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Abstract: Although n-me than f wenty years have passed since the appearance of Shannon’s ia- 
pers, a stilll unsolved problem o: coding theory is to construct block codes which attain a low 
probability of error at rates clax to capacity. However, for moderate block lengths many good 
codes are known!, the best-known being the BCH codes discovered in 1959. This paper is a sur- 
vey of results in coding theory obtainedsisce the appearance of Berlekamp’s’“Algebraic coding 
theory” (1968), concentrating on those which lead. to the construction of new codes. The paper 
concludes with ir table giving the smallest redundancy of any binary code, linear or nonlinear, 
that is presently known (to the author), for all lengths up to 5 12 and all minimum distances up 
to 30. 

§ 1. I ntrodruction 

This paper is a survey of recent developments i:n the design of block 
codes for the correcti0.n of random errors. 

ln 1’448, Shannon [98) showed thaf: there exist codes which attain a 
ICVN probability of error at rates close t,o capa&:y. Gilbert [ 3 11 in 1952 

obtaine:d a lower bound on d/n for the best codes of a given rate. Since 
then a great deal of effort has been made to construct arbitrarjiy long ’ 

* 

codes which meet or even come close to the Gilbert bound, but ‘IQ far 
” ’ without success (except for codes with rates approaching 0 or 1 j. 

For moderate block lengths, however, many good codes have been 
discovered. The best-known are the Reed-Muller (RM) codes ([ 791, 
[93], [jB;l, Ch. IS]), Bose- Chaudhuri--Hocquenghem (BCH) codes ’ 

([ E 91, [ 4 j] , [Bl, Ch. 7 and Ch. lo] ), and quadratic residue (QR) codes 
([B 1, c]l. 1 S] , [ 1 1 1, $4.44 ). A systematic description of these and ’ 

other codes discovered prior to I! 968 will be found in [B 11.. .’ .l( 

111 this paper ~$3 describe same of the developments in coding theory 
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that have taken place since the appearance c f [ B1 ] . We concentrate on 
those papers which construct new codes, or give XPJ properties of codes 

previously knotwn. Important topics not con.sidereZ here are the weight 
enumerationofcodes [7,, 8, 10, 14,15, 32, 41,53-57, 73, 81,86, 94, 
100, 106, 114 1, the c’ktssification of cosets of a code [? t 6, 94, 1031, 

deco&g technique.. = a~& burst: error correction [ 20, 8 :;95, 109, 1101, 

synchronization rccc?very [ 105 ] , and source coding and rate distortion 
theory [6,47] . See also the recent survey of Goethals [ 351, which is of 
broader scope than the present work, and the book by Van Lint 11 II 11. 
We have Ilad little access to Russian work, and refer the reader to the 
surveys try Kautz and Levitt [58] and Dobrushin [30]. 

The paper is arranged as foliows. 52 deals with cyclic and ;eIated 
codes, including BCH, irreducible, perfect, abehan group, Goppa Srivas- 
tzwa, and c.irculant codes. 53 deals bwith nonlinear codes and codes for- 
med by combining other codes. 84 gives a table containing the best bi- 
nary codes known to the author. An exiensive bjbliography car eludes 
the paper. A shortened preliminary version of this paper has appeared 
in 1102). 

5 2. Cyclic codes 

Most of the codes considered to date hialre been linear and cyclic, for 
the excellent reasons that s:_~h codes are simpler to impleInznt a@ to 
analyze. 

An (n, k) linear code e over the field GF(q) consists of cjk vectors 
(called codewords) of length n over GF(q) such that (a) the sum, j!aken 
componentwise in GF(q), of any two codewords is again a codew(:>rd, 
and (b) the componentwise product of any codeword and any elel$lent 
of GF(@ is also a codeword. The redundancy of the code is r = tr - - k 

and the rate is R = kjn.. The minimum distaizce is denoted by d. 
?%e dual c&e CL 0:’ e consists of all vectors u of length n over M(q) 

such that ZP u =: 0 for ,all u E e, the iscalar product being evaluated in 
GF(qj. ThEos @- is an ipz, IZ - k) linear code. If @ = @-, e is xlf-dual. 

An application of scZf=dual codes to a famous unsolved problem of 
geometry is given in ‘i 74 j . 

A code is shortened by on&l~ g ali czodewords except those having 
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prescribed values for certain components, and then deleting those com- 
ponents [ Bl, p. 3361. 

A CJK& code is a linear code with the property that a cyclic shift of 
. 

any codeword is also a codeword. BCH, QR, and shortenetA RM codes 
are all cyclic. 

2.1. Are lsng cyclic csdes bwd? Gilbert [ 3 11 showed that there exist 
arbitrarily long linear codes with a fixed rate R = k/n for which d/n is 
bounded away from zero. In fact Koshelev [ 5911 and Kozlov [ 601 hzz 
shown that most linear codes meet the Gilbert bound. 

Qn the other hand for BCH codes of fixed rate R, d/e 4 0 as 12 -+ cm 
([ 671, [ Bl, Ch. 12])_ In fact Berlekamp 1121 h!as recently shown that 
for BCH codes 

d- 
2n In R-l 

log I’z 

as fi + O”= But it is not known whether long cyclic codes are also bad. 
Berman 1181 has shown that cyclic codes of fixed rate and with block 

lengths yt which are divisible by a fixed set of primes (and only by these 
primes) have bounded minimum distance. 

Kasami WI has shown that good hnear codes cannot be too sym- 
metric, by showing that any code with given d/n which is invariant un- 
der the affine group must have rate R -+ 0 as PI -19 00. (This includes BCH 
codes.) 

More recently McEliece [ 771 showed that ii is not the symmetry 
alone that makes a code bad, by showing that there exist arbitrarily 
long block codes (not necessarily linear) which are invariant under large 
permutation qoups and which meet the GiY.bert bound. Also Weldon 
1231, [ 1 IS] has shown that there exist very, but not arbitrarily, long 
circulant and quasi-cyclic codes which meet the Gilbert bound. (A quasi- 
cyclic code is a linear code with the property thalt a cychc shift of any 
codeword by a certain prescribed number of places is also a codeword. 
Circulant codes are defined in § 2.9.) Weldon’s proof would apply to ar- 
bitrarily long codes if the con.ecture were provecl that thelpe are an infi- 
nite number of primes for which 2 is a primitive root, 

Kasami [ 521 and Chen [ 221 have shown that there exist arbitrarily 
lon,g shortened cyclic codes which meet the CXbert bound. 
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Thompson (see f ‘751) has shown that self-dual linear binary codes in 
which all weights are divisible by 4 n;eet the Gillbert bound. 

TO give a rough summary of these results, a good family of codes can 
be linear, or have many symmetrizes, but not both.. 

2.2, BCH coG?(es. We recall the definition of a BCH code. Let q be a 
prime power, let m be the order of q module n,, and let c! be a primitilJe 
nth root of unity in GF<gm ). Then the BCH C&P of length n, designed 
distance d = dBcH , and symbols from GF(q), has the parity check matrix 

Ifn=q” - 1 the code is called primitive. By the BCH bound any such 
code has actual minimum distance 

It was conjectured [SS j , [ Bl, p. 295] that for primitive BCH codes ’ 
. .A_. 

d min = dBCH ., but in 1969 Kasami and Tokura [K I] showed that for 
q > 6, yn f 8, 12, there ax binary primitive BCEI codes of length 
&2 = 2m - 1 for which 

dmirl ’ dBCH l 

On the other hand Berlekamp [ 81 showed that if the extended binary 
EICH code of length n = 2m has d,,, = 2m -*I - 2’ for some i 2 1 m - 1, 
then dmb = drrCH. The results of [ 81 have been forth\% - generalized by 
Kasami [ 53f . But the precise determinaion of conditions on n and 

dBCH ‘Or dmin = dBCH tn hold remains an unsolveQ problem. 
Leont’ev 1661 showed that a BCH code of length n = 2m - 1 and de- 

signed distance 2t + 1 is not cluasi-perfect for 2 <: t ~1 fi/ In ~2 and 
zla> 7. 

KM. Sidel’nikov [ lOO] showed that for t < T,/$! 0, the number of 
w~xdsO of weight w in the binary BCH code of des@ed distance 2t + 1 is 
(n + I)-‘6:,)( 9 -;. e), where 14 < CPZ-**~ , for most values of w , . 
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Anderson ([ 1 I , [ 111, p. 1271) obtained the following bound for the 
dual of a BCH code, using deep number-theoretic results of Weil, Carlitz 
and Uchiyarna. The minimum distance of the dual of the binary l3CI-I 
code of length n = 2m - 1 and designed distance d,, = 2t+ 1 is at least 

2”-l- 1 -(t- 1p . 

2.3. Extmsions of BCH CO&X Wolf [ 1171 showed that two columns 
may bc: aejded to the parity check matrix of a BCH’code to give the IUW 
parity chrck matrix 

while preserving the minimum distance of the code. In some cases the 
redundancy is also unchangedJn which case we have a new code’with 

n” = n + 2, k’=k+2, r’=r, cl =d. 

This happns for example when the original code is a Reed-Solomoyt 
code over GF&), with n = y - 1 anti Y = d - 1. Then the parameters of 
thenewcodearen’=q+l:andr~‘=d’-1 -d--l. 

I 

It is easy to show that for any code d _ ,r < +l.Codeswithd=p+l are 

caIled m!u.~&num distance stpwable or MDS codes (see [ 10 1 ] , [B 1, 
pa 3091, [ 111, p. 729. SuA codes have also belen called opt&al. Reed- 
Solomon codes are MDS and so are the new family of doubiy extended 
Reed-Solomon codes. 

Assmus and Mattson [ 31 have shown th;tt MDS codes whose block 
length n is a prime number are very common, by shoiving that every 
cyclic code of prime length n over GF(#) is MqD!.$ IBM ail k, for all ex- 

cept a finite number of princes p. 
Wolf [ 1 181 has obtaineci d further extensioil of BCI-I codes, by repla- 

cing U[ in H’ by the KU X m matrix A over GT;(@, .where 



270 N.J.A. Skmne, A sumey of constructive cod@ theurjr 

A= 

0 P 0 0 \, 
0 0 1 I..‘. 0 
0 0 0 0 
. . . . 

b 6 0 . e . ...” . . 1 

’ po al Q2 %I4 1 

and ,where M(s@ = xm -LI,,~x~-~ - . . . - a0 is the minimal polynomial 
of o[ ovc; . GF(q). Call the new parity check matrix IT’. Then if I!? gene- 
rates a primitive BCH co& over GF(q) of length 12 = qm - I, desigreti 
distance d,,, and redundancy r = VI(&~~ - l), so that this is a maxi- 
mally redundant BCH code, then Hi' is the parity check matrix for a 
code over GV(q) with yt’ = m(qm + I:), r = m(dBcH - 1) and d 2 dBC.H. 
The rate of the code has thus been 6;onsiderably increased. 

For example, if the original code is over GF(S) with t2 = S2 - 1 = 24, 
dacH = 5, k =: M, R = 0.67, the new code has y1= 52, k = 44, d 2 5 and 
R = b.87. 

C,iher extensions of BCH codes are nentioned in $3.3. 

2.4. The l “ylinimum distance of cyclic codes. The ITCH bound for a cyclic 
code say: that .if the generator polynomial g(x) has d,, -- 1 consecutive 
roots thea the minimum distance is 2 dBCH. 

Goeth;& [ 33] and Kasam;i [ 5 1 ] have given improvements on the 
BCH bou,:ld for codes of composite length. Hartmann [ 38-431 hss 
given many further generalizations cf the BCXI bound, including exten- 
sions of Kasami’s results. We will just state two of Hartmann’s theorems. 
Here :3 denotes a primitive nth root of unity. The first is a bound on the 
minhmum odd weight. 

r 

Theorem. Let kin. If for sorniz I n/k, g@) = 0,for all i = 1, 2, . . ., 2, 

t,trien the minimum odd weight is at leas,! z 

EIxample. Eiy the BCH bound the (33, II 3) BCH code has d,,, = 5, and 
also d even 2: 1 CL But by the theorem dOdd 2 I 1, and so the minimum 
weight is 2 IO.. 
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The second theorem is an example of Hartmann’s generalizations of 
the BCH bound to the case where I&X) has several sets of consecutive 
roots. 

Theorem. Ifg(ld"O'i'""-l') = 0 for i = 0, 1; 2, _., d- 1 andj = 1 
9 2 f l **9 r 

with (6, n) = 1:, so that g(x) has r sets of d- 1 roots each, th<en QImin 2 
d + r. 

Kas:z.mi and T&ura [K2] have shown that for any even ytz 2 6 there 
exist binary cyclic codes of length 2” - 1 having more codewords than 
the corresponding BCH codes. The first such example is a (63, 28) d = 15 

cyclic code, compared with the (63,24) d = I5 BCH code. 
Chen [C3] used an IBM 360/50 to calculate the minimum distance of 

all binary cyclic codes of lengths <_ 65. He found three codes of length 
63 having more codewords than the corresponding BCH codes. These 
are the (63, 2811 code just mentioned, a (63,46) d = 7 code given pre- 
viously by Peterson [ 861, and a (63, 2 1) d = 18 code. The BCH codes 
closest to the host two are (63,45) d = 7 and (63, 18) d = 2 1 codes. 

2.5. Irreducible cyclk codes. A cyclic code over GF(q) is called irreduc- 
ible if its check polynomial /I(X) is irreducible over GF(q) [ 11 1, p. 451. 
The simplest examples of irreducible codes are maximal length shift re- 
gister (2” - 1, HZ) codes (also known as shortenled first order RM codes). 

Baumert, McEliece, and Rumsey IS], [78], generalizing earlier wo& 
of Delsarte and Goethals [ 291, have given a method for finding the 
weight enumerators of all irreducible cyclic c;odes. For example in the 
binary case, let N be a fixed odd number ano let k be the smallest posi- 
tive number such that 2k f 1 (mod IV). Then there are binary irreducible 

cyclic (n = ( 2km - 1 ),UV, km) codes C, , for :?z := 2, ?, . . . . Each en* con- 
sists of the zero vector plus N cycles of yz \csde~,~~rds each. Let ~0, ~1, 

. ..y WN-1 be the weights of these cycles. Thsn the generating function 

wg I- w1y + . . . + W&l y-l is given by 

2”-’ (E(y))” (mod yN - 1) 

where E(y) is ir&pen.Jent of m. For example when Iv = 7 we obtain 
(9, 6) (‘73, Oj, (585, II 2), (4681, 1 S), . . . codes with -minimum distances 
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Espeg=t,i$ely equal to 2, 28, 280,; 23Z0, :.. . (The complete weight: distri- 

but!,ons are-given in 1: 781 l ) ’ 

l’he weight: distributions of several other families of cyclic codes have 
been *given by Ogarresyan and Yagdzhan [ 8 11, [ 921. We just mention 
one @’ the!se, which consistr; of codes with check polynomials of .!:he 
form.h(x)~ I$&, J+(x}, whtxe p,@) is irreducible of degree kO arid pe- 
riod. eO, llvfo = (2ko_ I)/eo i; prime, 2 is a primitive root of I?+, , p&x) is 
a primitive polynomial of cliegree ki and period ei, and the numbers ei 
are relatively prime; 

, 

2.6. & f,?~ t codes. An e-error-correcting code over GF(q) is called per- 
&ct if every vector is at a distance of at most e from the .ncarest code- 
word. -4 

; Examples of perfect codes are various trivial codes containing 1, 2, or 
q%codewords; thpJ Hamming d = 3 codes ‘over any field; and the two 
Golay codes,. the ( 11,6) ~i = 5 code over GF(3) and the (23, 12) d = 7 
code aver GF( 2). 

A long-‘standtig conjecture that no other perfect codes exist over 
finite fields has recently been proved by TietWinen, using earlier work 
ofLloydandVanLint [107]+[108], [112]. 

The ;( 12,6) and (24, .? 2) extended Golay codes have many important . 

combinatorial propertie:;. Their symmetry groups are: the Mathieu groups 
/M:,, and M, ; their 1oW weight vectors form the Steiner systems S(5, 6, 
12) and S(5, ~8, 24): andi the lattices AI2 and Ah (the Leech lattice) can 
be coristr1,1cted from thc:m [ 621, [ 651. A series of uniqueness thearems 
have been proved: PKess [87] ‘showed the uniqueness of the Golay codes, 
Stanton [ li 041 the %:.rCc)ueness of the Mathieu groups, Witt [ 116 ] the 

* uniqueness of the asslociated Steiner systems, and Cdnway [ 241, [ 251 
the uniqueness of the Leech lattice. . . 

Gocrhals [ 341 sh:>wtc:d that the Nordstrom-Robinson code (g 3.2) 
is con%lned in the (2’4!, 12) code. Berlekamp [ 111 h.as studied the sym- 

metry groups of the principal subcodes of the (L4, I 2) code. 
Since the Nordstron+-Robinson code is the first *member of Prepara- 

b’s family of nonlint3a i’ double-error correcting cc&s ( 5 3.2), it is natur& 

to ask if the others can be extended to give codes analogous to the Go- 
lay code. However, !Ve.parata [ 911 ,has shown that this is impossible, in 
one way~at least. 
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TurF [ 21 showed that the (24, 12) Golay co .k may be obtained as 
thesetofvectorsoftheform(a+x,h+x,a+b~x)G,bEC1,XEe2, 
where @, and e2 are two different first order NM ~cod~s: The same 
Constr~Xtion was used in I%] to obtain an infinite family of linear 
codes with d/n = 4. The first three codes of the family are the (24, 12) 

Golay code, and (48, 15) d = I6 and (96, 18) d = 32 codes. As the length 
increases the rate approaches zero. A generalization of the (12, 6) Golay 
code is described in the next section. 

Parker and Nikol;ti [ 821 described an unsuccessful search for simple 
transitive groups analogous to the Math& groups. 

2.X Abe&n group c&es. Let e be a binary cyc:lic [n, k) code. If code- 
words are represented by polynomials, cOcI . . . c,,_~ +-+ co + cl x + +. . 

+-C,_I.FI) then it is well known that the codewords in C! form an . 

ideal in the ring of polynomials module x* - I [II? 1, Ch. 81. 
MacWiUiams[71],.[72],Berman[17],[18] :+ndothers[21~],[27] 

have studied the following generalization of cyClk codes. Let G .= 1 

{g 1’ . . . . g,,) be a multiplicative abelian group, and 1e:t R denote the set 
of all formal sums 

with the obvidus addition and multiplication. R is a vector space of di- 

mension IZ over GF( 2). An ideal SQ is a linear subspace cf R such that if 
A E d, g E (7 then gA E SQ l Then SQ is a natural ger?leralization of a cy- 
clic code, anfd is &led an abelian group code. 

Many pro;i)ertiec of cyclic codes carry over to Iiib&an group codes, 
such as the existetl:ce of a generator codeword who!;e multiples generate 

the code. 
Berman [ :I $j] has shown that for fixed rate zllni;i for block leng,ths ~1 

which are divisible by a fixed set of primes (and t. lnly by tlxse psimesj, 

as n + 00 abelian group codes have h&her minimu rn distance than cyclic 

codes. 

2.8. Gopp~~ and ,Yrivasrava codes. Goppa [G4] hams recehtly described a 
new family of linear noncycljc codes, some of SwJr:ich meet the Gilbert 

bound. 
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Let integers m 9 t be ghien satisfying 3 5 m SC m t < 2m , Let 

2 = {z E GF( Pt )I degree of minimal polynomial. of z is mt } , 

and let at be a primitive 152ement of GF( 2m ). Then for any z: e 2 the bi- 
nary Goppa code ~(RI!, rl’, z) is the (n = 2” t k 2 2” -mt) code with the 
mt x 2” parity check matrix 

H= -- 1 mm._- 1 _ 1 1 z-0 ) 2 _-I y z-_ar) g’g’ -. 1 l 2 (y 2 m_, - 
a-- 

Gappa has shown that the: :minimum distance oW(m, t, z) is (i) at least 
2,t + 1 for all z E Z, (ii) eq>sal to that given by lthi Gilbert bound for some 
z E Z. Unfortunately it is not known how to choose z c 2 so as lto make 
this happr:n. 

Srivast;iva codes [is i , 5 15. i 1 resemble Goppa codes. Helgert [ H21, 
[H,?] has recentlyr found zi number of good Srivastava codes. 

2.9. Circu?ant codes., In 19G4 Leech [ 6 1 ] showed that the generator 
matrix for the (23, 12) Golciy code can be written as 

C 

; 1 . . . 1 I _ 

where C is a circulant matrix, that is, each row is a cyclic shift of the 
prelkrious row by clne place. Pn this case the first row of C can be taken 
to be 1 E 0 1 1 i 0 0 0 1 0, haqing a 1 at position 0 and at the quadratic 
residues of 11. 

Then in 1965 in an important paper ([K 11 m see also ,461, [ 491, [SO] ) 

Karlin found a large number of binary codes generated by circulants. 
many having a higher rate than the best codes previously known Exam- 
ples are (27, l4), (30, 16), (34, 12), and (53, 14) tzodes, having miniml.~m 
distances respectively equal to 7 7, 11 and 17. 

This apl>roalch also simplified the calculation of the minimum distance, 
an&j Karlin was able to determine the minimum distance of a number of 
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binary quadratic residue codes, e.g., the (79,LbOj 2 = 15 and (89, 45) 
d = ]I ‘7 QR codes. Karlin also asserts that the QR codec; of lengths ! 83 

and 107 both have minimum distance equal to 19. 
Ness [88], [89] has constructed self-dual (2q -+ 2,q + !) codes over 

GF(3) for every odd prime power Q = -1 (mod 3). These are circulant 
codes, with a generator matrix of the form 

L 1 1 1 1 011 1 1 1 c B J 
where C is a circulant matrix. The first five are (12, 6) (the ternary 
Golay code), (24, 12), (36, 18), (48, 24) and (60,30) codes, with mi- 
nimum distances 6,9, 12, 15. and B 8 respectively. These five codes h ?ve 
rate + and d = &I + 3. But unfortunately later codes in the family have 
smaller distances. Nevertheless circulant codes are a very promising area 
for research. 

93. Nonlinear codes and codes formed by corrrbining other codes 

Since the number of codewords in a nonlinear code need not be a 

power of the alphabet size, it is convenient to have a new notation: 
An (n, M, d) code @ is a set of M codewords of length n, with symbols 

from GF(@ and minimum distance d. The dimension of this code is k = 
log@!, the redundancy is r = PI- lo&M, and the rate is R = k/n. Now, k 

and Y need nut be integers. 
A coset of r? is an arbitrary translation a + (2 of the codewords of c? 

(where a is any vector of length n). If e is linear, then two cosets of C 
are either equal 3r disjoint, bl:t this need not be true if C is nonlinear 

An (t-z, M, d) code is said to be optimal if it has the iargest possible 
number of code:w&s for the given values of yc and d. This is using op- 
timal in a very naive .*ense, of tours% since it omits any consideration 

of encoding and decofding. But it can be argued that once good codes 
have been found, the techniques for, their implementation will be dieve- 

loped later, as has happened with BCW codes [IS 1, Ch. 71. 
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Ht seems reasonable to expect that optimal codes will often be non- 
linear, and that ever; near-optimal linear codes will have a complicated. 
structure. As a well-known verse by 3 ,L. Massey [ 701 says, “... good 
codes just might be messy.“’ . 1 

*Nonlinear codes have beensuc~essfullp used to construct dense 
sphere packings in Euclidean sp;ace [ 63-651. 

3.1. Codes derived from Hadama;rd an!d conference matrices, An pz X 11 
Hadamard mat& 9& is a matrix of +1’s and - ‘S such that WnRh = nI 
(where 1 is a unit matrix). Replacing + 1 ‘s by O’s and - l’s by l’s converts 
$I&, intc a binary Hadamard matrix H,,, . 

It was shown by Plotkia [Pl, p. 791, [P3], [R 1, p. 3 161 that the 
(n, 2n, in) co&e consisting of the rows of I& and its complement is op- 
timal. When n is a power of 2 this is a (linear) first order Reed-Muller 
code, while in the otlaer cases this is a nonlinear Hadamard code. 

Many other nonlinear codes can be obtained by manipulating Hada- 
mard matrices. Levenshtein ([L2], see also [ 58, p* 2061, [ 8.31) showed 
that optimal codes for ah d and all n 5 2d can be obtained in thip way 
(provided the requisite Hadamard matrices exist) by showing tha: such 
codes meet the Plotkin bound [Y3] . Pate1 [ 841 has determined tile op- 
timal linear codes in the same region. %. 

Recently [S2] good nonlinear codes with y2 slightly greater th,ln 2d 
have been obtained from conference matrices. An PI X tz confereuce ma- 
trix Tn -is a matrix with O’s on the diagonal and + l’s &ewhere, s&isfy- 
ing .ii;l TA = (n -- 1111. Whenever a symmetric T, e-tiists, an (n - 1, 3, 

4 (n - 2)) binary nonlinear code can be constructed. The first few codes 
obtained are the (9,< 20, L;i) optimal co\de of Juhh [J 1 ] , a ( 13, 28, 6) 
code which is inferior to Nadler’s cod.e [ 8Oj , the (17, 36, 8) code given 
in [Sl]; ad (25, 52, 12)i (29, 60, 14), (3?, 76, IS), (4.1,84, 20) codes. 

3.2. PreDarata and Kerdock codes. Nonlinear doubleerror-correcting 
codes were constructed by Nadler ([ 801, a ( 1 Z, 32, 5) code), Green 
([37], (13, 64, S)), and Nordstrom and Robinson ([Nl], (15, 28, 5)). 
Van Lint [ 114 f ,has given .a simple construction of the Nac?Ier code. 

Preparata [P4 ] gave a highrate generalization of the Nordstrom-Ro- 
binson code. For everjr even IZ 2 4 he constructed a nonlinear (2m - 1, 

22 
m 

-2En, 5) cod&. These codes are optimal, contain twice as many code- . 
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words as double-error-correcting BCH codes, and have straightforward 
encoding and decoding algorithms. 

Semakov and Zinov’ev [ 96 j ? [ 971 and Goethals and Snover [ 361 
have independently obtained the weight distribution of the Preparata 
codes. 

Kerdock KS] has given a corresponding low-rate generalization of 
the Nordstrom-Robinson code. He-showed that for every even m 2 4 
it is possible to take the union of the (2” , 2m +I , 2m-1) first order RM 
code and 2”-’ - 1 of its cosefs to obtain a 

(2m ¶ 2.2m I 3 2m-‘a_ 2i(m-2’) 

nonlinear code. FOI m = 4 this is the extended Nordstriim-Robinson 
code; for YIZ = 6 this is a (64, 2 12, 28) code containing four times as 
many codewords as the best extended cyclic code of that length and 

6 
distdnbe. F 

The Preparata and Kerdock codes are “duals” in the sense that their 
weight distributions satisfy the MacWilliams identity [B 1 y p. 40 1 ] . The 
reason for this is not yet understood. 

The next four sections describe constructions for combining two, 
three, or four codes t 3 obtain new codes. 

3 3. Corzstructions X and X4. Construction ,Y combines three codes to 
form a fourth. Suppose we are given an (n I) M, , d, 1 code e1 nnd an 
()ltl, M, = bMl, d2) code e2, with the property that C, is the union of 
6 disjoint cosets of el, 

for some set of vectors s = {x1, x), .*., xb}. Let ._ 

e3 = {Y 1 ,J!~, ..-7 Yb) 

be any (IQ, b, A) code. 
Let n be an arbitrary permutation of (1, 2, . . . . b}; so that xi + _,‘n(0 

defines a one-one mapping from S onto e3. 
The new code is then defined to be 



Simply stated, e2 is divided into cosets of e,, and a different code- 
word of e3 is attached to each coset. See fig. 1. 

Then e4 is an (h, + is, M2, d = minfdl , d2 + A}) code. Similarly 
construction X4 cmnbims four codes to fdBn&i a 
tails and f?lrther exampl.es. 

fifth. See [ S4] for de- 

a Hamming code, e3 an Exampk 1. Take E! 1 to be a Preparata code, e 2 
even weight code. Then, after showing that the Hamming code is a union 
of cosets of the Preparata code,, one obtains (2” + ~II - 1, 22’V-n2--1, 5) 

codes for m 2 4. Using construction X4 one can do even better, and ex- 
tend the Preparata code by the addition of fia information symbols 
at th.e cost of adding one check symbol [ S43. 

Example 2. Using BCH codes one obtains new codes having at least as 
many coder%ords a;s those given by the Andryanov-Saskovets construc- 
tion [B 1, p. 333 1. In some c;:lses e-error-correcting BCH codes may be 
extended by the addition of labout n’le islformation symbols at the cost 
of’ adding one chzck symbol (S4] . 

Fig. 1. 
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3.4. Constructions 111, Y2, Y3. The following cons?uctions were sug- 

gested by Goethals [ 341. 

C’~nstructi~n Yl l Let C+ be ?:I fn, 2’ 1, d, ) linear code and let e2 be 
its (n, 2” 7 d,r dud code, with coordinates chosen so that there is a 
minimum weight codeword 1 ,.. 

CZ1 in which the first d, 
10 . . . 0 in e2. Let S be the subgroup of 

- 1 coordinates are zero. Then the dih coordi- 
nates of S are also zero. If thz initial d2 zeros are d,eleted from S we are 
left with an 

!n -d,, 2kl-d2+‘9d,) 

linear code. 

Construction Y2. Let T be the union of S and all of the d2 - 1 cosets of 
Sin C1 witk coset leaders 1 lO’f--2, 10IOn-3, . . . . 10d2-2 IOnmd? By de- 
leting the first dz coordinates of T we obtain an 

(,~-d2,d22k’-d2L1,dl -2) 

nonlinear c’ode. 

Constnccticin Y3. Taking ali the cosets with COSCY leaders of weight 2 

we obtain ,rin 

(:p-d2y (1 + (2)) 2kl-d2+1, d,.-4) 

nonlinear rode. 
Many examples of codes obklined by these constructions are given in 

IS41 . 

3.5. Construc&vz 2. This co!wbines two codes to form a third [JP3 ] , 

f144j) ISl], [ta], 

Le:c q -:@+Mr,d1)and e2 = (n2, h-f,, d2) be arbitrary codes over 

GF(q). Let d denote the zero vector of length In1 -n12 I. Then the ~XW 

code e3 is Csfined as follows. 
(i). If n1 5 1”12, e3 = ((x, AX, o) + yji x E el, y E C,) , and is ;tn 



(q + n2, M1M2;d = min(3dI, cl,)) code. (h the definition of es, the 
comma denotes concatenation and + denote:; vector addition in GF(q).) 

(ii). l[f zJI > pi2, C?3 = ((3, x + (y, o))l x E I+, y E Q} , and .iis a 
(2n1, q&if,, d t;= lmh(26]~ ) d~))_“ode. 

0 Q is linear if C?, and (_2 are. A number 01’ applications are given in 
[S 11, including the construction of an infinite family of nonlinear single- 
err>r-correcti& cod& which contain more codewords than shortened 
Hanming codes. Other examples, of ,which Close in table 1 are typi- 
Cal, will ‘r% seen in table 2. 

3.6. Asssnus and Mattson’s rate 3 c~~clic codes. Let p be a prime of the 
form W+ 5 for which 2 is a primitive root (e.g., p = 5, 13, 29, 37, . ..). 
&smus and Mattson f4] showed how to concatenate three diCerent 
versions of the (p, p --- i) even weight code to obtain a’linear binary cyr- 
clic (3p, p -- 1) code, denoted by 3E, witlh minimum distance at least 
2fi. Let 3E’ be the cyclic (3p, p) code consisting of the codewordsof 
3E together with their complements. The first few examples of 3E’ are 
(15,5)d=7,(39, 13)d= 12,(87,:Z9)d=24,and(111,37)d=24 
codes. 

3.7. Other constmctkm Ot’rler techniques for constructing codes have 
been given in [ 261, [28] y [ 7161, [ 991. However the codes obtained ap- 
pear to contain fewer, or at best as nlany, codewords as known cyclic 
codes. 

-- 
Tatle 1 

_--- _ -- - - 

nl q 
--I_+ 

23 11 

19 12 

14 13 
-v_u-_- 

dl 

7 

8 

14 

--- -.. 

n2 r2 d2 n r d 
-_ I---_ * 

li 4.830 4 34 15,830 7 

19 18 19 38 30 16 

264 101 27 278 114 27 
--- _--m- 
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54. A table of the best codes presently known 

4.1. For a given value of the length y1 and minimum distance d, let iV be 
the maximum number of codewords of any binary (rz, &I, (9) code, 1ine;rr 
or nonhear, that is presently known (to the author). Then table 2 
gives the redundancy r = y1- log@ of this code as a function of n and 
d, for all n < 5 12 and d 2 30. These codes are of considerable theor& 
cal interest in themselves, provide a basis for judging neti codes, and (as 
a lower bound to the densest possible codes complement Johnson’s 
table of upper bounds I.48 J . Frevious tables of codes are to be found in 
[Bl], [Cl], [C3], [EL!, [Ll], [Pl], [P3], [Wl], and [go]. 

4.2. q,pes ODodes. The codes are classified as follows. 
B = Bose-Chaudhuri-Hocquenghem code [B 1, Ch. 7 1. 
C = Cyclic linear code [Pl,. Ch. 81. 

D = Poppa code ([G4] and 5 2.8 above). 
< L g = Group or linear code [PI, Ch. 33 . 
H = Hadamard code [ L2]. 
J = Code from conference matrix [ S2]. 
K = Circulant code [K 9 j . 
N = Nonlinear code. 
P = Nordstrijm-Robinson-Preparata code [N 1 J , [ P4] . 
Q =Quadratic residue code ([Bl, 5 15.21, [ 11 I, $4.41). 
R = Reed-Muller code [B 1, 5 15.3 ] . 
S =Srivastavacode [Bl, §lS.l], PH21. 
;)01, XC, Xp = Codes from construction X applied to BCH cgdes (the 

generalized Andryanov-Saskovets construction), to cy,- 
clic codes, and to Preparata codes respectively ([ s41 

and $3.3 above). 
X4 = Codes from construction X4 (KG41 and §3.3 above). 

Yl, Y2, Y3 = Codes from constructions Y 1, Y2, I3 (is41 and $3.4 

above). 

. Z = C~~&:s from -x.mstruction Z ([S I] a& 5 3.5 above j. 
Types B, C, D, G, K, Q, R, S, Y.A, XC, Y 1 are linear, J-J, J, N, P, XP, 

Y2, Y3 are nonlini;lsr, Ltnd X4, ei 7 may be linear or nonlinear. 

1-n tablie 2, Lc~‘:: , ‘PC for which the reference [ S3 ] is give:n are new. With 

one exception the32 dre a 11 exampies of constructions mentioned in the 
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text. The excepr:ion is an (85, 18) d = 25 which was obtained using con- 
struction 39 of Hatcher [ 441. 

4.3. Since an (n,, M, d oddj code’is equivalent to an (n + I 3 M, d-t 1) 
code, only codes for odd d need be given. An (pt, M, d) code may be 
punctured to give (n -2, M, d-i) codes for 0 <C i < d, or shortened to 
give (n-i, MZ-‘, * dj codes for 0 < i < log2M. Irr table 2 all such mo- 
dified codes carry the name of the original code. An (n, M, d) of redun- 
dancy r may be thought of as an (n + i, M, d) code of redundancy Y + P’, 
for i 2 1, in which case the name is left blank. 

4.4. Some nonlinear codes in table 2 have redundancy Y which is not a 
whole number. In such cases the number of codewords is quickly fczn3 
as follows: If Y = R + a, where R is a whole number and 0 < a < 1, 
the number of codewords is M = i2n-R-5 where i is given by 

a I .046 .093.142,193.245.30@ .356.415.541 .608.678.7!;2.830.913 
i 31 30 29 28 27 26 25 <!4 22 21 20 19 18 17 

45. In many cases the reference is to a place where the complete weight 
distribution of the code may be found, rather than to the original deter- 
mination of the minimum distance. 

4.6. Although many of these codes may be optimal, in the sense of hav- 
ing the smallest possible redundancy, very few of them are lcn:Jwn to be 
optimal. (Ceinpare [48] .) The reader is invited to try and improve on 
them. Those of type 2 and distances 25-29 are especially weak. The 
author is eager to hear erf any improvements. 

4.7. In the first section of table 2, for minimum distr,hce d = 3, when 
n=3,4,5and3r~2*--25:.< 2m , m 2 3, the cbc!es shown are (shor- 
tened) Hamming codes [Hl] . When 2m <_ n < 30 2m-1, m >, 3!, the codes 
shown are nongroup codes, discovered by Golay [G2] and Sulin [J 1 I for 
B = 8, 9, ICI, 11 and by Sloa.le and Whitehead [S 11 for IT 2 16. 
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Table 2 
Binary codes of length n, minimum distance d, and smallest known redundancy r 

Distance d = 3 
(see sect, 4.7 i,.t this paper) 

---- 

n t 
-_ 

cl- 7 3 
8 1.678 
9 3,752 

lo- 11 3 830 
12- 15 4 
16- 17 4.678 
lS- 19 4.752 
20- 23 4.830 
24- 31 5 
32- 35 5.678 
36- 39 5.752 
40- 47 5.830 
48- 63 6 
64- 71 6,678 
72- 79 6.752 
80- 95 6.830 
96-127 7 

128-143 7.678 
144-159 7.752 
160-l 91 7.830 
192-255 8 
256 -287 8.678 
288-319 8.752 

320-383 8.830 
384-511 9 

512 9.678 

Distance d = 5 

- 

n r Type Rc.f. 
- 

7- 8 6 G Ml 
9- 11 6.415 H [P31 

12- 15 7 P VI1 
16- 19 8 XP [S4] 

20. 8.678 X4 [S4] 
21- 23 9 G [Wlj 

24- 32 10 B WI 
33- 63 11 P IP43 
64- 70 12 x4 [S4] 
71- 73 13 S [HZ,] 
74-128 14 B (S4; 

129-255 15 P [Pq 
256-271 16 x4 [S4j 
272-277 17 S [H2j 

278-512 18 B [S4fi 

Distance d = 7 

n r Type Ref. 

lo- 11 9 G ILlI 
12- 15 10 R [PlI 

16 10,830 J [Sl] 

17- 23 11 Q [Gil 
2-4 12 

25- 27 13 K [KU 
28--- 30 14 R [RJl 
31- 3;: 15 D [G41 

33 15.752 2 [S3) 
34- 35 15.830 2 $3) 
36- 47 16 C;* 
48- 63 17 C [C3] 
64- 67 18 xc IS41 
68- 70 19 XA [S3] 
71- 83 20 S :H2] 
84-128 21 D iG4] 

129-13s 22 XA ;S3] 
136-159 23 Yl ;S4) 
160-256 24 D $41 
2S7-264 25 XA iS3] 
265-311 26 S [H2j 
312-512 ;17 D iG4] 

_--_ -F 

* From SM. Reday 
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Table 2 (continued) 

Distance d = 9 
-- -- 

n r T,vpe Ref. 
.- _I 

13- 14 12 
15 13 
16 13.4is 

l?- 19 13.678 
20 _l4.678 
21 15.415 
22 16.300 

23- t; 16.678 
.6 17.678 

27- ‘29 18 
30- 35 18.415 

36 19.415 
37- 41 20 
42- 45 21 

46 22 
47- 49 22.193 
so- 52 23 
53- 73 24 
74- 75 :t§-- 26 
76- !% 27 
PI-128 28 

129-135 29 
136 30 

937-156 31 
157-256 32 
257-264 33 

265 34 
266-311 35 
312-512 46 

G [Ll] 

* EI [L2] 
H [L2j 

:I [L2] 
3 [S2] 

Y:< [S4] 

B [Pll 
Y2 [W 

C! [Bll 
Q WI 

y2 WI 
s WI 
B WI 

s WI 
B WI 

XA WI 

s WI 
B WI 

XA WI 

s WI 
B WI 

Distance d = 11 
--CII 

?l r TYPE Ref, 
. 

16- 17 15 
18 16 
19 16.415 
20 17 

21- 23 17,415 
24 18.300 

25- 26 19 
27- 31 20 

32 21 
33- 35 22 
36- 47 23 
48- 50 24 - 26 
51- 63 27 
64- 67 28 
68- 70 h-31 
71- 74 32 

75 33 
76- 94 x 
95-128 35 

129-135 36 
136-137 37-38 
138-156 39 
157-256 40 
257 -264 41 
265-266 42-43 
267-311 44 
312-512 45 

G 

H 
B 
H 
J 
G 
B 

Yl 

Q 

B 
XA 

xc 

S 
D 

XA 

S 
D 

XA 

S 
D 



Table 2 285 

Table 2 (continued) 

19- 10 18 
21- 22 19~20 

23 20.4 15 
24 21 

25- 27 28,193 
28 22.093 
29 23 
30 24 
31 24.830 
32 25,752 

53- 37 26 
38 27 

39- 43 28 
44- 4s 29-30 
46- 5s 31 

56 32 
57- 63 33 
64- 70 34 
71- 72 35-36 
73-- 77 37 
78- 79 313-39 
80- 85 40 
86- 96 41 
97-128 42 

129-135 43 
136-138 44-46 
139-156 47 
157-256 48 
257-264 49 
265 -267 SO-52 
268-311 53 
312-512 54 

n 

Distance d = 13 
_- 

r Type Ref. 

tf Wl 
G [Cl) 

I+ w21 
J WI 
R WI 

H [LZ] 

J P21 
XA is31 

C WI 

y2 WI 

B VW 
XA (S3] 

Q Wll 

Q WI 
S IH31 
B F41 

XA F31 

S [H3) 

B IS41 
XA [S3] 

S IH3l 
B IS41 

Distawe d = 15 

n r Type Ref. 

22- 23 21 
24- 25 22- 23 

26 23.415 
27 24 
28 24.678 

29- 31 25 
32 26 
33 26.830 
34 27.152 
35 28 

36- 37 29 
38- 41 30 

42 31 
43- 47 32 
48- 50 33 
Sl- 55 34 
56-- 63 35 
64- 66 36 
67- 68 37-38 
69- 71 38.830 
72- 79 39 
80- 81 40-41 
82- 87 42 
88- 91 43-46 
92- 99 47 

100 48 
101--l 28 49 
129-135 50 
136-140 51-55 
14 l-256 56 
257-264 57 
265-269 58- 62 
270-512 63 

G 

H 
G 
H 
R 

H 
J 
Z 
Z 

xc 

G 
C 
C 
C 

XC 

Y2 
Q 

Q 

Q 

D 
x4 

D 
XA 

D 

WI 

EL21 
[S:!) 

P31 
[S3) 

IS41 

IS41 
WI 
WI 
WI 
IS41 

IS41 
WI 

WI 

WI 

iG41 
IS31 

lG41 
CS3) 

!G4) 
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Table 2 (continued) 

Distance d = 17 Distance d = 19 

n r Type Ref. n r Type Ref. 

2S- 26 24 
27- 28 25-26 

29 26,413 
30 2’7,415 
31 28 
32 28.415 

33- 5, 28.830 
3) 29.752 
31 30.678 
38 3 1.608 
39 32,541 
40 33.541 
41 34 
42 3s 

43- 46 36 
47- 49 37 

30 38 
Sl- 53 39 
54- 5.5 39 

56 40 
S7- 62 41 
63- 66 42 
67- 71 43 
72- 89 44 
90- 93 4S--48 
94--101 49 

102 SO 
103-10s 51 
106-167 52-53 
108-125 54 

126 55 
127-128 56 
:29-135 57 
136-141 58-63 
lLi2-256 64 
257 -264 65 
265 -2’70 66-71 
271-5:12 72 

G K21 

l H jL2] 

G [L2] 

I-I [L21 
H [L2] 
J v321 
H WI 
J WI 
H WI 

N WI 
G w31 
G [H3] 
G WI 

K WI 
Y3 [S4] 
Yl [S4] 

c [C3] 
xc w 
Yl WI 

C! WI 

Q WI 

K WI 

B [Pll 

B iS4] 
XA [S3] 

B ES41 
XA [S3] 

B WI 

28- 29 27 
30- 32 28- 30 

33 30.41s 
34 31 
35 31.678 
36 32.415 

:j:.‘-. 39 32.678 
40 33.608 
41 34.54 1 
42 35.541 
43 36.415 
44 37 

45- 48 38 
49- 51 39 
§2- 54 40-42 
5S- 61 43 
:‘;6- 57 42 
58- 61 43 
62-- 53 44 

64 45 
6S- 66 46 
67- 68 47 
69- 70 48 
71- 74 49 
7s- 83 50 
84-103 51 

104 s2 
lOj-107 53 
108-109 54-5s 
110-127 56 
128-131 57-60 
132-J39 61 
140-145 62-67 
146-255 68 
256-260 69 
261-268 70-77 
269 -270 78 
271-272 79-80 
273-512 81 

G EC21 

H 
c 
M 
11 
H 
J 
H 

WI 
VI 
WI 
WI 
WI 
WI 
w21 

H 
G 
G 
G 

WI 
[HZ] 

WV 
WI 

B 
Y3 

B 
C 

WI 
WI 
WI 
WI 

xc 
xc 
XC 
xc 
Yl 

Q 

WI 5 
[54]-. 
WI 
IS41 
WB 
WI 

K WI 

B WI 

xc IS41 

B WI 
XA [S3] 

L IS31 

D KG41 
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Distance d - 21 Distance d = 23 

n r Type Ref. 
-- 

31- 32 30 
33- 35 31-33 

36 33.415 
37 34.4 ? 5 
38 35 
39 33.678 
40 36.193 

41- 43 36,54 31 
44 37.54 II 
45 38.415 
46 39,356 

47- 48 40 
49- 51 41-43 
52- 57 43.415 

58 44.4 15 
59- 63 45 
64- 70 46-52 
71- 77 53 

78 54 
79- 85 55 
86- 92 56-62 
93-127 63 

128-135 64 
136-144 65-73 
145-146 74 

147 75 
148-255 ‘76 
256--264 77 
265-273 78-86 
274-275 87 
276-277 88- 89 
278-512 90 

G WI 

H [L2j 

G fL21 
H iL2j 
H CL21 

H IL21 

H [L21 
J WI 
c [C3] 

Y2 [S4] 

B IPl) 

XC [S4) 

K [Klj 

B CPU 
XA [S3] 

Z WI 

B WI 
XA WI 

Z IS31 

B IS41 

rt r Type Ref. 

34- 35 33 
36- 38 3& S6 

39 36.415 
40 37,415 
41 38 
42 39 
43 39.415 
44 46 

45- 47 40.415 
48 41.356 

49- 50 42 
Sl- 53 43-45 
54- 57 46 
58- 63 47 
64- 66 48 
67- 74 49-56 
75-- 87 57 
88- 99 58-69 

loo-127 70 
128-135 71 
136-145 72- 81 
146-147 82 

148 83 
149-255 84 
256-264 85 
265 -274 86- 95 
275 -276 96 
277-278 97-98 
279-512 99 

G 

H 

G 

Yl 
B 

XA 

K 

B 
XA 

Z 

B 
XA 

Z 

D 

: [C2] 

IL22 

CL21 

v-21 
IC31 
IL21 
WI 
IC31 

VW 
WI 
IS31 

IKU 

[PI1 
IS31 

IS31 

[Pll 
IS31 

ES31 

[ G4) 
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Table 2 (continued) 

Dklance (iI= 25 Distance d = 27 

n r Type Ref. 
.__I__“.- -- 

.37- 38 
39- 42 

43 
44 
45 
Ji 
t7 

,“?8 
49- 51 

52 
53 
54 
55 

56- 61 
62- 63 
64- 66 

67 
68- 70 

71 
72- 73 
74- 83 
84- HS 
86- 38 

89 
90 
91 

!v2- 34 
95 
95 

97-B 2s 
126-127 
128-135 
136-146 
147-F.48 

149 
150--255 
258 -264 
265 -275 
276 -217 
27&-279 
2~80~-5 12 

36 G [C2] 
37.e40 
40,415 * H WI 
41,415 
42 
42,678 
43,4\15 
44 
44\,3001 
45.245 
46J93 
47,19’3 
48,093 
49 
SO-5 1 
52 
53 
54 
55 
56 
57 -66 
67 
68 -70 
7O.~i’78 
71 I t:15 
72 
72w)OO 
73.:!45 
74.1.93 
75 
76- 77 
78 
79- 89 
90 
91 
‘92 
33 
94- -104 

10s 
106-- 107 
108 

G WI 
H [L23 
!?I [L2] 

G IL21 
H IL21 
J [SE] 

H [L21 

H IL21 
N W51 

K WI 

3QJ P3l 

xc [S4] 

G P31 

2 v31 
2 IS31 
2 is31 
2 is31 
2 IS31 
2 v31 
13 Wl 

XA [S3] 

2 P31 

B WI 
Ju ts31 

z ts31 

B fS41 

n r Type Ref. 

40- 41 39 
42- 45 40-43 

46 43.415 * 
47 44.4 15 
48 45 
49 46 
50 46.678 
51 47.193 
52 47.830 

53- l.55 48.193 
:j6 49.193 
57 50.093 

58- 63 51 
64- 69 52- 57 
70- 74 5%) 
75- 86 5?- 70 
87- 88 7; 

89 72 
go- 91 73 
92- 94 74- 76 
95-127 77 

128-131 78- 81 
132-139 132 
140--150 83-93 
15 Ii -160 94 
16 k-165 95 -.* 99 
M-255 100 
256-364 101 
265-276 102-113 
277-278 114 
279-280 615-116 
281-512 117 

G 

H 

c 

H 
H 
H 
H 

H 
N 

XC 

2 

G 

B 

XC 

K 

B 
XA 

Z 

D 
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Table 2 (continued) 

Distaxo d = 29 
-- 

n r 
Type Ref. 

- 

43- 4;J 42 
45- 48 43-46 

49 46.415 
50 47.415 
51 48.4 15 
52 49 
53 49,678 
54 50.4 15 
55 51.193 
56 51.678 

57- 59 52.09.3 
60 53.046 
61 54 
62 55 
63 55.91 T-i 
64 56.913 

65- 67 57 
68- 74 58-64 
75- 78 65 
79- 86 66-73 
87- 88 74 
89- 93 75 
94- 92 76-79 

98 79.4 15 
99-100 80.415 

101 81.415 
102-125 82 
126-127 83-84 
128-135 85 
136-148 86-98 
143-150 99 
151-155 loo- 104 
156-158 105 
159-160 106- 107 
161-255 108 
256-264 109 
265 -217 110-122 

278-279 123 

280-281 124-125 

282-512 126 

G 

H 

G 
H 
H 
H 
H 
H 
J 
R 

H 

XA 

KC 

z 
G 

2 
z 

B 

KA 

z 

z 

B 
>;A 

2 

B 

[ cq 

WI 

U-21 
IL21 

[L2] 
fL21 
[L2] 
EL21 
WI 
WI 

WI 

WI 

[S4] 

[S3] 

WI 

v31 
WI 

WI 

WI 

WI 

[M] 

WI 
WI 

If331 

IS41 
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Tiaasxtions cm Informaticm Theory. 

References 

fW 

Wl 

[C’L) 

WI 

LW 

W? 
W? 
VW 

WI 

[Wl] 

[H21 
[H31 
[JII 
[:;ii 
[ &2] 

[ E3] 

iK51 
IK41 
fLl1 

[L21 

tL31 

[Nil 
[Pll 

1P23 

[I31 
iP41 

fSU 

I:.R, BerIehamp, Algebraic coding theory (McGraw-I-Ii& New York, 1968) (see espe- 
cialIj/ pp. 360,432-433). 
L. C;dabi and E. Mytvaagnes, On the minimal weight of bingry group codes, PGIT 10 
(1964) 385-387. 
J.r cordaro and T.J. Wagner, Optimum (n, 2) codes for smaII values of channel error 
prc dabihty, PGIT 13 (1967) 349-350. 
C.I.,, Chen, Computer results on the minimum distance of some binary cyclic codes, 
PGIT 16 (1970) 359-360. 
-4.B. Iontame and W.W. Peterson, Group code equivalence and optimum codes, PGIT 
.5 (1959) (Special Suap4.) 60-70. 
M.J.E, Goiay, Notes on digital coding, Proc. IRE, 37 (1949) 657. 
I!$.; .E. SoIay , Binary coding, PGIT 4 (1954) 23 -28. 
H.D. Goldman, M. K!iman and H. Smola, The weight structure of some Bose-Chaudhuri 
codes, PGIT 14 (1968) 167-169. 
V.D. Goppa, rl new cIass of linear error-correcting codes, Prob. Pereda& Inform. 6 (1970) 
24-30 (in Russian), 
R.W. Hammi.ng, Error detecting and error correcting codes, BSTJ 29 (1950) 147-160. 
H.J. Helgert, Srivastava codes, PGIT 18 (1972) 292--297. 
H.J. Helgert, persona; communication. 
D. Juiin, Two improved block codes, PGIT 11 ( 1965) 4591. 
%I. I&a&i, :New binacf coding results by circulants, PGIT 15 (1969) 81-92. 
T. Kasami and N. Tokura, Some remarks on BCH bounds and minimum weights of bi- 
nary primitive BCH c%ldes, PGIT 15 (1969) 408-4 13. 
T. Kasami, S. Lin and W.W. Peterson, PolynomiaI codes, PGIT 14 (1968) 807-814. 
A.M. Kerdock, A class of low-rate nonlinear codes, IC 20 (1972) : 82- 187. 
M. IGulin, personal conmmnication. 
A.E. Laemmel, Efficiency of noise reducing codes, in: W. Jackson, ed., Communica,tion 
theory (Butterworth, London, 1953) 111-l 18. 
V.I. Levenshtein, The application of Hadamard matrices Ito a problem in coding, Prob- 
lems of Cybernetics 5 (1964) 166-154. 
V. Lum and KX Chien, On the minimum distance of Bose-Chaudhuri-Hocquenghem 
r:odes, SIAM 3, Appl. Math. 16 (1968) 1325-1337. 
A.W. Nordstrom and J.P. Robinson, An optimum non1incz.r code, IC 11 (1967) 6 13-616. 
W-W. Peterso \, Error-correcting codes (M.I.T. Press, Cambridge, _ iass., 196 1) (see espe- 
cially pp. 71,166--167). 
V.S. Pless, Power moment identities on weight distributions in error correcting codes, 
IC 6 (Ii 963) 147-152. 
M. 1’i.o Ucin, Binary Lodes with specified minimum distance ;, PGIT 6 (1960) 445 -450. 
P.P. Preparata, A class of optimum nonlinear double-error correcting cc,des, IC 13 ( 1968) 
378-400. 
N.J.A. fkr;ne ad D.S. Whitehead, A new fami!y of single-error correcting codes, PGIT 16 
(1970) 717-719. 



References 
291 

[§21 &JA. ~hane and J.J. Seidel, A nl:w family of nonlinear codes obtained from corifefencs 
- 

fS3] 
matrices, Ann. New York Acad, Sci. 175 (1970) 363-365. 
A new code. 

[ S4j 
[T1 1 

N.J.A. Shm, SM. Reddy and CL. Chen, New binary codes, PGlT 18 (197 2) 503 - 5 10. 
N. Tokura, K. Taniguchi and T. Kasami, A search procedure for finding optimum group 

[Wll 
codes for the binary symmetric channel, PGET 13 (1967) 587-594. 
T.J. Wagner, A search technique for quasi-perfect codes, IiC 9 (1966,) 94-99. 

2. Further references cited in text 

D.R. Anderson, A new class Of cyclic code& SIAM J. Appl. Math. ] 6 (1968) 181-197 
&Fe As~us Jr*, HZ. Mmon Jr. and R.J. Turyn, Research to develop the algebraic t3;eoi-y 
of codes (sci* ReP- AWN--67-0365, Air Force Cambridge Res. Lab., Bedford, Mass., 
1967). 

E.F. Assmus Jr. and H.F. Mattson Jr., New S-designs, JCT 6 (lg6g) 122- 15 1. 
E.F* Amus Jr. and RF. I%ttson Jr., Some (3p, p) codes, in: Information processing 68 
(North-Holland, Amaterdarn, 1%9) 205 -209. 
L.Dg Baumert and R.J. Mcf;?lecz, Weights of irreducible cychc codes, to appear. 
‘I’. Berger, Rate distortion theory (Prentice-Hall, Englewood Cliffs, NJ ., 197 1). 
MC Berlekamp, Weight ecumeration theorems, in: Proc. 6th Alerton Conf. on Circuit and 
Systems Theor& Urbana (univ. of Illinois Press, Chicago, 111. 1968) 161-- 170. 
E.R. Berlekamp, The weight emrmerators for certain subcodes of the secc.:,x! order binxy 
Reed-Mullet codes, IC 17 ( 1970) 485 -5O0, 
E.R. Berlekamp, Some niathematicat properties of a scheme for reducing the bandwidth of 
motion pictures by Hadamard smearing, BSTJ 49 (1970) 969-986. 
ER. Berlekump, A survey of coding theory for algebraists and combinatori tiists (Jnterrl. 
Uentre for Mech. Sci., Udine, Italy, 1970). 
E.R. Beriekamp, Coding theory and the Mathieu groups, IC 18 (197 3? ) 40-ri4. 
E.R. Berlekamp, Long primifive binary BCH codes have distance d w 2n In ,Q -‘/log n -.., 
PGIT 18 (19?2) 415-426. 
E.R. Berlekamp and N.J.A. !;loane, Weight enumerator for second order Re:d-M&e; 
codes, PGIT 16 (1970) 745.-751. 
E.R. Berlekamp and L.R. Welch, Weight distributions of the cosets of the (?2,6) Reed- 
Muiler code, PGIT 18 (197:::) 203-Z,O7. 
E.R, Berlekmp, F-J. MacWiUiams and N.J.A. Sloan?, Gleason’s theorem on self dual codes, 

18 (1972) 409-414. 
S,li), Berman, On the theorbr of group codes, Cybernetics 3 (1967) 25-31. 
S.D. Berman, Semisimple cjrclic and abeban codes II, Cybernetics 3 (1967) 117-23. 
R,C. Bose! and D.8:. Ray-t&wdh~*ri, On a class of error Correcting binary g]rOUp codes, 

IC 3 (1960) 68-7!,, 279-290. 
H.0, Burton, A survey of ccrror correcting techniques for data 0‘1 telephone facilities. in: 
Proc. Intern, Commun. Con&, San Francisco, Calif., 1970. 
p, Camion, Abelian codes, Math. Res. Center, Univ. Of WiScOnSh Rept. I():,9 (19’70). 
C,L. Cfgn, me existence of arbitrarily long pseudo-cyclic codes that meet the Slbert 
bound, in: Proc, 5th Ant). Princeton Coflf. inform* sci. (1971) 242. 
c,L, chell, w.w. Y@tersorl and E.J. Weldon Jr., Some results on quasicYclic codes, Jc 15 

(1969) 407-423. 
J,H. Conwsr!l. fi. rtsilp of’ order P,315,553.613,086,720,000, Bull. London IlIath. Sot. 1 
(1969) 79--88. 
J.H, Conway, A characterization of Let -h’s lattice, Invent. Math. 7 (1969) II 3 7- 142. 

G. Dagnin<s, On a an :w t:la.rs of binary group codes, Cdc010 5 (1968) 277-2!$4. 



292 N.&A. ,Slome, A survey of constructive coding theory 

1271 y, DeligLee, Aut,Drno@isms of abelian codes, PWps Res. Rept. 25 (1970) 389-4fl2. 
[28j P. Deb&e, Majority logic decodable codes &xi ‘lrovd from finite inversive planes, IC 18 

(1971) 319-325. 
[ 2g] p, DeIsarte and J&I. Goethals, Irreducible binar), cyziic codes of even dimensic n, Univ. 

Nora Ca&jna at Chapel Hill, Inst. Statist., Mimeo Ser. NO. 600.27, 1970. 
~301. R,L, Dobrushin, Survey of Soviet research in information theory, t0 appear. 
1311 E.N. Gilbert, A comparison of signaling alphabets, BSTJ 31 (1952) 504-522. 
[3 21 A.M. Gleason, Weight,polynomiaIs uf self-dual codes and the MacWilliams identities, in: 

proc. Intern, Congr. Mathematicians, Nice f 1970) 14~0- 144. 
~3~3) J,M. Goethals, Factorization of cyclic codes, PGIT 13 (1967) ‘42-246. 
~34) J.M. Goethals, On the Golay perfect binary code- ICI ll(l971) 178-186. 
[35] J.M, Goethals, Some combinatorial aspects of coding theory, in: Proc. Combinat. Symp., 

Fort CoIlins, 1971, to appear. 
[3fi) J.M. ;oethals and S.L. Snover, Nearly perfect binary codes, Discrete Math. 3 (1972) 

65- $8 (this issue). 
[ 37) Al.\, Green Two heuristic techniques for block-code construction (Abstract), PGIT 12 

(1966) 273, 
[38] C,R.P, Hartmann, On the minimum distance structure of cyclic codes and decoding be- 

yond the BCH boand, Ph. D. Thesis, Univ. of Illinois, 1970; also Coord. Sci. Lab. Rept. 
R-458, Univ, of Illinois, I970. 

[ 391 C,R.P. Hartmann, A note on the minimum distance structure of cyclic codes, PGIT 
5% (1972) 439-440. 

[40] C,R,P. Hartmann, A generalization of the BCH bound, submitted to IC. 
{4:t] C,R,P. Hartmann, On the weight structure of cyclic codes of composite length, in: Proc. 

Fourth Hawaii Inter. Conf. System Sci., (1971) 117-119. 
[42] C&P, Hartmann and K.K. Tzeng, A bound for cyclic codes of composite length, PGIT 

18 (1972) 307.; 
[43] C.R.P. Hartmann, K.K. Tzeng and R.T. Chien, Some results on the minimum distance 

structure of cyclic codes, PGIT 18 (1972) 402-469. 
[4dI] T. Hatcher, On minimal distance, shortest length, and greatest number of elements for 

binary grou: ix&s (Parke %fathematical Labs,, Carlisle, Mass., Tech. Memo. 6, 1964). 
[4!5] A. Hocquenghem, Codes correcteurs d’erreurs, Chir’fres, 2 (1959) 147- 156. 
f46] S.W, Moffner II and SM. Reddy, Circuiant bases for cyclic codes, PGIT 16 (1970) 51 l- 

512. 
[47] F. Jelinek, Free encoding of memorybss time-discrete sources with a fidelity criterion, 

PGIT 15 (1969) 584-590, 
[48] SM. Johnson, On upper bounds for unrestricted binary error-correcting codes, PGIT 17 

(1971) 466-478. 
[49] M. Marlin, Decoding of circulant codes, PGIT 16 (1970) 797-802. 
[SO] M. t(arIin, Weight/moment relationships in ((2 + E) circulants, unpublished. 
[ 5 1 ] T, Kasami. Some lower bounds on the minimum weight of cyclic cocies.of composite 

length, PGIT 14 (1968) 814-818. 
[52] T. Icasami, An upper bound on k/n for affine-invariant codes with fixed d/n, PGIT 15 

(1969) 174-176. 
[531] T. Kasami, The weight enumerators for several classes of subcodes of the second order 

binary Reed-Muller codles, IC 18 (1971) 369-394. 
[ 54 j T, Kasami, Son A~ ie>urts 011 &he weight structure of Reed-Muller codes, to appear. 
tssl Te Kasami, se Lin and W.W. Peterson, Some results on weight distributions of BCH codes, 

PGIT 12 (1966) 274, 
[St;] T. Kasami anfd N. T-*l- k#*.ura, On the weight structure of Reed-Muller codes, PGIT 16 (1970) 

752-759. 
[ 5’7 ] T, Kas;n,mi, N r c ‘14w~a and S . aA~~~mJ, On the weight di:$tribution of Reed-!tiuller codes, 

Inst. Electro0 Comrn v %g., Japan, PGIT Rept. (197 I) (in Japanese). 



References 302 

(581 

WI 

WI 

WI 
WI 
[631 

L641 

[651 

(661 

i671 
[681 

t691 

c701 

1711 

1721 

[731 

1741 

1751 

1761 

[771 
1781 

[791 

vw 
P311 

[@I 

V31 

1841 

W.H. Kamtz and K.N. Levitt, A sii~‘~ 
PGIT 1S (1969) 197-244. 

l.by of progress in coding theory in the Soviet Union, 

V.N, Kohelev, Some properties of random group codes of la,rgi: length: P! ~bl. Pered;l~y 
Inform. 1 (1965) 45-48. 
MX KoZlov, The correcting capacities of linear codes, Soviet Physic: - Ooklady 14 
(1969) 013-415, 

Jo Leech* Some sphere packin@ in higher space, Can. J. Math. 16 (1964) 6 57-682, 
Jm Leech, Notes on sphere packings, Can. J. Math. 19 (1967) 25 l--26 7. 

and N*JeAa Sloane, New sphere packings in dimensiqng g-15, ~ujll, Amer. M&~, 
Sot. 76 11970) 1006-1010, 
J. Leech ami N.J.A. Sloane, New sphere p askings in more than thirty-two dimensions, in: 
ProCe second aaPe1 Hill Conference on Comb, Math., Chapel ~i.11, N.C. (1970) 345--35:j, 
Ja Lath and N.JA Stoane, Sphere packing and error-correcting z&es, Can, J. Math 23 
(1971) 718-745. 

WC. Leont’ev, A hypothesis on Bose-Chaudhuri codes, Probl. Peredaey InfOrm. 
4 (1968) 66-70. 
S. Lin ad E.J. Weldon Jr., Long BCH codes are bad, IC 11 (1967) 445-451. 
CL Liu, B.G. Ong and G.R. Ruth. A construction scheme for linear and n,>nlinea,r codes, 
in: PIOC. S th Ann. Princeton Conf. Inform. Sci. (1971) 245 -247. 
R.W. Lucky, J. Salz and IX. Weldon Jr., Principles of data communication $cGraw 
Hill, New York, !968). _ 
F.J, MacWilliams, Error-correcting codes - An historical survey, in: H.B, Mann, ed., Error 
correcting codes (W&y, New York, 1968). 
F.J. MacWilliams, Zories and ideals in group algebras, in: RX. Bose and T.A. Dowliq, eds., 
Combinatorial ma..hematics and its applications (Univ. No rth Carolina Pres:b, Chapel Kill, 
1969) Ch. 18. 
F.J. MacWliams, Binary codes which are ideals in the group algebra of an zbelian grolljp, 
BSTJ 49 (1970) 937-1011. 
F.J, MacWilliams, C.I.,. Mallows and N.J.A. Sloane, Generalizations of Glea!bon’s theor1.m 
on weighl: enumerators of self-dual codes, PGIT 18 (197 2), to appe.=. 
F.J. Mac‘WiIliams, N.J.A. Sloane and J.G. Thompson, On the existence of a projective 
plane of order 10, JCT, to appear. 
F,J. Mac~T~~~s, !V.J.A. Sloane and J.G. Thompson, Good self-dual codes exist, Discse:te 

Math, 3 (8972) 15.3-162 (this issue). 
A-S. Mar&ukov, Summation of the product of codes, Probl. Peredary Irli’orm. 4 

(1968) 8-15. 
R.J. McEliece, On the symmetry of gcz- - rl qonlineac codes, PGIT 16 (1970‘11609-6 11. 
R.J, McEliece ad i_i. Rumqr, Jr,, Euler prodncts, cycbtomy, and c:g.bding. in: Space 
programs ,wmmary (Jet Propulsion Lab., Calif. Inst. Techwol.) Vol. ? 7-65111 (1970) 

22-27; and J. Number Theory 4 (1972) 302-311. 
D,E. Mu&q, -Application of boolean algebra to switching circuit de& :I and error dete’z 
tion, IRE Trans. Electronic Computers, EC3 (1954) 6- 12. 
M, Nadler, A j&point n = 12, d = 5 cooe, PGlT 8 (1962) 58, 
S,Sh. Ogariesyan and V,G. Y@&yan, Weight spectra for Some &.sse’ Of (:yl:lic error- 
correcting codes, probl. PeredaEi Inform. 6 (137@ z l-37 (in Russian;* 
E-T. Parker and P-J. MikOlai, A search for analOgU!s Of the h’ltithku glflup!‘v b’lath. Car :p* 

12 (1958138-43. 
A.M. Pat& Maximal codes with svcifieci minimum distance, IBM Tech. 2 ep1. T1.i 44.Q085 

(1969). 
A.M. Patel, Maximal group codes with specified minimum distance, IBkl J. Ales. !)evel. 14 

(1970) 43Ll-443. 



(851 w,P(, Pehlt:H Jr., Analysis of a burst-trapping error correction procedure, BSTJ 49 (1!$70) 
493-519. 

[g6! W.W. Petermn, On the weight structure and symmetry of BCH codes, Air Force Cam- 
b&f@ Res,, Lab., Bedford, Mass., Rept. AFCRL-65-515, 1965. 

[ 871 V.S, Pless, On the uniqueness of the Colay codes, JCT 5 (1968) 215-228. 
V.S. Pless, \I)n a new family of symmetry codes and related new five-designs, Bull. Am. 
Math. SOC. 75 (1969) 1339- 1342. 

{ 891 V.S. Plless, Symmetry coides over GF(3) and new five-designs, JCT 12 (1972) 119- 142. 
[ 903 V.S. Plless,‘A classidicstion of self-orthogonal codes over GF(2), Discrete Math. 3 (1972) 

209-246 (this issue). 
[9I] F.P. Preparata, A new look at the Golay (23, 12) code, PGIT 16 (1970) 5lO--511. 
[ 92) p -0~. Second Intern. Symp. Inform. theory, Tsahkadsor, Armenia, September 197 I. 
[ 931 I .s. Reed, A class of multiple-erro 7-correcting codes and the decoding scheme, PGIT 4 

\ 1954) 38-49. 
[ 94) D.V. Sarwate and E.R. Berlekamp, On the weight enumeration of Reed-Muller codes 

and their cosets, to appear. 
[95) J.E. Savage, The complexity of decoders, II, Computati4:nal work and decoding time, 

PGIT 17 (1931) 77-85. 
[ 961 N.V. Semak.ov and V.A. Zinov’ev, Balanced codes and tactical configurations, Probl. 

PeredaEi Infform. 5 (1969) 28-36. (in Russian). 
[97] N,V. Semakov, V.A. Zinov’ev and G.V. Zaicev, Uniformly packed codes, Probl. Peredazi 

Inform, 7 (1971) 38-50 (in Russian), 
[98] C.E. Shannon, A mathematical theory of commutication, BSTJ 27 (1948) 3 79-423, 

623. -656. 
[99] S.G.S. Shiva, Certain group codes, Prcc. IEEE 55 (1967) 2162-2163, 

[ 1001 V,M. Siciei’rJkDv, Weight spectra of binary Bose-Chaudhusi-Hocquenghem codes, 
Probl. Peredai!i Inform. 7 (1971) 14-22 (in Russian). 

[ 1011 R. Singleton, ?&ximum distance Q-nary codes, PGIT 10 (1964) 116 -- 118. 
[ 1021 N.&A. Sloane, .A survey of recent results in constructive coding theorq’, in: National Tele- 

metering Conf. NTC’71 Record (IEEE, New York, 1971) 218-227. 
[ 103) N.J.R. Slozr~~ anti R.J. Dick, On the enumeration of cosets of first order Reed-Muller 

codes, IEEE Intern. Conf. Communications (Montreal, 1971) 7 (197 1) 36-12 to 36-6. 
[ 1041 R. Stanton, The Mathieu groups, Can, J, Math. 3 (195 1) 164- 174. 
[ 1051 J.J. Stiffler, Theory of synchronous communications (Prentice-Hall, Englewood Cliffs, 

N.J., 1971). 
[106] M. Sugino: Y. Ienaga, N. Tokura and T. Kasami, Weight distribution of (12&, 64) Reed- 

Muller code, PGPT 117 (1971) 627-628. 
[ 1071 A. Tiet&v&nen, On the nonexistence of perfect codes over finite fields, SIAM J, to appear. 
[ 1081 A. Tietivtin,:n and A. Perko, There are no unknown perfect binary codes, Ann, Univ. 

Turku, Ser. ‘91 148 (1971) 3-10. 
[109] S.Y. Tong, lrlurst-traipping techtiques for a compound channci, PGIT 15 (1969) 710-715. 
[ 1 lo] S.Y. Tong, Performance of burst-trapping codes, BSTJ 49 (1970) 477-491. 
[ 111 J J.H. van Lint, Coding theory, Lecture Notes in Math. 201 (Springer, Berlin, lS71 j. 
{ ; 121 J.H. YB.D Lin’t, A survey of recent work on perfect codes, Rocky Mountain J,, Math., to 

appear. 
[ 1131 J.H. van Lint, A ~!ew description of the NadUcr code, PGIT to appear. 
! 1141 EU2L van ‘Tllbiorg, Weights in the third-order Reed-Muller codes, Jet Propulsion Lab., 

mf. Inst. Technol., Tech. Rept. 32-1526, IV, 1971 . 
[ 1 IS] E.J. ‘lGf* . -!don, Jr., Long quasi-cycl.ic codes are good (abstract) PGIT 16 (1970) 130. 
[ 1161 E. witt, &r Steinersche Systeme, Abh. Math. Sem. ilniv. Hamburg 12 (1938) 265-275. 
[ 1171 JX. lvdf, ddd+g two information symbols to certain nonthuy .BCH codes and some 

applications. BSTJ 48 (1969) 2403-2424. 
[ 1181 JX. wolf, Nonbinary railCorn error-correcting codes, PGI’I’ 16 (1970) 236-23’?. 


