions have been provided4pandz’,
S(n) = Brn (1+0(1)) (51) 1 =1,248. I_:ina_lly, an asymptotic a_nalysis re\_/egls that per-
4 formance arbitrarily close to the multiple-description rate dis-
34, is the number of lattice points with L||A||? = i. tortion bound can be obtained.
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Open issues related to this work are detailed constructions f¢13] M. Fleming and M. Effros, “Generalized multiple description vector
other lattices, extensions to the asymmetric case, and extensions duantization,” inProc. 1999 Data Compression Cort999, pp. 3-12.
to greater than two descriptions.
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