# A SURVEY OF CONSTRUCTIVE CODING THEORY, AND A TABLE OF BINARY CODES OF HIGHEST KNOWIN RATE 

N.J.A. SLOANE<br>Eell Telephone Laboratories, Inc., Murray Hill, N.J., U.S.A.

Received 6 November 1971


#### Abstract

Although mote than : wenty years have passed since the appearance of Shannon's papers, a still urisolved problem $u$ : coding theory is to construct block codes which attain a low probability of error at rates close to capacity. However, for moderate block lengths many good codes are known, the best-known being the BCH codes discovered in 1959. This paper is a survey of results in coding theory obtained since the appearance of Berlekamp's' "Algebraic coding theory" (1968), concentrating on those which lead to the construction of new codes. The paper concludes with a table giving the smallest redundancy of any binary code, linear or nonlinear, that is presently known (to the quthor), for all lengths up to 512 and all minimum distances up to 30.


## §1. Introduction

This paper is a survey of recent developments in the design of block codes for the correction of random errors.

In 1948, Shannon [98] showed that there exist codes which attain a low probability of error at rates close to capacity. Gilbert [31] in 1952 obtained a lower bound on $d / n$ for the best codes of a given rate. Since then a great deal of effort has been made to construct arbitrarily long codes which meet or even come close to the Gilbert bound, but so far without success (except for codes with rates approaching 0 or 1 ).

For mioderate block lengths, however, many good codes have been discovered. The best-known are the Reed-Muller (RM) codes ([79], [93], [B1, Ch. 15]), Bose-Chaudhuri-Hocquenghem (BCH) codes ([19], [45], [B1, Ch. 7 and Ch. 10]), and quadratic residue (QR) codes ([B1, Ch. 15], [111, §4.4]). A systematic description of these and other codes discovered prior to 1968 will be found in [B1].

In this paper we describe some of the developments in coding theory
that have taken place since the appearance cf [B1]. We concentrate on those papers which construct new codes, or give new properties of codes previously known. Important topics not considered here are the weight enumeration of codes $[7,8,10,14,15,32,41,53-57,73,81,86,94$, $100,106,114$ ], the classification of cosets of a code [ $9,16,94,103$ ], decoding techniques and burst error correction [20, 85, 95, 109, 110], synchronization recevery [105], and source coding and rate distortion theory [ 6,47 ]. See also the recent survey of Goethals [35], which is of broader scope than the present work, and the book by Van Lint [111]. We hav had little access to Russian work, and refer the reader to the surveys by Kautz and Levitt [58] and Dobrushin [30].

The paper is arranged as foliows. § 2 deals with cyclic and ielated codes, including BCH, irreducible, perfect, abelian group, Goppa Srivastava, and circulant codes. $\S 3$ deals with nonlinear codes and codes formed by combining other codes. $\S 4$ gives a table containing the best binary codes known to the author. An exiensive bibliography corcludes the paper. A shortened preliminary version of this paper has appeared in [102].

## §2. Cyclic codes

Most of the codes considered to date have been linear and cyclic, for the excellent reasons that such codes are simpler to implement and to analyze.

An $(n, k)$ linear code $e$ over the field $\mathrm{GF}(q)$ consists of $q^{k}$ vect ors (called codewords) of length $n$ over GF( $q$ ) such that (a) the sum, taken componentwise in $\mathrm{GF}(q)$, of any two codewords is again a codeword, and (b) the componentwise product of any codeword and any elenent of $\mathrm{GF}(q)$ is also a codeword. The redundancy of the code is $r=n--k$ and the rate is $R=k / n$. The minimum distance is denoted by $d$.

The dual code $e^{1}$ of $e$ consists of all vectors $u$ of length $n$ over GF $(q)$ such that $u \cdot v=0$ for all $v \in e$, the scalar product being evaluated in GF $(q)$. Thus $e^{\perp}$ is an ( $n, n-k$ ) linear code. If $e=e^{\perp}, e$ is self-dual.

An application of sclf-dual codes to a famous unsolved problem of geometry is given in [174].

A code is shortened by omitting all codewords except those having
prescribed values for certain components, and then deleting those components [B1, p. 336].

A cyclic code is a linear code with the property that a cyclic shift of any codeword is also a codeword. $\mathrm{BCH}, \mathrm{QR}$, and shortene d RM codes are all cyclic.
2.1. Are long cyclic codes bad? Gilbert [31] showed that there exist arbitrarily long linear codes with a fixed rate $R=k / n$ for which $d / n$ is bounded away from zero. In fact Koshelev [59] and Kozlov [60] have shown that most linear codes meet the Gilbert bound.

On the other hand for BCH codes of fixed rate $R, d / n \rightarrow 0$ as $n \rightarrow \infty$ ([67], [B1, Ch. 12]). In fact Berlekamp 112] has recently shown that for BCH codes

$$
d \sim \frac{2 n \ln R^{-1}}{\log n}
$$

as $n \rightarrow \infty$. But it is not known whether long cyclic codes are also bad.
Berman [18] has shown that cyclic codes of fixed rate and with block lengths $n$ which are divisible by a fixed set of primes (and only by these primes) have bounded minimum distance.

Kasami [52] has shown that good linear codes cannot be too symmetric, by showing that any code with given $d / n$ which is invariant under the affine group must have rate $R \rightarrow 0$ as $n \rightarrow \infty$. (This includes BCH codes.)

More recently McEliece [77] showed that it is not the symmetry alone that makes a code bad, by showing that there exist arbitrarily long block codes (not necessarily linear) which are invariant under large permutation croups and which meet the Gilbert bound. Also Weldon [23], [118] has shown that there exist very, but not arbitrarily, long circulant and quasi-cyclic codes which meet the Gilbert bound. (A quasicyclic code is a linear code with the property that a cyclic shift of any codeword by a certain prescribed number of places is also a codeword. Circulant codes are defined in §2.9.) Weldon's proof would apply to arbitrarily long codes if the conjecture were proved that there are an infinite number of primes for which 2 is a primitive root.

Kasami [52] and Chen [22] have shown that there exist arbitrarily long shortened cyclic codes which meet the Gilbert bound.

Thompson (see [75]) has shown that self-dual linear binary codes in which all weights are divisible by 4 meet the Gilbert bound.

To give a rough summary of these results, a good family of codes can be linear, or have many symmetries, but not both.
2.2. BCH codes. We recall the definition of a BCH code. Let $q$ be a prime power, let $m$ be the order of $q$ modulo $n$, and let $c$ be a primitive $n^{\text {th }}$ root of unity in $\mathrm{GF}\left\{q^{m}\right)$. Then the BCH code of length $n$, designed distance $d=d_{\mathrm{BCH}}$, and symbols from $\mathrm{GF}(q)$, has the parity check matrix

$$
H=\left(\begin{array}{llll}
1 & \alpha & \alpha^{2} & \ldots \\
1 & \alpha^{n-1} \\
1 & \alpha^{2} & \alpha^{4} & \ldots \\
1 & \ldots \alpha^{2(n-1)} \\
1 & \alpha^{d-1} & \alpha^{2(d-1)} & \ldots \\
\vdots \\
(n-1)(d-1)
\end{array}\right) .
$$

If $n=q^{m}-1$ the code is called primitive. By the BCH bound any such code has actual minimum distance

$$
a_{\min }^{3} \sum d_{\mathrm{BCH}} .
$$

It was conjectured [55], [B1, p. 295] that for primitive BCH codes $d_{\text {min }}=d_{\mathrm{BCH}}$, but in 1969 Kasami and Tokura [K2] showed that for $m>6, m \neq 8,12$, there a:e binary primitive BCYI codes of length $n=2^{m}-1$ for which

$$
d_{\min }>d_{\mathrm{BCH}} .
$$

On the other hand Berlekamp [8] showed that if the extended binary BCH code of length $n=2^{m}$ has $d_{\mathrm{BCH}}=2^{m-1}-2^{i}$ for some $i \geq \frac{1}{2} m-1$, then $d_{\text {min }}=d_{\mathrm{BCH}}$. The results of [8] have been furth $\cdot$ generaiized by Kasami [53]. But the precise determina ${ }^{\text {ion }}$ of conditions on $n$ and $d_{\mathrm{BCH}}$ for $d_{\text {min }}=d_{\mathrm{BCH}}$ to hold remains an unsolved problem.

Leont'ev [66] showed that a BCH code of length $n=2^{m}-1$ and designed distance $2 t+1$ is not quasi-perfect for $2<t<i \sqrt{n} / \ln n$ and $m \geq 7$.
V.M. Sidel'nikov [100] showed that for $t<\sqrt{n} / 10$, the number of words of weight $w$ in the binary BCH code of designed distance $2 t+1$ is $(n+1)^{-t}\left(n_{w}^{n}\right)(1 \div \epsilon)$, where $|\epsilon|<C n^{-0.1}$, for most values of $w$.

Anderson ([1], [111, p. 127]) obtained the following bound for the dual of a BCH code, using dsep number-theoretic results of Weil, Carlitz and Uchiyama. The minimum distance of the dual of the binary BCH code of length $n=2^{m}-1$ and designed distance $d_{\mathrm{BCH}}=2 t+1$ is at least

$$
2^{m-1}-1-(t-1)^{\frac{1}{2} m}
$$

### 2.3. Extersions of BCH codes. Wolf [117] showed that two columns

 may be added to the parity check matrix of a BCH code to give the new parity chock matrix$$
H^{\prime}=\left(\begin{array}{lll}
1 & 0 & \\
0 & 0 & \\
\ldots & H \\
0 & 1 &
\end{array}\right)
$$

while preserving the minimum distance of the code. In some cases the redundancy is also unchanged, in which case we have a new code with

$$
n^{\prime}=n+2, \quad k^{\prime}=k+2, \quad r^{\prime}=r, \quad d^{\prime}=d .
$$

This happ ns for example when the original code is a Reed-Solomor code over GFi $q$ ), with $n=q-1$ and $r=d-1$. Then the parameters of the new code are $n^{\prime}=q+1$, and $r^{\prime}=d^{\prime}-1=d-1$.

It is easy to show that for ary code $d \leq r+1$. Codes with $d=r+1$ are called maximum distance separable or MDS codes (see [101], [B1, p. 309], [111, p. 72!). Such codes have also been called optimal. ReedSolomon codes are MDS and so are the new family of doubiy extended Reed-Solomon codes.

Assmus and Mattson [3] have shown that MDS codes whose block length $n$ is a prime number are very common, by showing that every cyclic code of prime length $n$ over $\operatorname{GF}\left(p^{i}\right)$ is MDS, for ail $i$, for all except a finite number of prines $p$.

Wolf [118] has obtained a further extension of BCH codes, by repla$\operatorname{cing} \alpha$ in $H^{\prime}$ by the $m \times m$ matrix $A$ over $\mathrm{G} \Gamma(q)$, where

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & & 0 \\
0 & 0 & 1 & \ldots . . & 0 \\
0 & 0 & 0 & & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots . . & 1 \\
a_{0} & a_{1} & a_{2} & & a_{m-1}
\end{array}\right)
$$

and where $M(x)=x^{m}-a_{m-1} x^{m-1}-\ldots-a_{0}$ is the minimal polynomial of $\alpha$ ove $\operatorname{GF}(q)$. Call the new parity check matrix $H^{\prime \prime}$. Then if $H$ generates a 1 rimitive BCH code over $\mathrm{GF}(q)$ of length $n=q^{m}-1$, desigreú distance $d_{\mathrm{BCH}}$ and redundancy $r=m\left(d_{\mathrm{BCH}}-1\right)$, so that this is a maximally redundant BCH code, then $H^{\prime \prime}$ is the parity check matrix for a code over GF $(q)$ with $n^{\prime}=m\left(q^{m}+i\right), r=m\left(d_{\mathrm{BCH}}-1\right)$ and $d \geq d_{\mathrm{BCH}}$. The rate of the code has thus been considerably increased.

For example, if the original code is over $\mathrm{GF}(5)$ with $n=5^{2}-1=24$, $d_{\mathrm{BCH}}=5, k=16, R=0.67$, the new code has $n=52, k=44, d \geq 5$ and $R=0.87$.

Cther extensions of BCH codes are neentioned in §3.3.
2.4. The ninimum distance of cyclic codes. The BCH bound for a cyclic code say: that if the generator polynomial $g(x)$ has $d_{\mathrm{BCH}}-1$ consecutive roots thea the minimum distance is $\geq d_{\mathrm{BCH}}$.

Goethels [33] and Kasami [51] have given improvements on the BCH bound for codes of composite length. Hartmann [38-43] has given mary further generalizations of the BCH bound, including extensions of Kasami's results. We will just state two of Hartmann's theorems. Here $\beta$ denotes a primitive $n^{\text {th }}$ root of unity. The first is a bound on the minimum odd weight.

Theorem. Let $k \mid n$. If for somé $\bar{d} \leq n / k, g\left(\beta^{k i}\right)=0$ for all $i=1,2, \ldots, \bar{d}$, then the minimum odd weight is at least $\bar{d}$.

Example. Ey the BCH bound the $(33,13) \mathrm{BCH}$ code has $d_{\mathrm{BCH}}=5$, and also $d_{\text {even }} \geq 10$. But by the theorem $d_{\text {odd }} \geq 11$, and so the minimum weight is $\geq 10$.

The second theorem is an ex ample of Hartmann's generalizations of the BCH bound to the case where $g(x)$ has several sets of consecutive roots.

Theorem. If $g\left(\beta^{m_{0}+i+\delta(j-1)}\right)=0$ for $i=0,1,2, \ldots, d-1$ and $j=1,2, \ldots, r$ with $(\delta, n)=1$, so that $g(x)$ has $r$ sets of $d-1$ roots each, then $d_{\text {min }} \geq$ $d+r$.

Kassmi and Tokura [K2] have shown that for any even $m \geq 6$ there exist binary cyclic codes of length $2^{m}-1$ having more codewords than the corresponding BCH codes. The first such example is a $(63,28) d=15$ cyclic code, compared with the $(63,24) d=15 \mathrm{BCH}$ code.

Chen [C3] used an IBM 350/50 to calculate the minimum distance of all binary cyclic codes of lengths $\leq 65$. He found three codes of length 63 having more codewords than the corresponding BCH codes. These are the $(63,28)$ code just mentioned, a $(63,46) d=7$ code given previously by Peterson [86], and a $(63,21) d=18$ code. The BCH codes closest to the last two are $(63,45) d=7$ and $(63,18) d=21$ codes.
2.5. Irreducible cyclic codes. A cyclic code over $\operatorname{GF}(q)$ is called irreducible if its check polynomial $h(x)$ is irreducibie over $\mathrm{GF}(q)$ [111, p. 45]. The simplest examples of irreducible codes are maximal length shift register ( $2^{m}-1, m$ ) codes (also known as shortened first order RM codes).

Baumert, McEliece, and Rumsey [5], [78], generalizing earlier work of Delsarte and Goethals [29], have given a method for finding the weight enumerators of all irreducible cyclic codes. For example in the binary case, let $N$ be a fixed odd number and let $k$ be the sriallest positive number such that $2^{k} \equiv 1(\bmod N)$. Then there are binary irreducible cyclic $\left(n=\left(2^{k m}-1\right) / N, k m\right)$ codes $e_{m}$, for $m=2,3, \ldots$. Each $e_{m}$ consists of the zero vector plus $N$ cycles of $n$ codewords each. Let $w_{0}, w_{1}$, $\ldots, w_{N-1}$ be the weights of these cycles. Then the generating function $w_{0}+w_{1} y+\ldots+w_{N-1} y^{N-1}$ is given by

$$
2^{m-1}(E(y))^{m}\left(\operatorname{mcd} y^{N}-1\right)
$$

where $E(y)$ is independent of $m$. For example when $N=7$ we obtain $(9,6),(73,9),(585,12),(4681,15), \ldots$ codes with minimum distances
respectively equal to $2,28,280,2320, \ldots$. (The complete weight distributions are given in [78].)

The weight distributions of several other families of cyclic codes have been given by Oganesyan and Yagdzhan [81], [92]. We just mention one of these, which consist of codes with check polynomials of the form $h(x)=\prod_{i=0}^{f} p_{i}(x)$, where $p_{0}(x)$ is irreducible of degree $k_{0}$ arid period $e_{0}, m_{0}=\left(2^{k_{0}}-1\right) / e_{0}$ is prime, 2 is a primitive root of $m_{0}, p_{i}(x)$ is a primitive polynomial of diegree $k_{i}$ and period $e_{i}$, and the numbers $e_{i}$ are relatively prime.
2.6. Perfect codes. An e-error-correcting code over GF $(u)$ is called perfect if every vector is at a distance of at most $e$ from the nearest codeword.
: Examples of perfect codes are various trivial coães containing 1, 2, or $q^{n}$ codewords; the Hamming $d=3$ codes over any field; and the two Golay codes, the $(11,6) d=5$ code over GF(3) and the $(23,12) d=7$ code over GF(2).

A long-standing conjecture that no other perfect codes exist over finite fields has recently been proved by Tietäväinen, using earlier work of Lloyd and Van Lint [107], [108], [112].

The $(12,6)$ and $(24,12)$ extended Golay codes have many important combinatorial properties. Their symmetry groups are the Mathieu groups $M_{12}$ and $M_{24}$; their low weight yectors form the Steiner systems $S(5,6$, 12 ) and $S(5,8,24)$ : and the lattices $\Lambda_{12}$ and $\Lambda_{24}$ (the Leech lattice) can be constructed from them [62], [65]. A series of uniqueness theorems have been proved: Pless [87] showed the uniqueness of the Golay codes, Stanton [104] the wicqueness of the Mathieu groups, Witt [116] the uniqueness of the associated Steiner systems, and Conway [24], [25] the uniqueness of the Leech lattice.

Goethals [34] sh:wed that the Nordstrom-Robinson code (§3.2) is contwined in the (24, 12) code. Berlekamp [11] has studied the symmetry groups of the principal subcodes of the $(2,4,12)$ code.

Since the Nordstrom-Robinson code is the first member of Preparata's family of nonlinear double-error correcting codes (§3.2), it is natural to ask if the others can be extended to give codes analogous to the Golay code. However, Preparata [91] has shown that this is impossible, in one way at least.

Turyn [2] showed that the $(24,12)$ Golay cosis may be obtained as the set of vectors of the form $(a+x, b+x, a+b+x) a, b \in \mathrm{e}_{1}, x \in e_{2}$, where $e_{1}$ and $e_{2}$ are two different first order RM codes. The sanie construction was used in [S4] to obtain an infinite family of linear codes with $d / n=\frac{1}{3}$. The first three codes of the family are the $(24,12)$ Golay code, and $(48,15) d=16$ and $(96,18) d=32$ codes. As the length increases the rate approaches zero. A generalization of the $(12,6)$ Golay code is described in the next section.

Parker and Nikolai [82] described an unsuccessíul search for simple transitive groups analogous to the Mathieu groups.
2.7. Abelian group codes. Let $e$ be a binary cyclic ( $n, k$ ) code. If codewords are represented by polynomials, $c_{0} c_{1} \ldots c_{n-1} \leftrightarrow c_{0}+c_{1} x+\ldots$ $+c_{n-1} x^{n-1}$, then it is well known that the codewords in $e$ form an ideal in the ring of polynomials modulo $x^{n}-1[\mathbb{P} 1, \mathrm{Ch} .8]$.

MacWilliams [71], [72], Berman [17], [18] and others [21], [27] have studied the following generalization of cyclic codes. Let $G=$ $\left\{g_{1}, \ldots, g_{n}\right\}$ be a multiplicative abelian group, and let $R$ denote the set of all formal sums

$$
c_{1} g_{1}+c_{2} g_{2}+\ldots+c_{n} g_{n}, c_{i}=0 \text { or } 1
$$

with the obvious addition and multiplication. $R$ is a vector space of dimension $n$ over $G F(2)$. An ideal $\mathcal{A}$ is a linear subspace of $R$ such that if $A \in \mathscr{A}, g \in G$ then $g A \in \mathcal{A}$. Then $\mathscr{A}$ is a natural generalization of a cyclic code, and is called an abelian group code.

Many properties of cyclic codes carry over to abelian group codes, such as the existence of a generator codeword whose multiples generate the code.

Berman [18] has shown that for fixed rate and for block lengths $n$ which are divisible by a fixed set of primes (and unly by these primes), as $n \rightarrow \infty$ abelian group codes have higher minimum distance than cyclic codes.
2.8. Goppz and Srivastava codes. Goppa [G4] has recently described a new family of linear noncyclic codes, some of which meet the Gilbert bound.

Let integers $m, t$ be given satisfying $3 \leq m<m t<2^{m}$. Let

$$
Z=\left\{z \in \mathrm{GF}\left(2^{m t}\right) \mid \text { degree of minimal polynomial of } z \text { is } m t\right\},
$$

and let $\alpha$ be a primitive element of $\operatorname{GF}\left(2^{m}\right)$. Then for any $z \in Z$ the binary Goppa code $e\left(m, k^{\prime}, z\right)$ is the ( $n=2^{m}: k \geq 2^{m}-m t$ ) code with the $m t \times 2^{m}$ parity check matrix

$$
H=\left[\frac{1}{z-0}, \frac{1}{z-1}, \frac{1}{z-\alpha}, \ldots, \frac{1}{z-\alpha^{2^{m}-2}}\right] .
$$

Goppa has shown that the minimum distance of $\mathrm{e}(m, t, z)$ is (i) at least $2 t+1$ for all $z \in Z$, (ii) equal to that given by the Gilbert bound for some $z \in Z$. Unfortunately it is not known how to choose $z \in Z$ so as to make this happen.

Srivastava codes [31, § 15.1] resemble Goppa codes. Helgert [H2], [H3] has recently fround a number of good Srivastava codes.
2.9. Circulant codes. In 1964 Leech [61] showed that the generator matrix for the $(23,12)$ Golay code can be written as

$$
\left[\begin{array}{lll|lll}
1 & & & & & C \\
& \ddots & & & \\
& & 1 & 1 & \ldots & 1
\end{array}\right]
$$

where $C$ is a circulant matrix, that is, each row is a cyclic shift of the previous row by one place. In this case the first row of $C$ can be taken to be 11011 i00010, having a 1 at position 0 and at the quadratic residues of 11 .

Then in 1965 in an important paper ([K1]. see also , 46], [49], [50]) Karlin found a large number of binary codes generated by circulants. many having a higher rate than the best codes previously known. Examples are $(27,14),(30,16),(34,12)$, and $(53,14)$ codes, having minimum distances respectively equal to 7,11 and 17 .

This approach also simplified the calculation of the minimum distance, and Karlin was able to determine the minimum distance of a number of
binary quadratic residue codes, e.g., the $(79,40), d=15$ and $(89,45)$
$d=17$ QR codes. Karlin also asserts that the QR codes of lengths 103 and 107 both have minimum distance equal to 19 .

Pless [88], [89] has constructed self-dual $(2 q+2, q+1)$ codes over GF(3) for every odd prime power $q \equiv-1(\bmod 3)$. These are circulant codes, with a generator matrix of the form

$$
\left[\begin{array}{llll|llll}
1 & & & & 1 & & & \\
& 1 & & & 1 & & C & \\
& & 1 & & 1 & & & \\
& & & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

where $C$ is a circulant matrix. The first five are $(12,6)$ (the ternary Golay code), $(24,12),(36,18),(48,24)$ and $(60,30)$ codes, with minimum distances $6,9,12,15$ and 18 respectively. These five codes $h$ ive rate $\frac{1}{2}$ and $d=\frac{1}{4} n+3$. But unfortunately later codes in the family have smaller distances. Nevertheless circulant codes are a very promising area for research.

## §3. Nonlinear codes and codes formed by corrbining other codes

Since the number of codewords in a nonlinear code need not be a power of the alphabet size, it is convenient to have a new notation:

An ( $n, M, d$ ) code $e$ is a set of $M$ codewords of length $n$, with symbols from $\operatorname{GF}(q)$ and minimum distance $d$. The dimension of this code is $k=$ $\log _{q} M$, the redundancy is $r=n-\log _{q} M$, and the rate is $R=k / n$. Now $k$ and $r$ need nut be integers.

A coset of $e$ is an arbitrary translation $a+e$ of the codewords of $e$ (where $a$ is any vector of length $n$ ). If $e$ is linear, then two cosets of $e$ are either equal or uisjoint, but this need not be true if $e$ is nonlinear

An ( $n, M, d$ ) code is said to be optimal if it has the largest possible number of codewords for the given values of $n$ and $d$. This is using optimal in a very naive ense, of course, since it omits any consideration of encodirg and decoding. But it can be argued that once good codes have been found, the techniques for their implementation will be developed later, as has happened with BCH codes [B1, Ch. 7].

It seems reasonable to expect that optimal codes will often be nonlinear, and that everi near-optimal linear codes will have a complicated structure. As a well-known verse by J.L. Massey [70] says, "... good codes just might be messy."

Nonlinear codes have been successfully used to construct dense sphere packings in Euclidean space [63-65].

### 3.1. Codes derived from Hadamard and conference matrices. An $n \times n$

 Hadamard matrix $\mathscr{X}_{n}$ is a matrix of +1 's and -1 's such that $\mathscr{X}_{n} \mathscr{X}_{n}^{\mathrm{t}}=n I$ (where $A_{1}$ is a unit matrix). Replacing +1 's by 0 's and -1 's by l's converts $\mathscr{X}_{n}$ intc a binary Hadamard matrix $H_{n}$.It was shown by Plotkin [P1, p. 79], [P3], [B1, p. 316] that the ( $n, 2 n, \frac{1}{2} n$ ) code consisting of the rows of $H_{n}$ and its complement is optimal. When $n$ is a power of 2 this is a (linear) first order Reed-Muller code, while in the other cases this is a nonlinear Hadamard code.

Many other nonlinear codes can be obtained by manipulating Hadamard matrices. Levenshtein ([L2], see also [58, p. 206], [83]) showed that optimal codes for all $d$ and all $n \leq 2 d$ can be obtained in this way (provided the requisite Hadamard matrices exist) by showing tha such codes meet the Plotkin bound [P3]. Patel [84] has determined the optimal linear codes in the same region.

Recently [S2] good nonlinear codes with $n$ slightly greater than $2 d$ have been obtained from conference matrices. An $n \times r$ conference matrix $T_{n}$ is a matrix with 0 's on the diagonal and $\pm$ l's elsewhere, satisfying $T_{n} T_{n}^{\prime}=(n-1) I$. Whenever a symmetric $T_{n}$ exists, an ( $n-1,2 n$, $\frac{1}{2}(n-2)$ ) binary nonlinear code can be constructed. The first few codes obtained are the $(9,20,4)$ optimal code of Juiin [J1] , a (13, 28, 6) code which is inferior to Nadler's code $[80$ ] , the $(17,36,8)$ code given in [S1], and $(25,52,12),(29,60,14),(37,76,18),(41,84,20)$ codes.

> 3.2. Preparata and Kerâock codes. Nonlinear double-error-correcting codes were constructed by Nadler ([80], a (12, 32,5$)$ code), Green ([37], (13, 64,5$)$ ), and Nordström and Robinson ([N1], $\left(15,2^{8}, 5\right)$ ). Van Lint $[114]$ has given a simple construction of the Nadler code.
> Preparata [P4] gave a high-rate generalization of the Nordström-Robinson code. For every even $m \geq 4$ he constructed a nonlinear ( $2^{m}-1$, $\left.2^{2^{m}-2 m}, 5\right)$ code. These codes are optimal, contain twice as many code-
words as double-error-correcting BCH codes, and have straightforward encoding and decoding algorithms.

Semakov and Zinov'ev [96], [97] and Goethals and Snover [36] have independently obtained the weight distribution of the Preparata codes.

Kerdock [K5] has given a corresponding low-rate generalization of the Nordström-Robinson code. He showed that for every even $m \geq 4$ it is possible to take the union of the ( $2^{m}, 2^{m+1}, 2^{m-1}$ ) first order RM code and $2^{m-1}-1$ of its cosets to obtain a

$$
\left(2^{m}, 2^{2 m}, 2^{m-1}-2^{\frac{1}{2}(m-2)}\right)
$$

nonlinear code. For $m=4$ this is the extended Nordström-Robinson code; for $m=6$ this is a $\left(64,2^{12}, 28\right)$ code containing four times as many codewords as the best extended cyclic code of that length and distanle.

The Preparata and Kerdock codes are "duals" in the sense that their weight distributions satisfy the MacWilliams identity [B1, p. 401]. The reason for this is not yet understood.

The next four sections describe constructions for combining two, three, or four codes $t$ o obtain new codes.
3.3. Constructions $X$ and $X 4$. Construction $X$ combines three codes to form a fourth. Suppose we are given an ( $n_{1}, M_{1}, d_{1}$ ) code $e_{1}$ and an ( $n_{1}, M_{2}=b M_{1}, d_{2}$ ) code $e_{2}$, with the property that $e_{2}$ is the union of $b$ disjoint cosets of $e_{1}$,

$$
e_{2}=\left(x_{1}+e_{1}\right) \cup\left(x_{2}+e_{1}\right) \cup \ldots \cup\left(x_{b}+e_{1}\right),
$$

for some set of vectors $S=\left\{x_{1}, x_{2}, \ldots, x_{b}\right\}$. Let

$$
e_{3}=\left\{y_{1}, y_{2}, \ldots, y_{b}\right\}
$$

be any $\left(n_{3}, b, \Delta\right)$ code.
Let $\pi$ be an arbitrary permutation of $\{1,2, \ldots, b\}$; so that $x_{i} \rightarrow y_{\pi(i)}$ defines a one-one mapping from $S$ onto $e_{3}$.

The new code is then defined to be

$$
\begin{aligned}
e_{4}= & \left(x_{1}+e_{1}, y_{\pi(1)}\right) \cup\left(x_{2}+e_{1}, y_{\pi(2)}\right) \cup \ldots \\
& \ldots \cup\left(x_{b}+e_{1}, y_{\pi(b)}\right)
\end{aligned}
$$

Simply stated, $e_{2}$ is divided into cosets of $e_{1}$, and a different codeword of $e_{3}$ is attached to each coset. See fig. 1 .

Then $e_{4}$ is an $\left(n_{1}+\dot{n}_{3}, M_{2}, d=\min \left\{d_{1}, d_{2}+\Delta\right\}\right)$ code. Similarly construction $X 4$ combines four codes to fornin a fifth. See [S4] for details and further examples.

Example 1. Take $e_{1}$ to be a Preparata code, $e_{2}$ a Hamming code, $e_{3}$ an even weight code. Then, after showing that the Hamming code is a union of cosets of the Preparata code, one obtains ( $\Sigma^{m}+m-1,2^{2^{i n}-m-1}, 5$ ) codes for $m \geq 4$. Using construction $X 4$ one can do even better, and extend the Preparata code by the addition of $\sqrt{n+1}$ information symbols at the cost of adding one check symbol [S4].

Example 2. Using BCH codes one obtains new codes having at least as many codewords as those given by the Andryanov-Saskovets construction [B1, p. 333 . In some cases $e$-error-correcting BCH codes may be extended by the addition of about $n^{1 / e}$ information symbols at the cost of adding one chack symbol [S4].


Fig. 1.

### 3.4. Constructions $Y 1, Y 2, Y 3$. The following consiructions were sug-

 gested by Goethals [34].Construction $Y 1$. Let $e_{1}$ be an $\left(n, 2^{h_{1}}, d_{1}\right)$ linear code and let $e_{2}$ be its ( $n, 2^{r_{1}}, d_{2}$ ) dual code, with coordinates chosen so that there is a minimum weight codeword $1 \ldots 10 \ldots 0$ in $e_{2}$. Let $S$ be the subgroup of $e_{1}$ in which the first $d_{2}-1$ coordinates are zero. Then the $d_{2}^{\text {th }}$ coordinates of $S$ are also zero. If the initial $d_{2}$ zeros are deleted from $S$ we are left with an

$$
\left(n-d_{2}, 2^{k_{1}-d_{2}+1}, d_{1}\right)
$$

linear code.
Construction Y2. Let $T$ be the union of $S$ and all of the $d_{2}-1$ cosets of $S$ in $e_{1}$ witt coset leaders $110^{n-2}, 1010^{n-3}, \ldots, 10^{d_{2}-2} 10^{n-d_{2}}$. By deleting the first $d_{2}$ coordinates of $T$ we obtain an

$$
\left(n-d_{2}, d_{2} 2^{k_{1}-d_{2}+1}, d_{1}-2\right)
$$

nonlinear code.
Constructicn Y3. Taking ali the cosets with coset leaders of weight 2 we obtain en

$$
\left(n-d_{2},\left(1+\binom{d_{2}}{2}\right) \quad 2^{k_{1}-d_{2}+1}, d_{1}-4\right)
$$

nonlinear code.
Many examples of codes obtained by these constructions are given in [S4].
3.5. Construction Z. This combines two codes to form a third [P3], [44], [S1], [68].

Let $e_{1}:=\left(n_{1}, M_{1}, d_{1}\right)$ and $e_{2}=\left(n_{2}, M_{2}, d_{2}\right)$ be arbitrary codes over $\operatorname{GF}(q)$. Let $\sigma$ denote the zero vector of length $\left|n_{1}-n_{2}\right|$. Then the new code $e_{3}$ is cefined as follows.
(i). If $n_{1} \leq n_{2}, e_{3}=\left\{(x,(x, \sigma)+y) \mid x \in e_{1}, y \in e_{2}\right\}$, and is an
$\left(n_{1}+n_{2}, M_{1} M_{2}, d=\min \left(2 d_{1}, d_{2}\right)\right)$ code. (Izt the definition of $e_{3}$, the comma denotes concatenation and + denotes vector addition in $\mathrm{GF}(q)$.)
(ii). If $n_{1}>n_{2}, e_{3}=\left\{(x, x+(y, \sigma)) \mid x \in e_{1}, y \in e_{2}\right\}$, and is a ( $2 n_{1}, M_{1} M_{2}, d=\min \left(2 d_{1}, d_{2}\right)$ ) code.
$e_{3}$ is linear if $e_{1}$ and $e_{2}$ are. A number of applications are given in [S1], including the construction of an infinite family of nonlinear singleerr r-correcting codes which contain more codewords than shortened Ha.nming codes. Other examples, of which those in table 1 are typical, will we seen in table 2.
3.6. Assmus and Mattson's rate $\frac{1}{3}$ cyclic codes. Let $p$ be a prime of the form $8 N+5$ for which 2 is a primitive root (e.g., $p=5,13,29,37, \ldots$ ). Assmus and Mattson [4] showed how to concatenate three different versions of the ( $p, p-i$ ) even weight code to obtain a linear binary cyclic ( $3 p, p-1$ ) code, denoted by $3 E$, with minimum distance at least $2 \sqrt{3 p}$. Let $3 E^{+}$be the cyclic ( $3 p, p$ ) code consisting of the codewords of $3 E$ together with their complements. The first few examples of $3 E^{+}$are $(15,5) d=7,(39,13) d=12,(87,29) d=24$, and $(111,37) d=24$ codes.
3.7. Other constructions Otiner techniques for constructing codes have been given in [26], [28], [76], [99]. However the codes obtained appear to contain fewer, or at best as many, codewords as known cyclic codes.

Tatle 1

| $e_{1}$ |  |  | $?_{2}$ |  |  | $e_{3}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{1}$ | $r_{1}$ | $d_{1}$ | $n_{2}$ | $r_{2}$ | $d_{2}$ | $n$ | $r$ | d |
| 23 | 11 | 7 | 11 | 4.830 | 4 | 34 | 15.830 | 7 |
| 19 | 12 | 8 | 19 | 18 | 19 | 38 | 30 | 16 |
| 14 | 13 | 14 | 264 | 101 | 27 | 278 | 114 | 27 |

## §4. A table of the best codes presently known

4.1. For a given value of the length $n$ and minimum distance $d$, let $M$ be the maximum number of codewords of any binary ( $n, M, d$ ) code, linear or nonlinear, that is presently known (to the author). Then table 2 gives the redundancy $r=n-\log _{2} M$ of this code as a function of $n$ and $d$, for all $n \leq 512$ and $d \leq 30$. These codes are of considerable theoreti cal interest in themselves, provide a basis for judging new codes, and as a lower bound to the densest possible codes complement Johnson's table of upper hounds [.48]. Previous tables of codes are to be found in [B1], [C1], [C3], [G13, [L1], [P1], [P3], [W1], and [86].
4.2. Types of codes. The codes are classified as follows.
$\mathrm{B}=$ Bose - Chaudhuri - Hocquenghem code $[\mathrm{B} 1, \mathrm{Ch} .7]$.
$\mathrm{C}=$ Cyclic linear code [ P 1 ; Ch. 8].
D = Goppa code ([G4] and § 2.8 above).
$\mathrm{C}_{\mathrm{c}}=$ Group or linear code [P1, Ch. 3].
$\mathrm{H}=$ Hadamard code [L2].
J = Code from conference matrix [S2].
$K=$ Circulant code $[\mathrm{K} 1]$.
$\mathrm{N}=$ Nonlinear code.
P = Nordström-Robinson-Preparata code [N1], [P4].
$Q=$ Quadratic residue code ([B1, §15.2], [111, §4.4]).
$\mathrm{K}=$ Reed - Muller code $[\mathrm{B} 1, \S 15.3]$.
$S=$ Srivastava code [B1, § 15.1], [H2].
$\mathrm{XA}, \mathrm{XC}, \mathrm{XP}=$ Codes from construction $X$ applied to BCH codes (the generalized Andryanov-Saskovets construction), to cyclic codes, and to Preparata codes respectively ([S4] and §3.3 above).
$\mathrm{X} 4=$ Codes from construction $X 4$ ([S4] and §3.3 above).
$\mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3=$ Codes from constructions $Y 1, Y 2, Y 3$ ([S4] and $\$ 3.4$ above).
$\mathrm{Z}=$ Codes from onstruction $Z$ ([S1] and $\$ 3.5$ above).
Types B, C, D, G, K, Q, R, S, YA, XC, Y1 are linear, H, J, N, P, XP, $\mathrm{Y} 2, \mathrm{Y} 3$ are nonlinear, and $\mathrm{X} 4, \mathrm{Z}$ may be linear or nonlinear.

In table $2, \cup$, es for which the reference [S3] is given are new. With one exception these are all exampies of constructions mentioned in the
text. The exception is an $(85,18) a=25$ which was obtained using construction 39 of Hatcher [44].
4.3. Since an ( $n, M, d$ odd) code is equivalent to an ( $n+1, M, d+1$ ) code, only codes for odd $d$ need be given. An ( $n, M, d$ ) code may be punctured to give ( $n-i, M, d-i$ ) codes for $0<i<d$, or shortened to give ( $n-i, M 2^{-i}, d$ ) codes for $0<i<\log _{2} M$. Ins table 2 all such modified codes carry the name of the original code. An ( $n, M, d$ ) of redundancy $r$ may be thought of as an $(n+i, M, d)$ code of redundancy $r+i$, for $i \geq_{1}$, in which case the name is left blank.
4.4. Some nonlinear codes in table 2 have redundancy $r$ which is not a whole number. In such cases the number of codewords is quickly found as follows: If $r=R+a$, where $R$ is a whole number and $0<a<1$, the number of codewords is $M=i 2^{n-R-5}$ where $i$ is given by

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
i & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 34 & 22 & 21 & 20 & 19 & 18 & 17
\end{array}
\end{aligned}
$$

4.5. In many cases the reference is to a place where the complete weight distribution of the code may be found, rather than to the original determination of the minimum distance.
4.6. Although many of these codes may be optimal, in the sense of having the smallest possible redundancy, very few of them are known to be optimal. (Compare [481.) The reader is invited to try and improve on thern. Those of type Z and distances $25-29$ are especially weak. The author is eager to hear of any improvements.
4.7. In the first section of table 2 , for minimum distance $d=3$, when $n=3,4,5$ and $3 \cdot 2^{m-2} \leq n<2^{m}, m \geq 3$, the codes shown are (shortened) Hamming codes [H1]. When $2^{m} \leq n<3 \cdot 2^{m-1}, m \geq 3$, the codes jnown are nongroup codes, discovered by Golay [G2] and Julin [J1] for $n=8,9,11,11$ and by Sloane and Whitehead [ [ $\left.{ }^{1}\right]$ for $n \geq 16$.

## Acknowledgments

I siould like to thank H.L. Berger for his help in coliecting data for table 2, E.R. Berlekamp for information about recent Russian work, F.J. MacWilliams for helpful comments on the manuscript, and H.J. Helgert for supplying a number of good codes.

Table 2
Binary sodes of length $n$, minimum distance $d$, and smallest known redundancy $r$

Instance $d=3$
(see sect. $4.7 \mathrm{i}: 1$ this paper)

| $n$ | $r$ | $n$ | Type Ref. | $n$ | $r$ | Type | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4-7 | 3 | 7-86 | G [L1] | 10-11 | 9 | G | [L1] |
| 8 | 3.678 | 9-11 6.415 | H [P3] | 12-15 | 10 | R | [P1] |
| 9 | 3.752 | 12-15 7 | P [NI] | 16 | 10.830 | J | [S1] |
| 10-11 | 3830 | 16-19 8 | XP [S4] | 17-23 | 11 | Q | [G1] |
| 12-15 | 4 | 208.678 | X4 [S4] | 24 | 12 |  |  |
| 16-17 | 4.678 | 21-23 9 | G [W1] | 25-27 | 13 | K | [K1] |
| 18-19 | 4.752 | 24-3210 | B [G3] | 28-30 | 14 | K | [K1] |
| 20-23 | 4.830 | 33-6311 | P [P4] | 31-32 | 15 | D | [G4] |
| 24-31 | 5 | 64-7012 | X4 [S4] | 33 | 15.752 | 2 | [S3] |
| 32-35 | 5.678 | 71-7313 | S [H2] | 34-35 | 15.830 | Z | (S3] |
| 36-39 | 5.752 | 74-128 14 | B [S4] | 36-47 | 16 | $0^{*}$ |  |
| 40-47 | 5.830 | 129-255 15 | P [P4] | 48-63 | 17 | C | [C3] |
| 48-63 | 6 | 256-27116 | X4 [S4] | 64-67 | 18 | XC | [S4] |
| 64-71 | 6.678 | 272-27717 | S [H2] | 68-70 | 19 | XA | [S3] |
| 72-79 | 6.752 | 278-512 18 | B [S4] | 71-83 | 20 | S | [ H 2$]$ |
| 80-95 | 6.830 |  |  | 84-128 | 21 | D | [G4] |
| 96-127 | 7 |  |  | 129-135 | 22 | XA | [S3] |
| 128-143 | 7.678 |  |  | 136-159 | 23 | Y1 | [S4] |
| 144-159 | 7.752 |  |  | 160-256 | 24 | D | [G4] |
| 160-191 | 7.830 |  |  | 257-264 | 25 | XA | [S3] |
| 192-255 | 8 |  |  | 265-311 | 26 | S | [H2] |
| 256-287 | 8.678 |  |  | 312-512 | 27 | D | [G4] |
| 288-319 | 8.752 |  |  | * From S.M. Reday |  |  |  |
| 320-383 | 8.830 |  |  |  |  |  |  |
| 384-511 | 9 |  |  |  |  |  |  |
| 512 | 9.678 |  |  |  |  |  |  |

Table 2 (continued)

| Distance $d=9$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $n$ | $r$ | Type | Ref. |
| 13-14 | 12 | G | [L1] |
| 15 | 13 |  |  |
| 16 | 13.415 | H | [L2] |
| 17-19 | 13.678 | H | [L2] |
| 20 | 14.678 |  |  |
| 21 | 15.415 | 4 | [L2] |
| 22 | 16.300 | 3 | [S2] |
| 23- $2 ;$ | 16.678 | $\mathbf{Y}$ | [S4] |
| 6 | 17.678 |  |  |
| 27-29 | 18 | B | [P1] |
| 30-35 | 18.415 | Y2 | [S4] |
| 36 | 19.415 |  |  |
| 37-41 | 20 | Q | [B1] |
| 42-45 | 21 | Q | [P2] |
| 46 | 22 |  |  |
| 47-49 | 22.193 | Y2 | [S4] |
| 50-52 | 23 | S | [H2] |
| 53-73 | 24 | B | [K3] |
| 74-75 | 25-26 |  |  |
| 76- So | 27 | S | [H2] |
| 91-128 | 28 | B | [S4] |
| 129-135 | 29 | XA | [S3] |
| 136 | 30 |  |  |
| 137-156 | 31 | S | [H2] |
| 157-256 | 32 | B | [S4] |
| 257-264 | 33 | XA | [S3] |
| 265 | 34 |  |  |
| 266-311 | 35 | S | [H3] |
| 312-512 | 36 | B | [S4] |


| $n$ | $r$ | Type | Ref. |
| :---: | :---: | :---: | :---: |
| 16-17 | 15 | G | [L1] |
| 18 | 16 |  |  |
| 19 | 16.415 | H | [L2] |
| 20 | 17 | B | [G3] |
| 21-23 | 17.415 | H | [L2] |
| 24 | 18.300 | J | [S2] |
| 25-26 | 19 | G | [H3] |
| 27-31 | 20 | B | [P1] |
| 32 | 21 |  |  |
| 33-35 | 22 | Y1 | [S4] |
| 36-47 | 23 | Q | [P2] |
| 48-50 | 24-26 |  |  |
| 51-63 | 27 | B | [P1] |
| 64-67 | 28 | XA | [S3] |
| 68-70 | 29-31 |  |  |
| 71-74 |  | XC | [S4] |
| 75 | 33 |  |  |
| 76-94 | 34 | S | [H3] |
| 95-128 | 35 | D | [G4] |
| 129-135 |  | XA | [S3] |
| 136-137 | 37-38 |  |  |
| 138-156 | 39 | S | [H3] |
| 157-256 | 40 | D | [G4] |
| 257-264 | 41 | XA | [S3] |
| 265-266 | 42-43 |  |  |
| 267-311 | 44 | S | [H3] |
| 312-512 | 45 | D | [G4] |

Table 2 (continued)

| Distance $\boldsymbol{d}=13$ |  |  |  | Distance $\boldsymbol{d}=15$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $r$ | Type | Ref. | $n$ | $r$ | Type | Ref. |
| 19-40 | 18 | G | [C2] | 22-23 | 21 | G | [C2] |
| 21-22 | 19-20 |  |  | 24-25 | 22-23 |  |  |
| 23 | 20.415 | H | [L2] | 26 | 23.415 | H | [L2] |
| 24 | 21 | G | [C1] | 27 | 24 | $G$ | [L2] |
| 25-27 | 21.193 | H | [L2] | 28 | 24.678 | H | [L2] |
| 28 | 22.093 | J | [S2] | 29-31 | 25 | R | [P1] |
| 29 | 23 | R | [P1] | 32 | 26 |  |  |
| 30 | 24 |  |  | 33 | 26.830 | H | [L2] |
| 31 | 24.830 | H | [L2] | 34 | 27.752 | J | [S2] |
| 32 | 25.752 | J | [S2] | 35 | 28 | Z | [S3] |
| 33-37 | 26 | XA | [S3] | 36-37 | 29 | Z | [S3] |
| 38 | 27 |  |  | 38-41 | 30 | XC | [S4] |
| 39--43 | 28 | C | [B1] | 42 | 31 |  |  |
| 44-45 | 29-30 |  |  | 43-47 | 32 | G | [S4] |
| 46-55 | 31 | Y2 | [S4] | 48-50 | 33 | C | [B1] |
| 56 | 32 |  |  | 51-55 | 34 | C | [B1] |
| 57-63 | 33 | B | [P1] | 56-63 | 35 | C | [K2] |
| 64-70 | 34 | XA | [S3] | 64-66 | 36 | XC | [S4] |
| 71-72 | 35-36 |  |  | 67-68 | 37-38 |  |  |
| 73-77 | 37 | Q | [K1] | 69-71 | 38.830 | Y2 | [S4] |
| 78-79 | 38-39 |  |  | 72-79 | 39 | Q | [K1] |
| 80-85 | 40 | Q | [K1] | 80-81 | 40-41 |  |  |
| 86-96 | 41 | S | [H3] | 82-87 | 42 | Q | [K1] |
| 97-128 | 42 | B | [S4] | 88-91 | 43-46 |  |  |
| 129-135 | 43 | XA | [S3] | 92-99 | 47 | Q | [K1] |
| 136-138 | 44-46 |  |  | 100 | 48 |  |  |
| 139-156 | 47 | S | [H3] | 101-128 | 49 | D | [G4] |
| 157-256 | 48 | B | [S4] | 129-135 | 50 | XA | [S3] |
| 257-264 | 49 | XA | [S3] | 136-140 | 51-55 |  |  |
| 265-267 | 50-52 |  |  | 141-256 | 56 | D | [G4] |
| 268-311 | 53 | S | [H3] | 257-264 | 57 | XA | [S3] |
| 312-512 | 54 | B | [S4] | 265-269 | $58-62$ |  |  |
|  |  |  |  | 270-512 | 63 | D | [G4] |

Table 2 (continued)

| Distance $d=17$ |  |  |  | Distance $d=19$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $r$ | Type | Ref. | $n$ | $r$ | Type | Ref. |
| 25-26 | 24 | G | [C2] | 28-29 | 27 | G | [C2] |
| 27-28 | 25-26 |  |  | 30-32 | 28-30 |  |  |
| 29 | 26.415 | H | [L2] | 33 | 30.415 | H | [L2] |
| 30 | 27.415 |  |  | 34 | 31 | C | [C3] |
| 31 | 28 | G | [L2] | 35 | 31.678 | H | [L2] |
| 32 | 28.415 | H | [L2] | 36 | 32.415 | H | [L2] |
| 33- | 28.830 | H | [L2] | 3: ${ }^{\prime \prime}$. 39 | 32.678 | H | [L2] |
| 3 , | 29.752 | J | [S2] | 40 | 33.608 | J | [S2] |
| 31 | 300.678 | H | [L2] | 41 | 34.541 | H | [L2] |
| 38 | 31.608 | J | [S2] | 42 | 35.541 |  |  |
| 39 | 32.541 | H | [L2] | 43 | 36.415 | H | [L2] |
| 40 | 33.541 |  |  | 44 | 37 | G | [H3] |
| 41 | 34 | N | [H3] | 45-48 | 38 | G | [H3] |
| 42 | 35 | G | [H3] | 49-51 | 39 | G | [K4] |
| 43-46 | 36 | G | [H3] | 52-54 | 40-42 |  |  |
| 47-49 | 37 | G | [K4] | 55-61 | 43 | B | [P1] |
| 30 | 38 |  |  | 56-57 | 42 | Y3 | [S4] |
| 51-53 | 39 | K | [K1] | 58-61 | 43 | B | [P2] |
| 54-55 | 39 | Y3 | [S4] | 62- 3 | 44 | C | [C3] |
| 56 | 40 | Y1 | [S4] | 04 | 45 |  |  |
| 57-62 | 41 | $\checkmark$ | [C3] | 65-66 | 46 | XC | [S4] : |
| 63-66 | 42 | XC | [S4] | 67-68 | 47 | XC | [S4]. |
| 67-71 | 43 | Y1 | [S4] | 69-70 | 48 | XC | [S4] |
| 72-89 | 44 | Q | [K1] | 71-74 | 49 | XC | [S4] |
| 90-93 | 45-48 |  |  | 75-83 | 50 | Y1 | [S4] |
| 94-101 | 49 | Q | [K1] | 84-103 | 51 | Q | [K1] |
| 102 | 50 |  |  | 104 | 52 |  |  |
| 103-105 | 51 | K | [K1] | 10.5-107 | 53 | K | [K1] |
| 106-107 | 52-53 |  |  | 108-109 | 54-55 |  |  |
| 108-125 | 54 | B | [P1] | 110-127 | 56 | B | [P1] |
| 125 | 55 |  |  | 128-131 | 57-60 |  |  |
| 127-123 | 56 | B | [S4] | 132-139 | 61 | XC | [S4] |
| 129-135 | 57 | XA | [S3] | 140-145 | 62-67 |  |  |
| 136-141 | 58-63 |  |  | 146-255 | 68 | B | [P1] |
| 142-256 | 64 | B | [S4] | 256-260 | 69 | XA | [S3] |
| 257-264 | 65 | XA | [S3] | 261-268 | 70-77 |  |  |
| 265-270 | 66-71 |  |  | 269-270 | 78 | $z$ | [S3] |
| 2\%1-512 | 72 | B | [S4] | 271-272 | 79-80 |  |  |
|  |  |  |  | 273-512 | 81 | 1) | [G4] |

Table 2 (ec ntinued)

| Distance $d=21$ |  |  |  | Distance $d=23$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $r$ | Type | Ref. | $n$ | $r$ | Type | Ref. |
| 31-32 | 30 | G | [C2] | 34-35 | 33 | G | [C2] |
| 33-35 | 31-33 |  |  | 36-38 | 3尔-36 |  | [C2] |
| 36 | 33.415 | H | [12] | 39 | 36.415 | H | [L2] |
| 37 | 34.415 |  |  | 40 | 37.415 |  |  |
| 38 | 35 | G | [L2] | 41 | 38 | G | [L2] |
| 39 | 35.678 | H | [L2] | 42 | 39 |  |  |
| 40 | 36.193 | H | [L2] | 43 | 39.415 | H | [L2] |
| 41-43 | 36.541 | H | [L2] | 44 | 40 | C | [C3] |
| 44 | 37.541 |  |  | 45-47 | 40.415 | H | [L2] |
| 45 | 38.415 | H | [L2] | 48 | 41.356 | J | [S2] |
| 46 | 39.356 | J | [S2] | 49-50 | 42 | C | [C3] |
| 47-48 | 40 | C | [C3] | 51-53 | 43-45 |  |  |
| 49-51 | 41-43 |  |  | 54-57 | 46 | Y1 | [S4] |
| 52-57 | 43.415 | Y2 | [S4] | 58-63 | 47 | B | [P1] |
| 58 | 44.415 |  |  | 64-66 | 48 | $\mathbf{X A}$ | [S3] |
| 59-63 | 45 | B | [P1] | 67-74 | 49-56 |  |  |
| 64-70 | 46-52 |  |  | 75-87 | 57 | K | [K1] |
| 71-77 | 53 | XC | [S4] | 88-99 | 58-69 |  |  |
| 78 | 54 |  |  | 100-127 | 70 | B | [P1] |
| 79-85 | 55 | K | [K1] | 128-135 | 71 | XA | [S3] |
| 86-92 | 56-62 |  |  | 136-145 | 72-81 |  |  |
| 93-127 | 63 | B | [P1] | 146-147 | 82 | Z | [S3] |
| 128-135 | 64 | XA | [S3] | 148 | 83 |  |  |
| 136-144 | 65-73 |  |  | 149-255 | 84 | B | [P1] |
| 145-146 | 74 | Z | [S3] | 256-264 | 85 | XA | [S3] |
| 147 | 75 |  |  | 265-274 | 86-95 |  |  |
| 148-255 | 76 | B | [P1] | 275-276 | 96 | Z | [S3] |
| 256-264 | 77 | XA | [S3] | 277-278 | 97-98 |  |  |
| 265-273 | $78-86$ |  |  | 279-512 | 99 | D | [G4] |
| 274-275 | $87$ | Z | [S3] |  |  |  |  |
| 276-277 | $88-89$ |  |  |  |  |  |  |
| 278-512 | 90 | B | [S4] |  |  |  |  |

Table 2 (continued)

| Distance $d=25$ |  |  |  | Distance $d=27$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $r$ | Type | Ref. | $n$ | $r$ | Type | Ref. |
| 37-38 | 36 | G | [C2] | 40-42 | 39 | G | [C2] |
| 39-42 | 37-40 |  |  | 42-45 | 40-43 |  |  |
| 43 | 40.415 | H | [L2] | 46 | 43.415 | H | [L2] |
| 44 | 41.415 |  |  | 47 | 44.415 |  |  |
| 45 | 42 | G | [L2] | 48 | 45 | C | [C3] |
| +5 | 42.678 | H | [L2] | 49 | 46 |  |  |
| .7 | 43.415 | H | [L2] | 50 | 46.678 | H | [L2] |
| 48 | 44 | G | [L2] | 51 | 47.193 | H | [L2] |
| 49-51 | 44.300 | H | [L2] | 52 | 47.830 | H | [L2] |
| 52 | 45.245 | J | [S2] | 53-35 | 48.193 | H | [L2] |
| 53 | 45.193 | H | [L2] | ${ }^{5} 6$ | 49.193 |  |  |
| 54 | 47.193 |  |  | 57 | 50.093 | H | [L2] |
| 55 | 48.093 | H | [L2] | 58-63 | 51 | N | [K5] |
| 56-61 | 49 | N | [K5] | 64-69 | 52-57 |  |  |
| 62-63 | 50-51 |  |  | 70-74 | 53 | XC | [S4] |
| 64-66 | 5 ? | K | [K1] | 75-86 | 59-70 |  |  |
| 67 | 53 |  |  | 87-88 | 7 | Z | [S3] |
| 68-70 | 54 | XA | [S3] | 89 | 72 |  |  |
| 71 | 55 |  |  | 90-91 | 73 | G | [S4] |
| 72-73 | 56 | XC | [S4] | 92-94 | 74-76 |  |  |
| 74-83 | 57.66 |  |  | 95-127 | 77 | B | [P1] |
| 84-85 | 67 | G | [S3] | 128-131 | 78-81 |  |  |
| 86-38 | 68.70 |  |  | 132-139 | 82 | XC | [S4] |
| 89 | 70.578 | Z | [S3] | 140-150 | 83-93 |  |  |
| 90 | 71.115 | Z | [S3] | 15-160 | 94 | K | [K4] |
| 91 | 72 | 2 | [S3] | 1611-165 | 95-99 |  |  |
| 92- ${ }^{4}$ | 72.300 | z | [S3] | 166-255 | 100 | B | [P1] |
| 95 | 73.245 | Z | [S3] | 256-264 | 101 | XA | [S3] |
| 95 | 74.193 | Z | [S3] | 265-276 | 102-113 |  |  |
| 97-125 | 75 | 13 | [P1] | 277-278 | 114 | 2 | [S3] |
| 126-127 | 76-77 |  |  | 279-280 | 115-116 |  |  |
| 128-135 | 78 | XA | [S3] | 281-512 | 117 | D | [G4] |
| 135-146 | 79-89 |  |  |  |  |  |  |
| 147-148 | 90 | 2 | [S3] |  |  |  |  |
| 149 | 91 |  |  |  |  |  |  |
| 150-255 | 92 | B | [P1] |  |  |  |  |
| 256-264 | 93 | XA | [S3] |  |  |  |  |
| 265-275 | 94-104 |  |  |  |  |  |  |
| 276-277 | 105 | 2 | [S3] |  |  |  |  |
| 278-279 | 106-107 |  |  |  |  |  |  |
| 280-512 | 108 | B | [S4] |  |  |  |  |

Table 2 (continued)

| Distance $d=29$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $n$ | $r$ | Type | Ref. |
| 43-44 | 42 | G | [ C .1 ] |
| 45-48 | 43-46 |  |  |
| 49 | 46.415 | H | [L2] |
| 50 | 47.415 |  |  |
| 51 | 48.415 |  |  |
| 52 | 49 | G | [L2] |
| 53 | 49.678 | H | [L2] |
| 54 | 50.415 | H | [L2] |
| 55 | 51.193 | H | [L2] |
| 56 | 51.678 | H | [L2] |
| 57-59 | 52.093 | H | [L2] |
| 60 | 53.046 | J | [S2] |
| 61 | 54 | R | [P1] |
| 62 | 55 |  |  |
| 63 | 55.913 | H | [L2] |
| 64 | 56.913 |  |  |
| 65-67 | 57 | XA | [S3] |
| 68-74 | 58-64 |  |  |
| 75-78 | 65 | xC | [S4] |
| 79-86 | 66-73 |  |  |
| 87-88 | 74 | Z | [\$3] |
| 89-93 | 75 | G | [S4] |
| 94-97 | 76-79 |  |  |
| 98 | 79.415 | Z | [S3] |
| 99-100 | 80.415 | Z | [S3] |
| 101 | 81.415 |  |  |
| 102-125 | 82 | B | [K.2] |
| 126-127 | 83-84 |  |  |
| 128-135 | 85 | XA | [S3] |
| 136-148 | 86-98 |  |  |
| 149-i50 | 99 | Z | [S3] |
| 151-155 | 100-104 |  |  |
| 156-158 | 105 | Z | [S3] |
| 159-160 | 106-107 |  |  |
| 101-255 | 108 | B | [P1] |
| 256-264 | 109 | $\lambda$ A | [S3] |
| 265-277 | 110-122 |  |  |
| 278-279 | 123 | Z | [S3] |
| 280-281 | 124-125 |  |  |
| 28\%-512 | 126 | B | [S4] |

## References

## Abbreviations: BSTJ = Bell System Technical Journal, IC = Information and Control, JCT = Journal of Combinatorial Theory, PGIT = IEEE Transactions on Information Theory.

## 1. References for the table of code ${ }_{3}$

[B1] 1.R. Berlekamp, Algebraic coding theory (McGraw-Hill, New York, 1968) (see especially pp. 360, 432-433).
[C1] L. Calabi and E. Myrvaagnes, On the minimal weight of binary group codes, PGIT 10 (1964) 385-387.
[C2] J. ${ }^{r}$ Cordaro and T.J. Wagner, Optimum ( $n, 2$ ) codes for small values of channel error ptc uability, PGIT 13 (1957) 349-350.
[C3] C.l. Chen, Computer results on the minimum distance of some binary cyclic codes, PGIT 16 (1970) 359-360.
${ }_{\text {[F1] A.B. Fontaine and W.W. Peterson, Group code equivalence and optimum codes, PGIT }}$ 5 (1959) (Sperial Suppi.) 60-70.
[G1] M.J.E. Golay, Notes on digital coding, Proc. IRE, 37 (1949) 657.
[G2] M.j.E. Golay, Binary coding, PGIT 4 (1954) 23-28.
[G3] H.D. Goldman, M. Kiman and H. Smola, The weight structure of some Bose-Chaudhuri codes, PGIT 14 (1968) 167-169.
[G4] V.D. Goppa, A new class of linear error-correcting codes, Prob. Peredaci Inform. 6 (1970) 24-30 (in Russian).
[H1] R.W. Hamming, Error detecting and error correcting codes, BSTJ 29 (1950) 147-160.
[H2] H.J. Helgert, Srivastava codes, PGIT 18 (1972) 292--297.
[H3] H.J. Helgert, personai communication.
[11] D. Julin, Two improved block codes, PGIT 11 (1965) 459.
[i.1] M. Karlin, New binary coding results by circulanis, PGIT 15 (1969) 81-92.
[K:2] T. Kasami and N. Tokura, Some remarks on BCH bounds and minimum weights of binary primitive BCH cides, PGIT 15 (1969) 408-413.
[K3] T. Kasami, S. Lin and W.W. Peterson, Polynomial codes, PGIT 14 (1968) 807-814.
[K5] A.M. Kerdock, A class of low-rate nonlinear codes, IC 20 (1972) : 82-187.
[K4] M. Karlin, personal communication.
[L1] A.E. Laemmel, Efficiency of noise reducing codes, in: W. Jackson, ed., Communication theory (Butterworth, London, 1953) 111-118.
[L2] V.I. Levenshtein, The appication of Hadamard matrices to a problem in coding, Problems of Cybernetics 5 (1964) 166-184.
[L3] V. Lum and KT. Chien, On the minimum distance of Bose-Chaudhuri-Hocquenghem codes, SIAM .I. Appl. Math. 16 (1968) 1325-1337.
[N1] A.W. Nordstrom and J.P. Robinson, An optimum nonlinetr code, IC 11 (1967) 613-610́.
[P1] W.W. Peterse t, Ërror-correcting codes (M.I.T. Press, Cambridge, iass., 1961) (see especially pp. 71, 166-167).
[P2] V.S. Pless, Fower moment identities on weight distributions in error correcting codes, IC 6 (1963) 147-152.
[F3] M. Plotkin, Binary codes with specified minimum distance ;, PGIT 6 (1960) 445-450.
[P4] F.P. Preparata, A class of optimum nonlinear double-error correcting cudes, IC. 13 (1968) 378-400.
[S:] N.J.A. S!cane and D.S. Whitehead, A new family of single-error correcting codes, PGIT 16 (1970) 717-719.
[S2] N.J.A. Sloane and J.J. Seidel, A niw family of nonlinear codes obtained from coriferance matrices, Ann. New York Acad. Sci. 175 (1970) 363-365.
[S3] A new code.
[S4] N.J.A. Sloane, S.M. Reddy and C.L. Chen, New binary codes, PGIT 18 (1972) 503-510.
[T1] N. Tokura, K. Taniguchi and T. Kasami, A search procedure for finding optimum group codes for the binary symmetric channel, PGIT 13 (1967) 587-594.
[W1] T.J. Wagner, A search technique for quasi-perfect codes, IC 9 (1966, 94-99.

## 2. Further references cited in text

[1] D.R. Anderson, A new class of cyclic codes, SIAM J. Appl. Math. 16 (1968) 181-197
[2] E.F. Assmus Jr., H.F. Matison Jr. and R.J. Turyn, Research to develop the algebraic theory of codes (Sci. Rept. AFCNL-67-0365, Air Force Cambridge Res. Lab., Bedford, Mass., 1967).
[3] E.F. Assmus Jr. and H.F. Mattson Jr., New 5-designs, JCT 6 (1969) 122-151.
[4] E.F. Assmus Jr. and H.F. Mattson Jr., Some ( $3 p, p$ ) codes, in: Information processing 68 (North-Holland, Amsterdam, 1969) 205-209.
[5] L.D. Baumert and R.J. McElece, Weights of irreducible cyclic codes, to appear.
[6] T. Berger, Rate distortion theory (Prentice-Hall, Englewood Cliffs, N.J., 1971).
[7] E.R. Berlekamp, Weight enumeraion theorems, in: Proc. 6th Allerton Conf. on Citcuit and Systems Theory. Urbana (Univ, of Illinois Press, Chicago, Ill. 1968) 161-170.
[8] E.R. Berlekamp, The weight enumerators for certain subcodes of the secunt order binory Reed-Muller codes, IC 17 (1970) 485-500.
[9] E.R. Berlekamp, Some mathematical properties of a scheme for reducing the bandwidth of motion pictures by Hadamard smearing, BSTJ 49 (1970) 969-986.
[10] E.R. Berlekamp, A survey of coding theory for algebraists and combinatorialists (Intern. Centre for Mech. Sci., Udine, Italy, 1970).
[11] E.R. Berlekamp, Coding theory and the Mathieu groups, IC 18 (1971) 40-64.
[12] E.R. Berlekamp, Long primitive hinary BCH codes have distance $d \sim 2 n \ln R^{-1} / \log n \ldots$, PGIT 18 (1972) 415-426.
[14] E.R. Berlekamp and N.J.A. Sloane, Weight enumerator for second orcier Read-Muïc: codes, PGIT 16 (1970) 745-751.
[15] E.R. Berlekamp and L.R. Welch, Weight distributions of the cosets of the ( $3.2,6$ ) ReedMuller code, PGIT 18 (197) 203-207.
[16] E.R. Berlekamp, F.J. MacWilliams and N.J.A. Sloane, Gleason's theorern on self dual codes, 18 (1972) 409-414.
[17] S.D. Berman, On the theory of group codes, Cybernetics 3 (1967) 25-31.
[18] S.D. Berman, Semisimple cyclic and abelian codes II, Cybernetics 3 (1967) 17-23.
[19] R.C. Bose and D.K. Ray -Chaudhיri, On a class of error correcting binary group codes. IC 3 (1960) 68-79, 279-290.
[20] H.O. Burton, A survey of error correcting techniques for data on telephone facilities, in: Proc. Intern. Comınun. Conf., San Francisco, Calif., 1970.
[21] P. Canion, Abelian codes, Math. Res. Center, Univ. of Wisconsin, Rept. 1059 (1970).
[22] C.L. Chen, The existence of arbitrarily long pseudo-cyclic codes that meet the Gilbert bound, in: Proc. Sth Ann. Princeton Conf. Inform. Sci. (1971) 242.
[23] C.L. Chen, W.W. Peterson and E.J. Weldon Jr., Some restilts on quasicyclic codes, IC 15 (1969) 407-423.
[24] J.H. Conway. A. proup of order $8,315,553,613,086,720,000$, Bull. London Math. Soc. 1 (1969) 79-88.
[25] J.H. Conway, A cheracterization of L.et h's lattice, Invent. Math. 7 (1969) 137-142.
[26] G. Dagnino, On a $n$ :w class of binary group codes, Calcolo 5 (1968) 277-2!4.
[27] P. Delsarte, Automorphisms of abelian cedes, Prilips Res. Rept. 25 (1970) 389-402.
[28] P. Delsarte, Majority logic decodable codes derived from tinite inversive planes, IC 18 (1971) 319-325.
[29] P. Delsarte and J.M. Goethals, Irreducible binary cyclic codes of even dimensicn, Univ. North Carolina at Chanel Hill, Inst. Statist., Mimeo Ser. No. 600.27, 1970.
[30] R.L. Dobrushin, Survey of Soviet research in information theory, to appear.
[31] E.N. Gilbert, A comparison of signaling alphabets, BST] 31 (1952) 504-522.
[32] A.M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, in: Proc. Intern. Congr. Mathematicians, Nice (1970) 140-144.
[33] J.M. Goethals, Factorization of cyclic codes, PGIT 13 (1967) 342-246.
[34] J.M. Goethals, On the Golay perfect binary code ICT 11 (1971) 178-186.
[35] J.M. Goethals, Some combinatorial aspects of coding theory, in: Proc. Combinat. Symp., Fort Collins, 1971, to appear.
[35] J.M. Joethals and S.L. Snover, Nearly perfect binary codes, Discrete Math. 3 (1972) 65-38 (this issue).
[37] M.V. Green Two heuristic techniques for block-code construction (Abstract), PGIT 12 (1966) 273.
[38] C.R.P. Hartmann, On the minimum distance structure of cyclic codes and decoding beyond the BCH boand, Ph. D. Thesis, Univ. of Illinois, 1970; also Coord. Sci. Lab. Rept. R-458, Univ, of Lllinois, 1970.
[39] C.R.P. Hartmann, A note on the minimum distance structure of cyclic codes, PGIT 18 (1972) 439-440.
[40] C.R.P. Harmann, A generalization of the BCH bound, submitted to IC.
:41] C.R.P. Hartmann, On the weight structure of cyclic codes of composite length, in: Proc. Fourth Hawaii Inter. Conf. System Sci., (1971) 117-119.
[42] C.R.F. Hartmann and K.K. Tzeng, A bound for zyclic codes of composite length, PGIT 18 (1972) 307.
[43] C.R.P. Hartmann, K.K. Tzeng and R.T. Chien, Some results on the minimum distance structure of cyclic codes, PGIT 18 (1972) 402-409.
[44] T. Hatcher, On minimal distance, shortest length, and greatest number of elements for binary grou edes (Parke Wathematical Labs., Carlisle, Mass., Tech. Memo. 6, 1964).
[45] A. Hocquenghem, Codes correcteurs d'erreurs, Chiifres, 2 (1959) 147-156.
[46] C.W. Hoffner II and S.M. Reddy, Circulant bases for cyclic codes, PGIT 16 (1970) 511512.
[47] F. Jelinek, Free encoding of memoryless time-discrete sources with a fidelity criterion, PGIT 15 (1969) 584-590.
[48] S.Vi. Johnson, On upper bounds for unrestricted binary error-correcting codes, PGIT 17 (1971) 466-478.
[49] M. Karlin, Decoding of circulant codes, PGIT 16 (1970) 797-802.
[50] M. Karlin, Weight/moment relationships in $(Q+E)$ circulants, unpublished.
[51] T. Kasami, Some lower bounds on the minimum weight of cyclic codes.of composite length, PGIT 14 (1968) 814-818.
[52] T. Kasami, An upper bound on $k / n$ for affine-invariant codes with fixed $d / n$, PGIT 15 (1969) 174-176.
[53] T. K.asami, The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. IC 18 (1971) 369-394.
[54] T. Kasami, Sonci itsuits on the weight structure of Reed-Muller codes, to appear.
[55] T. Kasami, S. Lin and W.W. Peterson, Some results on weight distributions of BCH codes, PGIT 12 (1966) 274.
[56] T. Kasami and N. Tokura, Gn the weight structure of Reed-Muller codes, PGIT 16 (1970) 752-759.
[57] T. Kasami, N. onkura and S. izzuni, On the weight distribution of Reed-Muller codes, Inst. Electro: Comm. Eng., Japan, PGIT Rept. (197!) (in Japanese).
[58] W.H. Kautz and K.N. Levitt, A survey of progress in coding theory in the Soviet Union, PGIT 1S (1969) 197-244.
[59] V.N. Koshelev, Some properties of random group codes of large length, P:obl. Perecary Inform. 1 (1965) 45-48.
[60] M.V. Kozlov, The correcting capacities of linear codes, Soviet Physic: - Doklady 14 (1969) 413-415.
[61] J. Leech. Some sphere packings in higher space, Can. J. Math. 16 (1964) 657-682.
[62] J. Leech, Notes on sphere packings, Can. J. Math. 19 (1967) 251 -. 267.
[63] J. Leech and N.J.A. Sloane, New sphere packings in dimensions 9-15, Bull. Arner. Math. Soc. 76 (1970) 1006-1010.
[64] J. Leech and N.J.A. Sloane, New sphere packings in more than thirty-two dimensions, in: Proc. second Chapel Hill Conference on Comb. Math., Chapel Hill, N.C. (1970) 345-355.
[65] J. Leech and N.J.A. Sloane, Sphere packirig and error-correcting zodes, Can. J. Math 23 (1971) 718-745.
[66] V.K. Leont'ev, A hypothesis on Bose-Chaudhuri codes, Probl. Peredačy Inform. 4 (1968) 66-70.
[67] S. Lin and E.J. Weldon Jr., Long BCH codes are bad, IC 11 (1967) 445-4.51.
[68] C.L. Liu, B.G. Ong and G.R. Ruth. A construction scheme for linear and $n$ nlinear codes, in: Proc. Sth Ann. Princeton Conf. Inform. Sci. (1971) 245-247.
[69] R.W. Lucky, J. Salz and E.J. Weldon Jr., Principles of data communication (McGraw Hill, New York, 1968).
[70] F.J. MacWilliams, Error-correcting codes - An historical survey, in: H.B. Minn, ed., Error correcting codes (Wilcy, New York, 1968).
[71] F.J. MacWilliams, Codes and ideals in group algebras, in: R.C. Bose and T.A. Dowling, eds., Combinatorial ma hematics and its applications (Univ. Norti Carolina Press, Chapel fill, 1969) Ch. 18.
[72] F.J. MacWilliams, Binary codes which are ideals in the group aigetra of an abelian group, BSTJ 49 (1970) 937-1011.
[73] F.J. MacWilliams, C.L. Mallows and N.J.A. Sloane, Genieralizations of Gleason's theorem on weight enumerators of self-dual codes, FGIT 18 (1972), to appear.
[74] F.J. MacWilliams, N.J.A. Sloane and J.G. Thompson, On the existence of a projective plane of order $10, \mathrm{JCT}$, to appear.
[75] F.J. MacWiliiams, N.J.A. Sloane and J.G. Thompson, Good self-dual codes exist, Discrute Math. 3 (1972) 153-162 (this issue).
[76] A.S. Marchukov, Summation of the product of codes, Probl. Peredacy iniorm. 4 (1768) 8-15.
[77] R.I. McEliece, On the symmetry of geod nonlinear codes, PGIT 16 (1970) 609-611.
[78] R.J. McEliece and H. Rumsey, Jr., Euler products, cyclotomy, and wedine, in: Space programs summary (Jet Propulsion Lab., Calif. Inst. Technol.) Voi. 37-65-III (1970) 22-27; and J. Number Thenry 4 (1972) 302-311.
[79] D.E. Muller, Application of boolean algebra to switching circuit desig. a and crror dete" tion, IRE Trans. Electronic Computers, EC3 (1954) 6-12.
[80] M. Nadler, A 32-point $n=12, d=5$ coae, PGIT 8 (1962) 58.
[81] S.Sh. Oganesyan and V.G. Yagdzhyan, Weight spectra for some classe of cyclic errorcorrecting codes, Probl. Peredaki Inform. 6 (1970) 31-37 (in Russian).
[82] E.T. Parker and P.J. Nikolai, A search for analogues of the Mathieu ginups, Math. Cor:jp. 12 (1958) 38-43.
[83] A.M. Patel, Maximal codes with specified minimum distance, IBM Tech. Rept. TR 44. n085 (1969).
[84] A.M. Patel, Maximal group codes with specified minimum distance, IBM. J. Res. Devel. 14 (1970) 43나-443.
[85] W.K. Pehlert Jr., Analysis of a burst-trapping error correction procedure, BSTJ 49 (1970) 493-519.
[86] W.W. Petel son, On the weight structure and symmetry of BCH codes, Air Force Cambridge Res. Lab., Bedford, Mass., Rept. AFCRL-65-515, 1965.
[87] V.S. Pless, On the uniqueness of the Golay codes, JCT 5 (1968) 215-228.
[88] V.S. Pless, On a new family of symmetry codes and related new five-designs, Bull. Am. Math. Soc. 75 (1969) 1339-1342.
[89] V.S. Pless, Symmetry codes over GF(3) and new five-designs, JCT 12 (1972) 119-142.
[90] V.S. Pless, A classification of self-orthogonal codes over GF (2), Discrete Math. 3 (1972) 209-246 (this issue).
[91] F.P. Preparata, A new look at the Golay (23, 12) code, PGIT 16 (1970) 510-511.
[92] "oc. Second Intern. Symp. Inform. theory, Tsahkadsor, Armenia, September 1971.
[93] I.S. Reed, A class of multiple-error- sorrecting codes and the decoding scheme, PGIT 4 1954) 38-49.
[94] D.V. Sarwate and E.R. Berlekamp, On the weight enumeration of Reed-Muller codes and their cosets, to appear.
[95] J.E. Savage, The complexity of decoders, II, Computational work and decoding time, PGIT 17 (1971) 77-85.
[96] N.V. Semakov and V.A. Zinov'ev, Balanced codes and tactical configurations, Probl. Peredaci Inform. 5 (1969) 28--36. (in Russian).
[97] N.V. Semakov, V.A. Zinov'ev and G.Y. Zaicev, Uniformiy packed codes, Probl. Peredaci Inform. 7 (1971) 38-50 (in Russian).
[98] C.E. Shannon, A mathematical theory of communication, BSTJ 27 (1948) 379-423, 623656.
[99] S.G.S. Shiva, Certain group codes, Prcc. IEEE 55 (1967) 2162-2163.
[100] V.M. Side'nilov, Weight spectra of binary Bose-Chaudhuri-Hocquenghem codes, Probl. Peredaci Inform. 7 (1971) 14-22 (in Russian).
[101] R. Singleton, Maximum distance $Q$-nary codes, PGIT 10 (1964) 116-118.
[102] N.J.A. Sloane, A survey of recent results in constructive coding theory, in: National Telemetering Conf. NTC'71 Record (IEEE, New York, 1971) 218-227.
[103] N.J.A. Sloante and R.J. Dick, On the enumeration of cosets of first order Reed-Muller codes, IEEE Intern. Conf. Communications (Montreal, 1971) 7 (1971) 36-2 to 36-6.
[104] R. Stanton, The Mathieu groups, Car. J. Math. 3 (1951) 164-174.
[105] J.J. Stiffler, Theory of synchronous communications (Prentice-Hall, Englewond Cliffs, N.J., 1971).
[106] M. Sugino, Y. Ienaga, N. Tokura and T. Kasami, Weight distribution of (128, 64) ReedMuller code, PGIT 17 (1971) 627-628.
[107] A. Tietävainen, On the nonexistence of perfect codes over finite fields, SIAM $J$, to appear.
[108] A. Tietäväin nn and A. Perko, There are no unknown perfect binary codes, Ann. Univ. Turku, Ser. AI 148 (1971) 3-10.
[109] S.Y. Tong, liurst-trapping techniques for a compound channci, PGIT 15 (1969) 710-715.
[110] S.Y. Tong, Yerformance of burst-trapping codes, BSTJ 49 (1970) 477-491.
[111] J.H. van Lint, Coding theory, Lecture Notes in Math. 201 (Springer, Berlin, 1971).
\{i12] J.H. var Lint, A survey of recent work on perfect codes, Rocky Mountain J. Math., to appear.
[113] J.H. van Lint, A new description of the Nacler code, PGIT to appear.
[114] H.C.A. van Tilborg, Weights in the third-order Reed-Mulier codes, Jet Propulsion Lab., Calif. Inst. Technol., Tech. Rept. 32-1526, IV, 1971.
[115] E.J. We!don, Jr., Long quasi-cyclic codes are good (abstract) PGIT 16 (1970) 130.
[116] E. Witt, Über Steinersche Systeme, Abh. Math. Sem. Univ. Hamburg 12 (1938) 265-275.
[117] J.K. Woif, Addig two information syrnbols to certain nonbinary BCH codes and some applications BSTJ 48 (1969) 2405-2424.
[118] J.K. Wolf, Nonbinary rancom error-correcting codes, PGIT 16 (1970) 236-23?.

