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Abstract. Although more than :wenty years have passed since the appearance of Shannon’s pa-
pers, a still urisolved problem o! coding theory is to construct block codes which attain a low
probability of error at rates closs to capacity. However, for moderate block lengths many good
codes are known, the best-known being the BCH codes discovered in 1959. This paper is a sur-
vey of results in coding theory ubtained sinice the appearance of Berlekamp’s “‘Algebraic coding
theory™ (1968), concentrating on those which lead to the construction of new codes. The paper
concludes with « table giving the smallest redundancy of any binary code, linear or nonlinear,

that is presently known (to the guthor), for all lengths up to 512 and all minimum distances up
to 30. ‘

§ 1. Introduction

This paper is a survey of recent developments in the design of block
codes for the correction of random errors. ‘

In 1948, Shannon [981 showed that there exist codes which attain a
low probability of error at rates close to capacity. Gilbert [31] in 1952
obtained a lower bound on d/n for the best codes of a given rate. Sir{cei
then a great deal of effort has been made to construct arbitraxi'ly long
codes which meet or even come close to the Gilbert bound, but so far
without success (except for codes with rates approaching Oor ). o

For moderate block lengths, however, many good codes have been
discovered. The best-known are the Reed—Muller (RM) codes ([79], :
[93], [B1, Ch. 15]), Bose—Chandhuri—Hocquenghem (BCH) codes
([191, [45], [B1, Ch. 7 and Ch. 10]), and quadratic residue (QR) codes
([B1,Ch. 15], [111, §4.4]). A systematic description of t_hese ag}d
other codes discovered prior to 1968 will be found in [B1]. L

In this paper we describe some of the developments in coding theory
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that have taken place since the appearance cf [B1]. We concentrate on
those papers which construct new codes, or give ::ew properties of codes
previously known. Important topics not considered here are the weight
enumeration of codes [7, 8, 10, 14, 15, 32, 41,-53-57, 73, 81, 86, 94,
100, 106, 114], the classification of cosets of a code [¢ 16, 94, 103},
decoding techniques and burst error correction [20, 82, 25, 109, 110],
synchrenization recevery [105], and source coding and rate distortion
theory [6, 47]. See also the recent survey of Goethals [35], which is of
broader scope than the present work, and the book by Van Lint [111].
We have had little access to Russian work, and refer the reader to the
surveys by Kautz and Levitt [ 58] and Dobrushin [30].

The paper is arranged as foliows. §2 deals with cyclic and ielated
codes, including BCH, irreducible, perfect, abelian group, Goppa Srivas-
tava, and circulant codes. § 3 deals with nonlinear codes and codes for-
med by combining other codzs. §4 gives a table containing the best bi-
nary codes known to the author. An ex.ensive bibliography cor cludes
the paper. A shortened preliminary version of this paper has appcared
in [102].

§2. Cyclic codes

Most of the codes considered to date have been linear and cyclic, for
the excellent reasons that s.ich codes are simpler to implement and to
analyze. |

An (n, k) linear code € over the ficld GF(q) consists of q" vectors
(called codewords) of length n over GF(g) such that (a) the sum, iaken
componentwise in GF(g), of any two codewords is again a codeword,
and (b) the componentwise product of any ccdeword and any elemient
of GF(q) is also a codeword. The redundancy of the code isr=n--k
and the rate is R = k/». The minimum distance is denoted by d.

The dual code @* of @ consists of all vectors u of length n over GF(q)
such that - v = 0 for all v € @, the scalar product being evaluated in
GF(g). Thus @* is an (n, n—k) linear code. If € = @, @ is relf-dual.

An application of scif-dual codes to a famous unsolved problem of
geometry is given in { 74].

A code is shortened by omit:ing all codewords except those having
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prescribed values for certain components, and then deleting those com-
ponents [B1. p. 336].
A cyclic code is a linear code with the property that a cyclic shift of

any codeword is also a codeword. BCH, QR, and shortened RM codes
are all cyclic.

2.1, Are long cyclic codes bad? Gilbert [31] showed that there exist
arbitrarily long linear codes with a fixed rate R = k/n for which d/n is
bounded away from zero. In fact Koshelev [59] and Kozlov [60] have
shown that most linear codes meet the Gilbert bound.

On the other hand for BCH codes of fixed rate R, d/n > Qasn - «

([67], [B1, Ch. 12]). In fact Berlekamp | 12] has recently shown that
for BCH codes

g~ 2ninR™
logn
as n - «_ But it is not known whether long cyclic codes are also bad.

Berman | 18] has shown that cyclic codes of fixed rate and with block
lengths n which are divisible by a fixed set of primes (and only by these
primes) have bounded minimum distance.

Kasami [52] has shown that good linear codes cannot be too sym-
metric, by showing that any code with given d/n which is invariant un-
der the affine group must have rate R - 0 as # - o (This includes BCH
codes.)

More recently McEliece [77] showed that it is not the symmetry
alone that makes a code bad, by showing that there exist arbitrarily
long block codes (not necessarily linear) which are invariant under large
permutation croups and which meet the Gilbert bound. Also Weldon
[23], [118] has shown that there exist very, but not arbitrarily, long
circulant and quasi-cyclic codes which meet the Gilbert bound. (A quasi-
cyclic code is a linear code with the property that a cyclic shift of any
codeword by a certain prescribed number of places is also a codeword.
Circulant codes are defined in §2.9.) Weldon’s proof would apply to ar-
bitrarily long codes if the conjecture were proved that there are an infi-
nite number of primes for which 2 is a primitive root.

Kasami [52] and Chen [22] have shown that there exist arbitrarily
long shortened cyclic codes which meet the Gilbert bound.
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Thompson (see [75]) has shown that self-dual linear binary codes in -
which all weights are divisible by 4 n:eet the Gilbert bound. :

To give a rough summary of these results, a good family of codes can
be linear, or have many symmetries, but not both.

2.2. BCH codes. We recall the definition of a BCH code. Let g be a
prime power, let m be the order of g modulo n, and let ¢ be a primitive
n'h root of unity in GF£¢g™ ). Then the BCH coc’s of length n, designed
distance d = dycy , and symbols from GF(q), has the parity check matrix

l « o2 ..ot \

H=1 & o ... qXn-D )
| ad-l G- ‘;(n—-l)(d—l)/

If n = gq" — 1 the code is called primitive. By the BCH bound any such
code has actual minimum distance
@ min = dpcH -

It was conjectured [55], [B1, p. 295] that for primitive BCH codes
dhin = dpcy > but in 1969 Kasami and Tokura [K 2] showed that for
m> 6, m# 8,12, there a-e binary primitive BCH codes of length
n=12"_—1 for which

dpin > dpey -

On the other hand Berlekamp [8] showed that if the extended binary
BCH code of length n = 2™ has dgcy = 2™ 1 — 2 forsome i 2 Im—1,
then d,;, = dpcy - The results of [8] have been furth~ - generaiized by
Kasami [53]. But the precise determination of conditions on r and
dgcy for dy, = dpey to hold remains an unsolved problem.

Leont’ev [66] showed that a BCH code of length #n = 2™ — 1 and de-
signed distance 2¢+ 1 is not quasi-perfect for 2 < r <2 \/n/ln n and
m21.

V.M. Sidel’nikov [100] showed that for < +/n/10, the number of
words of weight w in the binary BCH code of desigred distance 2¢+ 1 is
(n+ D7()(1+ €), where lel < Cn=% | for most values of w.
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Anderson ([1], [111, p. 127]) obtained the following bound for the
dual of @ BCH code, using dcep number-theoretic results of Weil, Carlitz
and Uchivama. The minimum distance of the dual of the hinary BCH
code of length n= 2" — | and designed distance dpcy = 2¢+ 1 is at least

- 1im

2.3. Extensions of BCH codzs. Wolf [117] showed that two columns

may be addded to the parity check matrix of a BCH code to give the new
parity check matrix

\

10
00
.. H’
o )

while preserving the minimum distance of the code. In some cases the
redundancy is also unchanged, in which case we have a new code with

A=

n=n+2, k'=k+2, r=r, d=d.

This happons for example when the original code is a Reed—Sclomorn
code over GF(y), withn=g—1 anu r=d—1. Then the parameters of
the new codearen' =g+}l.and? =d' —-1=d-1.

It is easy to show that for any code d < r+1. Codes withd =r+ 1 are
called maximum distance separable or MDS codes (see [1011], [B1,

p. 3091, [111, p. 721). Such codes have also been called optinal. Reed—
Solomon codes are MDS and so are the new family of doubiy extended
Reed—Solomon codes.

Assmus and Mattson [3] have shown that MDS codes whose block
length n is a prime number are very common, by showing that every
cyclic code of prime length n over GF(p 1y is MDS, for ail i, for all ex-
cept a finite number of prines p.

Wolf [118] has obtained 4 further extension of BCH codes, by repla-
cing « in H' by the m X m matrix A over GT(q), where ‘
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0O 1 O 0 O
c 0 1 .. 0
0 0 O 0
A= : = :
0O 0 0 .. 1
Q 4 4 A - )

and where M(x) = x™ —a,,_;x™ ! — ... —a; is the minimal polynomial
of a ovu - GF(g). Call the new parity check matrix #"". Then if H gene-
rates a primitive BCH code over GF(g) of length n = g™ — 1, desigrea
distance dycy and redundancy r = r(dgcy — 1), 50 that this is a maxi-
mally redundant BCH code, then H'' is the parity check matrix for a
code over GF(g) with n' =m(q™ + 1), r = m(dycy — 1) and d 2 dpcy .
The rate of the code has thus been considerably increased.

For example, if the original code is over GF(5) with n = 52 _1=124,
gy =5, k=16, R =0.67, the new code hasn =52, k=44,d 2 5 and
R =10.87. ,

Cther extensions of BCH codes are n:entioned in §3.3.

2.4. The minimum distance of cyclic codes. The BCH bound for a cyclic
code say: that if the generator polynomial g(x) has dgcy — 1 consecutive
roots thea the minimum distance is 2 djcy -

Goethils {33] and Kasam: [51] have given improvements on the
2CH bouad for codes of composite iength. Hartmann [38—43] has
given many further generalizations ¢f the BCH bound, including exten-
sions of K.asami’s results. We will just state two of Hartmann’s theorems.
Here 3 denotes a primitive n'" root of unity. The first is a bound on the
minimum odd weight.

‘Theorem. Let kln. If for some d < nlk, g(8¥)=0foralli=1, 2. .., d,
then the minimum odd weight is at least d.

Example. By the BCH bound the (33, 13) BCH code has dgoy = 5, and

also dgye, = 10. But by the theorem d 44 > 11, and so the minimum
weight is > 10.
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The second theorem is an example of Hartmann’s generalizations of

the BCH bound to the case where gix) has several sets of consecutive
roots.

Theorem. Ifg(ﬁ'"ow'“j—l)): Ofori=0,1,2,..,d—landj=1,2, v ¥

with (8, n) = 1, so that g(x) has r sets of d— 1 roots each, then d 2
d+r.

Kas:mi and Tokura [K2] have shown that for any even m = 6 there
exist binary cyclic codes of length 2™ — 1 having more codewords than
the corresponding BCH codes. The first such example is a (63, 28) d =15
cyclic code, compared with the (63, 24) d = 15 BCH code.

Chen [C3] used an IBM 360/50 to calculate the minimum distance of
all binary cyclic codes of lengths < 65. He found three codes of length
63 having more codewords than the corresponding BCH codes. These
are the (63, 28) code just mentioned, a (63, 46) d = 7 code given pre-
viously by Peterson [86], and a (63, 21) d = 18 code. The BCH codes
closest to the last two are (63, 45)d =7 and (63, 18) d = 21 codes.

2.5. Irreducible cyclic codes. A cyclic code over GF(q) is called irreduc-
ible if its check polynomial #(x) is irreducible over GF(q) [111, p. 45].
The simplest examplcs cf irreducible codes are maximal length shift re-
gister (2" — 1, m) codes (also known as shortened first order RM codes).

Baumert, McEliece, and Rumsey [5], [ 78], generalizing earlier work
of Delsarte and Goethals [29], have given a method for finding the
weight enumerators of all irreducible cyclic codes. For example in the
binary case, let N be a fixed odd number and let k be the smallest posi-
tive number such that 28 = 1 (mod N). Then there are binary irreducible
cyclic (n = (2™ — 1)/N, km) codes @,,, for m =2, 2, ... . Each &, con-
sists of the zero vector plus N cycles of 7 codewords each. Let wg, wy,
..., Wy_; be the weights of these cycles. Then the generating function
wo +w ¥+ ... +wy_y ¥V s given by

2m-L(E(y))" (med y¥ — 1)

where E(») is indecpendent of m. For example when N =7 we obtain
(9, 6), (73, ©),(585, 12), (4681, 15), ... codes with minimum distances
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respeciively equal to 2, 28, 280, 2320, ... . (The complete weight distri-
butions are given in [ 78].)

The weight distributions of several other families of cyclic codes have
been given by Oganesyan and Yagdzhan [81], [92]. We just mention
one of these, which consists of codes with check polynomials of* the
form.h(x) = H op,(x), where pg(x) is irreducible of degree k ard pe-
riod ey, my = (2 *0—1)/e, i prime, 2 is a primitive root of my, p;(x) is
a primitive polynomial of cegree k; and period ¢;, and the numbers ¢;
are relatively prime.

2.6. Paifect codes. An e-error-correcting code over GF(¢) is called per-
fect if every vector is at a distance of at most e from the nearest code-
word.

‘Examples of perfect cades are various trivial coaes contammg 1,2, or
q"™-codewords; the Hamming d = 3 codes over any field; and the two
Golay codes,.the (11, 6) «/ =5 code over GF(3) and the (23 12)d=17
code over GF(2).

A long-standing conjecture that no other perfect codes exist over
finite fields has recently been proved by Tietaviinen, using earlier work
of Lioyd and Van Lint {107}, [108], [112].

‘The (12, 6) and (24, !2) extended Golay codes have many important
combinatorial properties. Their symmetry groups are the Mathieu groups
My, and M, ; their low weight vectors form the Steiner systems S(5, 6,
12) and 515, €, 24): and the lattices A, and A, (the Leech lattice) can
be comnstructed from them {62], [65]. A series of uniqueness theorems
have been proved: Pless [87] 'showed the uniqueness of the Golay codes,
Stanton [104] the vniqueness of the Mathieu groups, Witt [116] the

- uniqueness of the associated Steiner systems, and Conway [24], [25]
the uniaueness of ths Leech lattice.

Gocethals [34] sh::wed that the Nordstrem—Robinson code (§ 3. 2)
is cont=ined in the (74, 12) code. Berlekamp [11] has studied the sym-
metry groups of the principal subcodes of the (24, 12) code.

Since the Nordstrom—Robinson code is the first member of Prepara-
ta’s family of nonlinea: double-error correcting ccdes (§3.2), it is natural
to ask if the others can be extended to give codes analogous to the Go-
lay code. However, Preparata [91] has shown that this is impossi
one way-at least.

O"

le, in
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Turyn [2] showed that the (24,12) G

SInQ Alarr £y YA raarr o Alfainad aa
b b MTUdy MUAL Llidy U wvoraiicud ad
thesetofvectorso M (g+x,b+x,atb+x)a,be@,x€C,,
where 2. and €, are +wo dl""‘r‘«c it Firot Ao TR e
—i &RC &, dare two Criterent 1irst order KM codces. The sanie

construction was used in [S4] to obtain an infinite family of linear
codes with d/n = §. The first three codes of the family are the (24, 12)
Golay code, and (48, 15) d = 16 and (96, 18) d = 32 codes. As the length
increases the rate approachf=s zero. A generalization of the (12, 6) Golay

code is described in the next section.

Parker and Nikolai [82] described an unsuccess{ul search for simple
transitive groups analogous to the Mathieu groups.

2.7. Abelian group codes. Let @ be a binary cyclic (n, k) code. If code-
words are represented by polynomials, cyey ... €, <> o+t x+ ...
+C,,~IX""1 , then it is well known that the codewords in € form an
ideal in the ring of polynomials modulo x"—1 [P1, Ch. 8]. .
MacWilliams [71], [72] . Berman [17], [18) and others [21], [27]
have studied the following 2eneralization of cyclic codes. Let G =
{g,, ..., 8,} be a multiplicative abelian group, and let R denote the set
of all formal sums

€18y Y28y + .-t 8,,¢;=00r 1

with the obvious addition and multiplication. R is a vector space of di-
mension n over GF(2). An ideal o is a linear subspace of R such that if
Aed geGthengdedA. Then A isa natural generalization of a cy-
clic code, and is called an abelian group code.

Many properties of cyclic codes carry over to abelian group codes,
such as the existence of a generator codeword whose multiples generate
the code.

Berman [ 18] has shown that for fixed rate an for block lengths n
which are divisible by a fixed set of primes (and unly by these pnmes ¥
as n - o abelian group codes have higher mlmmu m distance than cyclic

- codes.

2.8. Gopp1 and Srivastgva codes. Goppa [G4] has recently described a
new famlly of linear noncychc codes, some of which meet the Gilbert

bound.
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Let integers m, ¢ be given satisfying 3 < m < mt < 2™ . Let
Z = {z € GF(2™")| degree of minimal polynomial of z is mt},

and let & be a primitive slement of GF(2™ ). Then for any z € Z the bi-
- nary Goppa code C(m, ¢, z) is the (n = 2™ . k 2 2™ —mt) code with the
mt X 2™ parity check matrix

1 1 i 1

H=[ - - ese -‘——————] -
z—-0"z-1"z—a’™" 7—g2™-2

Goppa has shown that the: minimum distance of @(m, ¢, z) is (i) at least
2t+1 for all z € Z, (ii) equal to that given by the Gilbert bound for some
z € Z. Unfortunately it is not known how to choose z & Z so as to make
this happen.

Srivastiava codes [B1, § 15.1| resemble Goppa codes. Helgert [H21,
[H3] has recently found a number of good Srivastava codes.

2.9. Circulant codes. in 1964 Leech [61] showed that the generator
matrix for the (23, 12) Golay code can be written as

[1". C
L 1)1

where C is a circulant matrix, that is, each row is a cyclic shift of the -
previous row by one place. In this case the first row of C can be taken
tobel 10111000610, havinga 1 at position 0 and at the quadratic
residues of 11.

Then in 1965 in an important paper ([K1]. see also ,46], [49], [50])
Karlin found a large number of binary codes generated by circulants.
many having a higher rate than the best codes previously known. Exam-
ples are (27, 14), (30, 16), (34, 12), and (53, 14) codss, having minim'un
distances respectively equal to 7 7, 11 and 17.

This approach also simplified the calculation of the minimum distance,
and Karlir was able to determine the minimum distance of a number of
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binary quadratic residue codes, e.g., the (79,40) d = 15 and (89, 45)
d =17 QR. codes. Karlin also asserts that the QR codes of lengths 103
and 107 both have minimum distance equal to 19.

Pless [88], [89] has constructed self-dual (2q+2,q+ 1) codes over
GF(3) for every odd prime power g = —1 (mod 3). These are circulant
codes, with a generator matrix of the form

1 1
1 C
1 1
0111
where C is a circulant matrix. The first five are (12, 6) (the ternary
Golay code), (24, 12), (36, 18), (48, 24) and (60, 30) codes, with mi-
nimum distances 6, 9, 12, 15 and 18 respectively. These five codes h :ve
rate } and d = 4n+ 3. But unfortunately later codes in the family have

smaller distances. Nevertheless circulant codes are a very promising area
for research.

§3. Nonlinear codes and codes formed by ccmbining other codes

Since the number of codewords in a nonlinear code need not be a
power of the alphabet size, it is convenient to have a new notation:

An (n, M, d) code € is a set of M codewords of length n, with symbols
from GF(q) and minimum distance d. The dimension of this code is k =
long , the redundancy is r = n —log, M, and the rate is R = k/n. Now k
and r need nout be integers.

A coset of @ is an arbitrary translation a + € of the codewords of @
(where a is any vector of length »n). If € is linear, then two cosets of €
are either equal or disjoint, but this need not be true if € is nonlinear

An (n, M, d) code is said to be optimal if it has the jargest possible
number of codewords for the given values of » and d. This is using op-
timal in a very naive -ense, of coursz, since it omits any consideration
of encodir:g and decoding. But it can be argued that once good codes
have been found, the techniques for their implementation will be deve-
loped later, as has happened with BCH codes {B1, Ch. 7].
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It seems reasonable to éxpect that optimal codes will often be non-
linear, and that ever: near-optimal linear codes will have a complicated'
structure. As a well—known verse by J.L. Mass=y [10] says, “... good
codes just might be messy.” ~

‘Nonlinear codes have been successfully used to construct dense
sphere packings in Euclidean space [63—65].

3.1. Codes derived from Hadamard and conference matrices. Ann X n
Hadamard matrix ¥, is a matrix of +1’s and —1’s such that &, %} = nl
(where . is a unit matrix). Replacing +1’s by 0’s and —1’s by 1’s converts
X, intc a binary Hadamard matrix H,, .

It was shown by Plotkin [P1, p. 791, [P3], [B1, p. 316] that the
(n, 2n, $ n) code consisting of the rows of H, and its complement is op-
timal. When » is a power of 2 this is a (linear) first order Reed—Muller
code, while in the other cases this is a nonlinear Hadamard code.

Many other nonlinear codes can be obtained by manipulating Hada-
mard matrices. Levenshtein ({L2], see also [58, p. 206], [83]) showed
that optimal codes for all d and all n < 2d can be obtained in thic way
(provided the requisite Hadamard matrices exist) by showing tha: such
codes meet the Plotkin bound [P3]. Patel [84] has determined tine op-
timal linear codes in the same region.

Recenily [S2] good nonlinear cedes with n shgh tly greater than 2d
have been obtained from conference matrices. An 1 X » conference ma-
trix T, -is a matrix with 0’s on the diagonal and * I’s elsewhere, satisfy-
ing T, T, = (n—1)I. Whenever a symmetric T,, exists, an (n —1, 2n,

4 (n —2)) binary nonlinear code can be constructed. The first few codes
obtained are the (9, 20, 4) optimal code of Juiin [J1], a (13, 28, 6)

code which is inferior to Nadler’s code [80], the (17, 36, 8) code given
in [S1}, and (25, 52, 12). (29, 60, 14}, (37, 76, 18), (41, 84, 20) codes.

3.2. Preparata and Kerdock codes. Nonlinear double-error-correcting
codes were constructed by Nadler ([80], a (12, 32, §) code), Green
([371, (13, 64, 5)), and Nordstrom and Robinson ([N11], (15, 28, 5)).
Van Lint [ 114] has given a simple construction of the Nacler code.
Preparata [P4] gave a high-rate generalization of the Nordstro-n—Ro-
binson code. For every even m = 4 he constructed a nonlinear (27" —1,
22™M-2m  5) codz. These codes are optimal, contain twice as many code-
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worujs.as double-error-correcting BCH codes, and have straightforward
encoding and decoding algorithms.

ae‘r.m’u(ov and Zinov’ev [96], [97] and Goethals and Snover [36]
have independently obtained the weight distribution of the Preparata
codes. A

Kerdock [KS] has given a corresponding low-rate generalization of
the Nordstrom—Robinson code. He showed that for every even m = 4
it is possibie to take the union of the (2™, 2™ *1 2m-1) first order RM

. s manre 1 s o
code and 2™ ~' —1 of its cosets to obtain a

,,,,,,,

nonlinear code. For m = 4 this is the extended Nordsirom—Robinson
code; for m = 6 this is a (64, 212, 28) code containing four times as
many ccdewords as the best extended cyclic code of that length and
distance. : )

The Preparata and Kerdock codes are “duals” in the sense that their
weight distributions satisfy the MacWilliams identity [B1, p. 401]. The
reason for this is not yet understood.

The next four sections describe constructions for combining two,
three, or four codes t > obtain new codes.

3.3. Constructions X and X4. Construction X combines three codes to
form a fourth. Suppose we are given an (n , M, d;) code €; and an
(ny, M, = b, d,) code @,, with the property that €, is the union of
b disjoint cosets of €,

Cy=(x; +C DU (X3 + €U ..U (xy + Cy)
for some set of veciors S = {x;, x5, ..., Xp}. Let
Gy = {yl s Y2, s Vp)
be any (n4, b, A) code. . .
Let 7 be an arbitrary permutation of {1, 2, ..., b};so that x; > '

defines a one-one mapping from S cnto €3.
The new code is then defined to be
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84 = (xl + Cl,y"(l)) U (xz <+ el,yﬂ,(z)) U ...
e U (xb + Gl ,y"(b)) .

Simply stated, @, is divided into cosets of €, and a different code-
word of @5 is attached to each coset. See fig. 1.

Then @, is an (n; + ny, M,,d = min{d,, d, + A}) code. Similarly
construction X4 combines four codes tc forui a fifth. See [S4] for de-
tails and further examples.

Example 1. Take @, to be a Preparata code, €, a Hamming code, €4 an
even weight code. Then, after showing that the Hamming code is a union
of cosets of the Preparata code, one obtains (2™ +m—1, 22M-m-~1 ., 5)
codes for m 2 4. Using construction X4 one can do even better, and ex-
tend the Preparata code by the addition of /#+ 1 information symbols
at the cost of adding one check symbol [S4].

Example 2. Using BCH codes one obtains new codes having at leasi as
many codewords as those given by the Andryanov—Saskovets construc-
tion [B1, p. 3331. In some cases e-error-correcting BCH codes may be
extended by the addition of about n*/¢ information symbols at the cost
of adding one chack symbol {S4].

f 0 D | — v
dp ( ) A
N LT N — Ynez e
°2  som——— J
e/

Ca

Fig. 1.
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3.4. Constructions Y1, Y2, Y3. The following consiructions were sug-
gested by Goethals [34].

fl‘onstrurction Y1.Let €, be za(n, 2 , dy) linear code ard let €, be
1.t§ (i.i, 2'1, d,) dual code, with coordinates chosen so that there is a
mm.imum weight codeword 1 ... 10... Qin @,. Let § be the subgroup of
@, in which the first d, — 1 coordinates are zero. Then the df coordi-

nates of S are also zero. If ths initial d, zeros are deleted from S we are
left with an

(_(,"2 —dz, zkl—dz'fl’ dl)
linear code.

Construction Y2. Let T be the union of S and all of the d, — 1 cosets of
S in €, witt coset leaders 11072, 101073, ..., 109272 10" %2, By de-
leting the first d; coordinates of T we obtain an

(n'-dz, d2 zkl—dz* . s dl - 2)
nonlinear code.

Construction Y3. Taking ali the cosets with coset leaders of weight 2
we obtain ¢n

/ d
(n"dZ? (1 + ( 22}) 2k1—d2+1’ dl,“'4)

nonlinear code.
Many esamples of codes obtained by these constructions are given in

[S4].

3.5. Construction Z. This combines two codes to form a third [P3],
1447, IS11], [068].

Lei &) =(r, M, dy) and €, = (ny, M,, d,) be arbitrary codes over
GE(q). Let o denote the zero vector of length In, —n, 1. Then the new

code @ is d2fined as follows.
(). If ny < 1y, @5 = {(x,1x,0) +¥)Ix € €,y €Cy}, and is an
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(ny +ny, MiM,,d=min(2d;, d,)) code. (In the definition of €;, the
comma denotes concatenation and + denotes vector addition in GF(g).)

(ii). Ifn, > ny, €3 ={(x,x+(y,0)lx e,y € (-22} and isa
(2ny, MMy, d = min(2dy , d,)) code.

@ is linear if €, and @, are. A number of applications are given in
[S1], including the construction of an infinite family of nonlinear single-
err )r-correcting codes which contain more codewcrds than shortened
Ha.nming codes. Other examples, of which those in table 1 are typi-
cal, will ve seen in table 2.

3.6. Assmus and Mattsonr’s rate § cy-clic codes. Let p be a prime of the
form 8V + 5 for which 2 is a primitive root (e.g.,p = 5, 13, 29, 37, ...)).
Assmus and Mattson {4] showed how to concatenate three different
versions of the (p, p— i) even weight code to obtain a linear binary cy-
clic (3p, p--1) code, denoted by 3E, with minimum distance at least
24/3p. Let 3E* be the cyclic (3p, p) code consisting of the codewords of
3E together with their complements. The first few examples of 3E* are

15,5)d=17,(39, 13)d=12,(87,29)d =24, and (111, 37) d = 24
coces.

3.7. Other constructions Othér techniques for constructing codes have
been given in [26], [28], [76], [9¢]. However the codes obtained ap-

pear to contain fewer, or at best as many, codewords as known cyclic
codes.

Tatble 1
e, 5 e )
ny r dy n, r dy n r | d “
23 11 ' 7 11 4.830 4 34 15.830 7
19 12 8 19 i8 19 38 30 16

14 i 14 264 101 27 278 114 27
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§4. A table of the best codes presently known

4.1. For‘a given value of the length n and minimum distance d,let M be
the maximum number of codewords of any binary (n, M, d) code, linear
or nonlinear, that is presently known (to the author). Then table 2

gives the redundancy r =n— log, M of this code as a function of n and
d, for all n < 512 and d < 30. These codes are of considerable theoreti-
cal interest in themselves, provide a basis for judging new codes, and as
a lower bound to the densest possible codes complement Johnson’s
table of upper bounds [48]. Previous tables of codes are to be found in
[B1], [C1], [C3], [G®1, [L1], [P1], [P3], [W1], and [86].

4.2. Types of codes. The codes are classified as follows.

B = Bose—-Chaudhuri—Hocquenghem code [B1, Ch. 7].

C =Cyclic linear code [P1, Ch. 8].

D = Goppa code ([G4] and §2.8 above).

€. = Group or linear code [P1, Ch. 3].

H = Hadamard code [L2].

J = Code from conference matrix [S2].

K = Circulant code [K1].

N = Nonlinear code.

P = Nordstrom—Robinson—Preparata code [N1], [P4].

Q = Quadratic residue code ([B1, §15.21, [111, §4.4]).

K = Reed—Muller code [B1, §15.2].

S = Srivastava code [B1, §15.1], [H2].

XA, XC, XP = Codes from construction X applied to BCH codes (the
generalized Andryanov—Saskovets construction), to cy-
clic codes, and to Preparata codes respectively ([S4]
and §3.3 above).

X4 = Codes from construction X4 ([S4] and §3.3 above).

Y1,Y2, Y3 =Codes from constructions Y1, ¥2, Y3 ({S4] and §3.4
above).

" 7 =Codes from -~onstruction Z ([S1] and §3.5 above).

Types B,C, D, G. K. Q, R, S. YA, XC, Y1 are linear, H, J, N, P, XP,
Y 2. Y3 are nonlirear, and X4, Z may be linear or noitlinear.

In table Z, oles for which the reference [S3] is given are new. With

one exception these are all exampies of constructions mentioned in the
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text. The exception is an (85, 18) @ = 25 which was obtained using con-
struction 39 of Hatcher [44].

4.3. Since an (n, M, d odd) code is equivalent to an (n+1,M,d + 1
code, only codes for odd d need be given. An (n, M, d) code may be
punctured to give (n—i, M, d—i) codes for 0 < i < d, or shortened to
give (n—i, M2 cf) codes for 0 < i < log, M. Ir: table 2 all such mo-
dified codes carry the name of the original code. An (1, M, d) of redun-
dancy r may be thought of as an (n + i, M, d) code of redundancy r + i,
fori 2 i, in which case the name is left blank.

4.4. Some nonlinear codes in table 2 have redundancy r which is not a
whole number. In such cases the number of codewords is quickly found
as follows: If r = R + a, where R is a whole numberand 0< a< 1,

the number of codewords is M = i2""R=5 where i is given by

a}.046 .093 .142 .193 .245 .300 .356 .415 .541 .608 .678 .752 .830 .913
(131 30 29 28 27 26 25 24 22 21 20 19 18 17

4.5. In many cases the reference is to a place where the complete weight
distribution of the code may be found, rather than to the original deter-
mination of the minimum distance.

4.6. Although many of these codes may be optimal, in the sense of hav-
ing the smallest possible redundancy, very few of them are known to be
optimal. (Ccipare [48].) The reader is invited to try and improve on
them. Those of type Z and distances 25—29 are especially weak. The
author is eager to hear of any improvements.

4.7. In the first section of table 2, for minimum dist-nce d = 3, when
n=3,4,5and 3-2"2< p< 2™ m > 3, the coces shown are (shor-
tened) Hamming codes [H1]. When 2" < n < 3-2m-1 1 > 3. the codes
shown are nongroup codes, discovered by Golay [G2] and Julin [[1] for
n=8,9,10, 11 and by Sloane and Whitehead [S'] forn > 16.
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Table 2

Binary codes of length n, minimum distance d, and smallest known redundancy r

Distance d = 3

(see sect, 4.7 i+ this paper)

Distance d = 5

Distance d = 7

h

r

4

10—
12—
16—
18-
20—
24—
32-
36-
40-
48—
64—
72~
80—
96—
128-
144
160
192
256~
288-
320-
384

1

8

9
11
15
17
19
23
31
35
39
47
63
71
79
95
127
143
159
191
255
287
319
383
511
512

3

3.678
3,752
3.830

4.678
4.752
4,830

5.678
5.752
5.830

6.678
6.752
6.830

7.678
7.752
7.830

8.678
8.752
8.830

9.678

n r Type Ref. n r Type Ref.

7- 8 6 G [L1} 10- 11 9 G [L1)

9- 11 6.415 H [P3] 12- 15 10 R [P1}

12- 15 7 P [NI] 16 10.830 J [S1]

16— 19 8 XP [S4] 17— 23 11 Q [G1]

20 8.678 X4 [S4] 24 12

21- 23 9 G Iwl} 25— 27 13 K [K1]

24- 3210 B [G3] 28— 30 14 K [Kl1j

33— 63 11 P [P4] 31- 32 15 D [G4]

64— 70 12 X4 [S4] 33 15752 Z [S3})

71— 73 13 S [H2] 34— 35 15.830 Z ,S3]
74-128 14 B [S4! 36— 47 16 G*

129-255 15 P [P4} 48— 63 17 C (C3]

256-271 16 X4 [S4} 64— 67 18 XC [S4]

272-277 17 S [H2 68— 70 19 XA (83]

278-512 18 B [S4} 71— 83 20 S H2]

84-128 21 D (G4}

129-135 22 XA 183)

136—159 23 Y1 S4]

160-256 24 D G4}

257-264 25 XA i83]

265-311 26 S iH2]

312-512 27 D :G4]

* From S.M. Reddy
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Table 2 (continued)

Distanced = 9 Distance d = 11
n r Type Ref. n r _ Type  Ref.
13- 14 12 G {L1] 16— 17 15 G [L1]
15 13 18 16
16 13415  H [L2] 19 16415 H [L2]
17— 19 13,678 H o [L2] 20 17 B (G3]
20 14678 21- 23 17415 H [L2]
21 15415 1 [L2] 24 18.300 ] [s2]
22 16.300 io[s2] 25-26 19 G [H3]
23— /5 16678 Yz  [S4] 27- 31 20 B [P1]
6 17678 32 21
27- 29 18 B [P1] 33- 35 22 Y1 [S4]
30- 35  18.415 Yz [$4] 36- 47 23 Q [P2]
36 19.415 48— 50 24-26
37-41 20 Q [B1] 51— 63 27 B [P1]
42— 45 21 Q (P2 64— 67 28 XA (S3]
6 2 68— 70  iy-31
47- 49 22193 Y2 [S4] 71- 74 32 XC [S4]
50— 5z 23 S (H2] 75 33
53- 73 4 B [K3] 76— 94 34 s [H3]
74— 75  25-26 95-128 35 D [G4]
76— S3 27 S [H2] 129-135 36 XA [s3]
91-128 28 B [S4] 136-137  37-38
129-135 29 XA [S3] 138-156 39 s [H3]
136 30 157-256 40 D (G4]
137-156 31 S [H2) 257-264 41 XA (s3]
157-256 32 B [S4] 265-266 42-43
257-264 33 XA [S3] 267-311 44 S {H3]
265 34 312-512 45 D (G4]
266-311 35 S [H3]
312-512 36 B [S4]
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Table 2 (continued)
Distance d = 13 Distance d = 15
n r Type Ref. n r Type Ref.
19- .0 18 G [C2 22— 23 2
21— 22 19-20 ez 24—~ 25 2;_23 ¢ =
23 20.415 H {L2] 26 23.415 H [L2}
24 21 G [C1j 27 24 G [L2]
25- 27 21193 H [L2] 28  24.673 H {L2]
28 22.093 T [S2] 29- 31 25 R iP1]
29 23 R [P1] 32 26
30 24 33 26,830 H [L2]
31 24,830 H [L2] 34 27,752 J [S2]
32 25.752 ¥ [82) 35 28 Z [83)
33- 37 26 XA [S3] 36— 37 29 Z {83]
38 27 38— 41 30 XC {S41
39— 43 28 C [B1] 42 31
44~ 45 29--3¢ 43- 47 32 G [S4]
46— 55 31 Y2 {S4] 48— 50 33 C [B1}
56 32 51— §5 34 C [B1]
57— 63 33 B [P1] 56-- 63 35 C [K2]
64- 70 34 XA [S3] 64— 66 36 Xc [S4]
71- 72 35-36 67— 68  37-38
73~ 77 317 Q [KI] 69—~ 71 38.830 Y2 [S4]
8- 79  38-39 72- 79 39 Q iK1}
80— 85 40 Q [K1] 80— 81 40-41
86— 9% 4! S [H3] 82—~ 87 42 Q [K1])
97128 42 B [S4] 88— 91 43-46
129-135 43 XA [S3] 92— 99 47 Q [K1]
136-138  44-46 100 48
139-156 47 S [H3] 101-128 49 D [G4]
157-256 48 B [S4] 129-135 50 XA [S3]
257-264 49 XA [S3] 136--140 5155
265-267 50-52 141--256 56 D [G4)
268-311 33 S [H3] 257264 57 XA [S3]
312512 54 B [S4] 265~269  58-62
270-512 63 D 1G4]
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Table 2 (continued)

Distanced =17 Distance d = 19
n r . Type Ref. n r Type Ref,
25-26 24 G |[C2] 28— 29 27 G [C2]
27— 28 2526 30- 32 28-30
29 26415 " H  {L2] 33 30415 H [L2}
30 27.415 34 31 C [C3]
31 28 G [L2] 35 318678 H [L2]
32 28415 H [L2] 36 32415 H [L2]
33— ZI. 28.830 H [L2] yi- 39 32,678 H [L2]
3 29.752 ] [S2] 40 33.608 J [S2]
37 30.678 H [L2] 41 34.541 H [L2]
38 31.608 I [82) 42 35,541
39 32,541 H [L2] 43 36415 H [L2]
49 33.541 ; 44 37 G [H3]
41 34 N [H3] 45— 48 38 G [H3]
42 35 G [H3] 49— 51 39 G [K4]
43- 46 36 G [H3] 52— 54  40-42
47- 49 37 G [K4] 55—- 61 43 B [P1]
30 38 56— 57 42 Y3 [S4]
51- 53 39 K [Kl] 58— 61 43 B [P2]
S4— 55 39 . Y3 [S4] 62— 83 44 C [C3]
56 40 Y1 [S4] 64 45
57- 62 41 C [C3]) 65— 66 46 XC [S4] ;
63— 66 42 XC [S4i 67— 68 47 XC [S4}
67— 71 43 Y1 [S4] 69— 70 48 XC [S4]
72- 89 44 Q¢ [K1] 71~ 74 49 XC [S4]
90- 93  45--48 75— 83 50 Y1 [S4]
94--101 49 Q [K1] 84-103 51 Q [K1]
162 50 104 52
103105 5t K [K1] 105-107 53 K [K1]
106-1¢7 52-53 108-109 54-55§ A
108-125 54 B [P1] 110-127 56 B {P1]
126 55 128—-131 57-60
127-128 56 B {34 132-139 61 XC [S4]
129-135 57 XA [S3] 140145 62-67
136—-141  58-63 146-255 68 B [P1]
142-256 64 B [S4] 256-260 69 XA [S3]
257-264 65 XA [S3] 261-268 70-77
265-270 66-71 269-270 78 Z [83)
271-512 72 B [S4] 271-272  79-80

273-512 81 3] [G4]
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Tabie 2 (ccntinued)
Distance d = 21 Distance d = 23
n r Type Ref, n r Type Ref.
31- 32 30 G |[C2 34— 35 :
33- 35 31-33 ! 36— 38 22—46 ¢ 2l
36 33415 H [L2] 39 36.415 H [L2]
37 3445 40 37415
38 35 G [L2] 41 38 G (L2}
39 35678 H jL2j 42 39
40 36,193 H (L2 43  39.415 H [L2]
41—~ 43  36.541 H [L2] 44 4 C [C3]
44  37.541 45— 47 40415 H [L2]
45 38415 H [L2] 48 41.356 ] [S2]
46  39.356 J {8?] 49— 50 42 C [C3]
47— 48 40 C [C3] 51- 53  43-45
49— 51 41-43 54— 57 46 Y1 [S4]
52— 57 43415 Y2 [S4] 58— 63 47 : B [P1]
58 44415 64— 66 48 XA 1S3]
59- 63 45 B IP1} 67— 74  49-56
64— 70 46-52 75— 87 57 K [K1]
71— 77 53 XC [S84] 88— 99  58-69
78 54 100-127 70 B [P1]
79- 85 55 K [K1] 128-135 71 XA [S3)
86— 92  56-62 136—-145  72-81
93-127 63 B [P1] 146—-147 82 Z [S3)
128—-135 64 XA [S3] 148 83
136-144 65~73 149-255 84 B [P1}
145-146 74 Z [S3] 256-264 85 , XA [S3]
147 75 265274 8695
148-255 76 B [P1] 275-276 96 Z [S3]
256--264 77 XA [S3] 277-278  97-98
265-273  78-86 279-512 99 D [G41
274-275 87 z |83}

276-277  88-89
278-512 90 B [S4]
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Table Z (continued)

Distance d = 25 Distance d = 27
n r Type Ref, n r Type Ref.
37— 38 36 G - [C2] 40— 4% 39 G ic2]
39-- 42 37-40 42— 45 40-43
43 40415 - H [L2] 46 43415 . H [L2]
44 41415 47 44415
45 42 G [L2] 48 45 C [<3]
«3 42678 H [L2] 49 46
7 43415 M [L2] 50 46.678 H [L2]
48 44 G [L2] 51 47,193 H [L2]
49— 51 44300 H [L2] 52  47.830 H [L2]
52 45245 ) [87] 53— 55 48,193 H [L2]
53 46193 H [L2] 56 49.193
54 47193 57  50.093 H {L2}
55 48,093 H [L2] 58— 63 51 N [KS]
56— 61 49 N [KS5] 64— 69  52-57
62— 63  50--51 70— 714 S8 XC [S4]
64— 66 52 K {K1} 75— 86  59-70
67 53 87— 88  7: Z [S31
58~ 70 54 XA [S3] 89 72
71 55 90-91 73 G [S4]
72— 713 56 XC [S4] 92~ 94 74-176
74— 83 57 -66 95-127 77 B 148
84— 85 67 G [S3] 128-131  78-81
86— 38 68 -70 132-139 82 XC (S4]
89 70.778 Z [S3] 140-150 83-93
90  71.415 Z [S3] 151-160 94 K K4}
91 72 Z [83) 161-165 95--99
92— 24 72,300 Z [$3] 166-255 100 B [P1]
95  73.M45 Z [S3] 256-264 101 XA [S3]
95  74.193 Z [S3] 265-276 102-113
97-125 175 B [P1}] 271-278 114 YA [S3]
126-127  76-171 279-280 115-116
128—-135 78 XA  [S3] 281-512 117 D [G4]
135--146 79-89
147-148 90 Z (s3]
149 91
150--255 92 B [P1]
256 --264 93 XA [S3)
265-275 94--104
276-277 105 Z [S3]

276-279 106--107
280-512 108 B [S4]
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Table 2 (continued)

Distanced = 29

n r Type Ref.
43- 44 42 G [c]
45- 48  43-46
49  46.415 H [L2]
50 47415
51 48415
52 49 G [L2]
53 49.678 H {L2]
54 50415 H [L2]
55  51.193 H [L2]
56 51.678 H {L2}
57— 59 52,093 H [L2]
60  53.046 ] {52]
€1 54 R [P1]
62 55
63 55913 H [L2]
64  56.913
65— 67 57 XA {53}
68— 74  58-64
75— 78 65 XC [S4]
79- 86  66-73
87— 88 174 y/ (€3]
89— 93 75 G [£4]
94— 97 76-179
98  79.415 z [S3]
99-100 80.415 Z [S3]
101  81.415
102-125 82 B (K2]
126-127 83-84
128-135 85 XA (s3]
136-148  86-98
149-i50 99 z [83]
151-155 100-104
156-158 105 z [S3]
159-160 106—107
161-255 108 B [P1]
256—264 109 JA [83]
265-277 110-122
278-279 123 Z [83]
280-281 124-125
282-512 126 B [54]

289
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