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Abstract: An asymmetric covering Dðn;RÞ is a collection of special subsets S of an n-set such

that every subset T of the n-set is contained in at least one special S with jSj � jTj � R. In this

paper we compute the smallest size of any Dðn; 1Þ for n � 8: We also investigate ‘‘continuous’’

and ‘‘banded’’ versions of the problem. The latter involves the classical covering numbers

Cðn; k; k� 1Þ, and we determine the following new values: Cð10; 5; 4Þ ¼ 51, Cð11; 7; 6Þ ¼ 84,

Cð12; 8; 7Þ ¼ 126, Cð13; 9; 8Þ ¼ 185, and Cð14; 10; 9Þ ¼ 259. We also find the number of non-

isomorphic minimal covering designs in several cases. # 2003 Wiley Periodicals, Inc. J Combin

Designs 11: 218–228, 2003; Published online in Wiley InterScience (www.interscience.wiley.com).
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1. INTRODUCTION

Let Dðn;RÞ denote the smallest size of any asymmetric covering1 Dðn;RÞ. Prompted
by applications to the manufacture of semiconductor wafers, Cooper, Ellis, and
Kahng [7] have investigated the asymptotic behavior of Dðn;RÞ for fixed R as
n ! 1. In Section 2 of the present paper we show that the values of Dðn; 1Þ for n � 8
are as shown in Table I.2

Our method of attack is to formulate Dðn; 1Þ as the solution to a f0; 1g-integer
programming problem. If, instead, we allow the variables to take any real values in

1These are called directed coverings in [7]. However, that term has already been used in the literature with a different

meaning (cf. [15]).
2This is sequence A66000 in [18]. If any further values are computed they will be recorded there.
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the range ½0; 1�, then the linear program can be solved exactly, as shown in Section 3.
Of course, this provides a lower bound EðnÞ to Dðn; 1Þ.

An upper bound can be obtained by restricting to asymmetric coverings with a
certain banded structure defined in Section 4. Corollary 4.2 shows that the solution
CðnÞ to the banded version of the problem is given by

CðnÞ ¼
X½n=2�

i¼ 0

Cðn þ 1; n þ 1 � 2i; n � 2iÞ; ð1Þ

where as usual Cðv; k; tÞ denotes the smallest size of any covering design Cðv; k; tÞ;
that is, any collection of special k-subsets S of a v-set such that any t-subset T is
contained in at least one S.

Although there have been a large number of papers written about covering designs
(for recent work see [5, 10, 11, 15, 16, 17, 19]), not many exact values are known. In
Section 5, we determine several new values of Cðn; k; k � 1Þ. Call a covering design
Cðn; k; tÞ optimal if it contains the smallest number Cðn; k; tÞ of subsets, and minimal
if it is no longer a covering if any subset is omitted. In Section 5, we also determine
the number of nonisomorphic optimal covering designs Cðn; k; k � 1Þ for n up through
10, as well as the number of minimal covering designs for n up through 7. See
Tables IV, V in Section 5.

Using these results, we obtain the values of CðnÞ for n � 11 shown in Table I.
Some of the literature on covering designs works with the complements of the

special sets, in which case this is called the Turán design problem (cf. [6]), and the
Turán number Tðv; k; tÞ is equal to Cðv; v � t; v � kÞ. Of course, our results also
provide new values for certain Turán numbers.

Notation. Let Fn
2 denote the set of binary vectors of length n. We represent subsets

of an n-set by their indicator vectors in Fn
2, and then an asymmetric covering Dðn;RÞ

can be thought of as a binary code called an ‘‘asymmetric covering code.’’ As usual

TABLE I. Size Dðn; 1Þ of Smallest Asymmetric
1-Covering of an n-Set, Together With Values of the
Continuous and Banded Solutions EðnÞ and CðnÞ

n EðnÞ Dðn; 1Þ CðnÞ

1 1 1 1
2 2 2 2
3 3 3 3
4 5 6 6
5 81

2
10 10

6 145
6

18 18

7 263
8

31 31

8 4723
40

58 60

9 86 553
720

? 106

10 159353
560

? 196

11 2953337
4480

? 352
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weight (denoted wt.) and distance (dist.) refer to Hamming weight and Hamming
distance. The co-weight of u 2 Fn

2 is n � wtðuÞ. Two codes, coverings or designs are
isomorphic if they differ just by a permutation of the coordinates.

2. VALUES OF D(n; 1) FOR n � 8

Let xu, u 2 Fn
2, be real f0; 1g-valued variables. Then Dðn; 1Þ is equal to the minimal

value of X
u2 Fn

2

xu ð2Þ

subject to the constraints X
u2 Fn

2; u� v

xu þ xv � 1; for all v 2 Fn
2; ð3Þ

where u � v indicates that u covers v and distðu; vÞ ¼ 1. If u ¼ 11 � � � 1, then
necessarily xu ¼ 1. The corresponding asymmetric covering code consists of the
vectors u 2 Fn

2 for which xu ¼ 1. For example, Dð3; 1Þ ¼ 3, and the code (which is
unique up to permutation of the coordinates) is

f111; 110; 001g: ð4Þ

Every binary vector of length 3 is either in this code or is contained in a codeword
at distance 1 below it.

We call the above minimization problem the exact integer programming (IP)
problem. If we relax the constraints and allow the xu to take any real values in the
range ½0; 1�, we get a continuous linear programming (LP) problem, whose solution
we denote by EðnÞ.
Theorem 2.1. The values of Dðn; 1Þ for n � 8 are as shown in Table I.

Proof. We attacked the IP problem using CPLEX [8] with AMPL [9] as a
convenient interface. CPLEX uses a branch and bound strategy for such problems.
We regard solutions obtained in this way as perfectly rigorous, since the
computations could in principle be replaced by extremely tedious hand calculations.

For n � 7, CPLEX was able to find solutions directly, without any additional
assumptions being added. Explicit solutions are described in Section 4.

For n ¼ 8, we must show that Dð8; 1Þ ¼ 58. A solution of size 58 found by CPLEX
is given in Table II. (Each vector is represented by two hexadecimal characters. This

TABLE II. Minimal Asymmetric Covering Dð8; 1Þ of Length 8 Containing 58 Sets
(Represented in Hexadecimal)

01 07 0A 11 1E 28 2D 33 34 37 3B 4B 4C 52 55 57 5D 61 66 6E
6F 73 75 78 7E 7F 84 89 8F 96 98 99 9F A2 A5 AA B3 BB BC BD
C0 C3 CC D5 DA DB DD E6 E7 E9 EE EF F0 F6 F7 F9 FE FF
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covering has no apparent structure—in particular, it has trivial automorphism group.)
To show that 57 is impossible, we argue as follows. If we add the extra assumption
that there are at most eight codewords of weight 5 to the continuous LP problem, the
solution is at least 63. Therefore, there must be at least nine codewords of weight 5.
From the tables of constant weight codes [4], it follows that there must be two
codewords of weight 5 and distance exactly two apart. Without loss of generality, we
can assume that u1 ¼ 11111000 and u2 ¼ 11110100 are in the code.

Suppose the code contains a vector u3 of weight 3 with distðu1; u3Þ ¼ 6 and
distðu2; u3Þ ¼ 4, say u3 ¼ 00010101. Then CPLEX finds that the minimal solution to
the IP problem is 58. On the other hand, if no such vector u3 is present (this rules out
16 vectors of weight 3), no feasible solution to the IP problem of size � 57 exists.
Hence Dð8; 1Þ ¼ 58.

The total computing time for these calculations was less than 48 h. &

3. SOLUTION TO THE CONTINUOUS LINEAR PROGRAMMING
PROBLEM

Theorem 2. The optimal solution to the continuous LP problem of choosing 0 �
xu � 1 for u 2 Fn

2 so as to minimize (2) subject to (3) is given by

EðnÞ ¼ ð�1Þn
n!fRnð2Þ � Rnð1ÞRn�1ð1Þg ð5Þ

where

RnðxÞ ¼
Xn

k ¼ 0

ð�xÞk

k!
ð6Þ

is the degree n partial sum of e�x.

Proof. We may assume that xu depends only on the weight of u. (Let yu denote the
average value of xv over all v with wtðvÞ ¼ wtðuÞ. Then by averaging (3), we see that
the yu satisfy the same constraints as the xu, andX

u2 Fn
2

yu ¼
X
u2 Fn

2

xu:

So a symmetrized solution is just as good as a general solution.)
The ‘‘weight enumerator’’ of a symmetrized solution xu is defined by Aw ¼P
wtðuÞ¼w xu for w ¼ 0; . . . ; n. The quotes are needed because the xu are, in general,

not integers. Let AðzÞ ¼
Pn

w¼ 0 Awzw.
The covering condition (3) reads

wAw þ Aw�1 � n

w � 1

� �
; w ¼ 1; . . . ; n;

or in other words

AðzÞ þ A0ðzÞ � ðz þ 1Þn: ð7Þ
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We wish to choose A0; . . . ;An � 0, so as to minimize A ð1Þ subject to (7). The dual
problem (compare [14, Chapter 17]) is to choose B0; . . . ;Bn � 0, so as to maximize
Bð1Þ subject to

BðzÞ þ B0ðzÞ � ðz þ 1Þn ð8Þ

where BðzÞ ¼
Pn

w¼ 0 Bwzw. We claim that

BðzÞ ¼ ð�1Þn
n!fRnðz þ 1Þ � Rn�1ð1ÞRnðzÞg ð9Þ

is a feasible solution to the dual problem. In fact, it is straightforward to verify that
Bw � 0 for all w and

BðzÞ þ B0ðzÞ ¼ ðz þ 1Þn � Rn�1ð1Þzn:

Since Rn�1ð1Þ � 0, (8) holds.
Therefore

Bð1Þ ¼ ð�1Þn
n!fRnð2Þ � Rnð1ÞRn�1ð1Þg

is an upper bound to the optimal solution to the primal problem.
On the other hand

AðzÞ ¼ ð�1Þn
n!fRnðz þ 1Þ � Rnð1ÞRn�1ðzÞg

satisfies

AðzÞ þ A0ðzÞ ¼ ðz þ 1Þn þ Rnð1Þnzn�1

and is easily checked to be a feasible solution to the primal problem. Since Að1Þ ¼
Bð1Þ, this must be the optimal solution to both problems. &

Corollary 3.1. As n ! 1,

EðnÞ � 2nþ1 1

n
� 3

n2
þ O

1

n3

� �� �
: ð10Þ

We omit the routine derivation of this from (5).
The first few values of EðnÞ are shown in Table I.

4. BANDED SOLUTIONS

Let D be an asymmetric covering Dðn; 1Þ. We call D banded if every vector v 2 Fn
2

with odd co-weight is covered by a vector u 2 D of weight one higher.
For example, (4) is banded, since the vector 000 is covered by 001 and the vectors

011, 101, 110 are all covered by 111.
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Theorem 4.1. If a code C � Fnþ1
2 is a union of covering designs,

C ¼
[½n=2�

i¼ 0

Cðn þ 1; n þ 1 � 2i; n � 2iÞ; ð11Þ

then deleting3 any one coordinate from all the vectors of C yields a banded asym-
metric covering Dðn; 1Þ. Conversely, let D be a banded asymmetric covering Dðn; 1Þ.
If we append a 0 or 1 to every vector of D in such a way that all co-weights become
even, the result is a union of covering designs of the form (11).

Proof. Suppose C has the structure shown in (11) and let D be obtained by deleting
one coordinate, which for concreteness we suppose is the last coordinate. We must
show that D is a banded asymmetric covering. Let v 2 Fn

2 have weight w. If the co-
weight n � w is even, say 2i, then v	 ¼ v0 must be covered by some vector u	 ¼ u�,
� ¼ 0 or 1, in the covering design Cðn þ 1; n þ 1 � 2i; n � 2iÞ, and then u 2 D covers
v. On the other hand, if n � w is odd, say 2i � 1, then v	 ¼ v1 must be covered by
some u	 ¼ u1 2 Cðn þ 1; n þ 1 � 2i; n � 2iÞ, and again u covers v. The converse is
established by similar arguments.

Since the covering number Cðn; k; vÞ is, by definition, the size of the smallest
Cðn; k; vÞ, we have the following.

Corollary 4.2. The size of the smallest banded asymmetric covering Dðn; 1Þ is
given by

CðnÞ ¼
X½n=2�

i¼ 0

Cðn þ 1; n þ 1 � 2i; n � 2iÞ:

Using the known values of Cðn; k; tÞ and the new values to be established in the
next section (see Table III) we can determine CðnÞ exactly for n � 11. These values
are given in Table I and show that for n � 7, banded asymmetric coverings are as
good as any asymmetric coverings.

A more detailed investigation provides further information:

3Or puncturing, cf. [14], p. 28.

TABLE III. The Four Nonisomorphic Minimal Asymmetric Coverings Dð4; 1Þ, of Size
Dð4; 1Þ ¼ 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1
0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0

(a) (b) (c) (d)

(a) and (b) are banded, (c) and (d) are not.

ON ASYMMETRIC COVERINGS AND COVERING NUMBERS 223



Theorem 4.3. For lengths n ¼ 1; 2; 3; 5; 6, and 7 an optimal asymmetric covering is
necessarily banded, and the corresponding covering designs of length 1 higher are
unique. At length 4 there are four nonisomorphic minimal asymmetric covers, as
shown in Table III, two banded and two non-banded.

Proof. By direct enumeration. The details are omitted. &

At length 7, the unique optimal (and banded) asymmetric covering can be found
by deleting any coordinate from the following set of 31 vectors of length 8: 18;
f0212g14ð6Þ; 14f0212gð6Þ; the 14 vectors of the Steiner system Sð3; 4; 8Þ; 1206,
021204, 041202, 0612.

Remark. The continuous LP problem for the banded case is easily solved, and has
size exactly 2nþ1=ðn þ 2Þ, which is asymptotically

2nþ1 1

n
� 2

n2
þ O

1

n3

� �� �
; ð12Þ

just slightly worse than (10).

5. NEW VALUES FOR COVERING NUMBERS

Let Nðn; k; k � 1;MÞ denote the number of nonisomorphic minimal covering designs
Cðn; k; k � 1Þ of size M, where of course M � Cðn; k; k � 1Þ. The main results of this
section are shown in Tables IV and V.

Table IV gives the values of Cðn; k; k � 1Þ for n � 12. Starred entries are new, and
we have also shown that

Cð14; 10; 9Þ ¼ 259:

TABLE IV. Covering Numbers Cðn; k; k� 1Þ for n � 12

n=k 2 3 4 5 6 7 8 9 10 11

2 1
3 2 1
4 2 3 1
5 3 4 4 1
6 3 6 6 5 1
7 4 7 12 9 6 1
8 4 11 14 20 12 7 1
9 5 12 25 30 30 16 8 1

10 5 17 30 51* 50 45 20 9 1
11 6 19 47 66 � 84* 63 25 10 1
12 6 24 57 113 132 � 126* 84 30 11
13 7 26 78 � 245 � " 185* 112 36

Starred entries are new; see text for missing entries.
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TABLE V. Values of Nðn; k; k� 1;MÞ, the Number of Nonisomorphic Minimal Covering
Designs Cðn; k; k� 1Þ of Size M

4; 2; 1 : 2ð1Þ; 3ð1Þ &

5; 3; 2 : 4ð1Þ; 5ð1Þ; 6ð1Þ &

6; 4; 3 : 6ð1Þ; 7ð1Þ; 8ð1Þ; 10ð1Þ &

7; 5; 4 : 9ð1Þ; 11ð2Þ; 12ð2Þ; 15ð1Þ &

8; 6; 5 : 12ð1Þ; 13ð1Þ; 15ð2Þ; 16ð3Þ; 17ð2Þ; 21ð1Þ &

9; 7; 6 : 16ð1Þ; 18ð1Þ; 19ð2Þ; 20ð3Þ; 21ð2Þ; 22ð3Þ; 23ð3Þ; 28ð1Þ &

10; 8; 7 : 20ð1Þ; 21ð1Þ; 24ð4Þ; 25ð2Þ; 26ð7Þ; 27ð5Þ; 28ð4Þ; 29ð2Þ;
30ð4Þ; 36ð1Þ &

11; 9; 8 : 25ð1Þ; 27ð1Þ; 29ð2Þðbased on 10; 8; 7; 21Þ
12; 10; 9 : 30ð1Þ; 31ð1Þ; 34ð1Þ; 35ð4Þðbased on 11; 9; 8; 29Þ
13; 11; 10 : 36ð1Þ; 38ð1Þ; 40ð0Þðbased on 12; 10; 9; 31Þ

5; 2; 1 : 3ð1Þ; 4ð1Þ &

6; 3; 2 : 6ð1Þ; 7ð5Þ; 8ð2Þ; 10ð1Þ &

7; 4; 3 : 12ð4Þ; 13ð57Þ; 14ð139Þ; 15ð24Þ; 16ð6Þ; 17ð1Þ; 20ð1Þ &

8; 5; 4 : 20ð6Þ; 21ð263Þ; 22ð7340Þðbased on 7; 4; 3; 13Þ
9; 6; 5 : 30ð2Þ; 31ð16Þ; 32ð863Þðbased on 8; 5; 4; 21Þ
10; 7; 6 : 45ð20Þ; 46ð609Þðbased on 9; 6; 5; 32Þ
11; 8; 7 : 63ð40Þ; 64ð1193Þðbased on 10; 7; 6; 46Þ
12; 9; 8 : 84ð4Þ; 85ð46Þ; 86ð1423Þðbased on 11; 8; 7; 64Þ
6; 2; 1 : 3ð1Þ; 4ð2Þ; 5ð1Þ &

7; 3; 2; 7ð1Þ; 9ð14Þ; 10ð40Þ; 11ð60Þ; 12ð7Þ; 13ð1Þ; 15ð1Þ &

8; 4; 3 : 14ð1Þ; 17ð13Þ
9; 5; 4 : 30ð3Þ; 31ð18Þ; 32ð459Þðbased on 8; 4; 3; 17Þ
10; 6; 5 : 50ð1Þ; 52ð4Þ; 53ð56Þ; 54ð880Þðbased on 9; 5; 4; 32Þ
11; 7; 6 : 84ð3Þ; 85ð0Þðbased on 10; 6; 5; 54Þ
12; 8; 7 : 126ð3Þ; 127ð2Þ; 128ð0Þðbased on 11; 7; 6; 84Þ
13; 9; 8 : 185ð1Þ; 186ð0Þðbased on 12; 8; 7; 127Þ
14; 10; 9 : 259ð1Þðbased on 13; 9; 8; 185Þ

7; 2; 1 : 4ð1Þ; 5ð2Þ; 6ð1Þ &

8; 3; 2 : 11ð5Þ; 12ð145Þðbased on 7; 2; 1; 4Þ
9; 4; 3 : 25ð77Þ; 26ð5562Þ; 27ð538969Þðbased on 8; 3; 2; 12Þ
10; 5; 4 : 51ð40Þ; 52ð3354Þðbased on 9; 4; 3; 26Þ

8; 2; 1 : 4ð1Þ; 5ð2Þ; 6ð3Þ; 7ð1Þ &

9; 3; 2 : 12ð1Þ; 13ð1Þ; 14ð64Þðbased on 8; 2; 1; 4Þ
10; 4; 3 : 30ð1Þ; 33ð43Þðbased on 9; 3; 2; 13Þ
11; 5; 4 : 66ð1Þ; 70ð78Þðbased on 10; 4; 3; 30Þ
12; 6; 5 : 132ð1Þ; 137ð87Þðbased on 11; 5; 4; 66Þ

9; 2; 1 : 5ð1Þ; 6ð3Þ; 7ð3Þ; 8ð1Þ &

10; 3; 2 : 17ð58Þðbased on 9; 2; 1; 5Þ
11; 4; 3 : 47ð>95970Þðbased on 10; 3; 2; 17Þ
See text for further details.
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In every case, the coverings achieving these bounds were already known, see [11] for
references. Our contribution has been to show that no smaller covering exist. The five
remaining gaps in Table IV are at Cð11; 6; 5Þ (where 96 � � � 100); Cð12; 7; 6Þ
(165 � � � 176); Cð13; 5; 4Þ (149 � � � 157); Cð13; 7; 6Þ (257 � � � 264Þ;
Cð13; 8; 7Þ ð269 � " � 297), the lower bounds being new, except for �.

Table V gives values of Nðn; k; k � 1;MÞ together with a brief indication of how
they were found. An entry such as

11; 8; 7 : 63ð40Þ; 64ð1193Þðbased on 10; 7; 6; 46Þ

indicates that there are 40 nonisomorphic minimal coverings Cð11; 8; 7Þ of size 63,
1,193 of size 64, and that the latter enumeration was based on examining all possible
ways to extend minimal covering designs Cð10; 7; 6Þ of size � 46. (For any
Cð11; 8; 7Þ of size 63 must puncture to a covering Cð10; 7; 6Þ which contains a
minimal Cð10; 7; 6Þ of size � 46.) The symbol at the end of a line in the table
indicates that the enumeration of minimal covering designs Cðn; k; k � 1Þ for these
values of n and k is complete.

It is worth drawing attention to the gaps that occur just above the parameters
corresponding to the Steiner coverings Cð8; 4; 3Þ; Cð10; 4; 3Þ; Cð11; 5; 4Þ; Cð12; 6; 5Þ.
For example, a Cð12; 6; 5Þ that does not contain the 132-block Witt design must
contain at least 137 elements.

We know of no earlier table of this type, although isolated values have been
published. For example, de Caen et al. [5] showed that Nð9; 5; 4; 30Þ ¼ 3 and Nð10; 6;
5; 50Þ ¼ 1. The Steiner triple systems Sð2; 3; nÞ have been enumerated for n � 19
[13]: this gives the number of optimal Cðn; 3; 2Þ’s for n 
 1 or 3ðmod 6Þ. Also Steiner
quadruple systems Sð3; 4; nÞ have been enumerated for n � 15 (see the survey article
[12]); this gives the number of optimal Cðn; 4; 3Þ for n 
 2 or 4ðmod 6Þ.

To test isomorphism we generally used the isomorphism subroutines in the Magma
computer algebra system [1; 2; 3].

To compute the entries Nðn; k; k � 1;MÞ in Table V and to establish the new lower
bounds implicit in Table IV, we made use of two different branch-and-bound
procedures.

The first procedure branched by selecting one of the uncovered ðk � 1Þ-subsets
which had the fewest remaining k-subsets which could cover it. Let fx1; x2; . . . ; xlg
denote the k-subsets which could cover it. The procedure recursively considered the
l alternatives ffxi in the covering, xj not in the covering, for 1 � j � i � 1g,
1 � i � lg. This branching continued until either every ðk � 1Þ-subset was covered,
or until the lower bound

X
v 0 2T

1

maxv:v 0�vðjfv00 2 T : v00 � vgjÞ

& ’
ð13Þ

on the number of available k-subsets needed to cover the set T of uncovered ðk � 1Þ-
subsets showed that no covering of size M could be obtained from the current branch.

The second procedure used solutions of the continuous LP problem (see Section 3)
to guide it. It branched on the k-subset x whose corresponding variable was closest to
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1/2, considering the alternatives ‘‘x in the covering’’ and ‘‘x not in the covering.’’ This
branching continued until one of the following obtained:

(a) every k-subset had been placed in or excluded from the covering,
(b) some ðk � 1Þ-subset could no longer be covered, or
(c) applying the following lemma, where U is the set of available k-subsets and T

is the set of uncovered ðk � 1Þ-subsets, showed that no covering of size M
could be obtained from the current branch. The optimal choice of w in this
bound is given by the solution to the dual of the linear programming
relaxation; the program used a discrete, exact approximation to these dual
variables for its bound.

Lemma 5.1. Let T and U be finite sets equipped with a relation x � y for x 2 T ;
y 2 U, and let

w : T ! R

be a function satisfying X
x2 T:x� y

wðxÞ � 1 for all y 2 U: ð14Þ

Then any C � U covering T satisfies the lower bound

jCj �
X
x2T

wðxÞ
& ’

:

Proof. Let C � U cover T. Then

jCj ¼
X
y2C

1

�
X
y2C

X
x2T :x� y

wðxÞ

�
X
x2T

wðxÞ

where the first inequality is from (14), and the second is because C covers T . Since jCj
is an integer, the result follows. &

Remark. The bound (13) is the special case of the Lemma in which U is the set of
all available k-subsets, T is the set of uncovered ðk � 1Þ-subsets, and

wðvÞ ¼ 1

maxv:v0 � vðjfv00 2 T : v00 � vgjÞ :

Because the second program uses a stronger bound, it searched smaller branch-
and-bound trees, but since it solved the LP relaxation at each node, it took more time

ON ASYMMETRIC COVERINGS AND COVERING NUMBERS 227



per node. As a result, the first program was more efficient for ‘‘easy’’ problems, and
the second program for ‘‘difficult’’ problems (roughly, those in Table IV in the region
bounded by n � 9 and 4 � k � n � 4).
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