

Available online at www.sciencedirect.com

FINITE FIELDS AND THEIR APPLICATIONS

Finite Fields and Their Applications 10 (2004) 540-550

http://www.elsevier.com/locate/ffa

Complete weight enumerators of generalized doubly-even self-dual codes

Gabriele Nebe, a,* H.-G. Quebbemann, E.M. Rains, and N.J.A. Sloane

^a Abteilung Reine Mathematik, Universität Ulm, Ulm 89069, Germany
^b Fachbereich Mathematik, Universität Oldenburg, Oldenburg 26111, Germany
^c Mathematics Department, University of California Davis, Davis, CA 95616, USA
^d Information Sciences Research, AT&T Shannon Labs, Florham Park, NJ 07932-0971, USA

Received 6 July 2002; revised 17 November 2003

Communicated by Vera Pless

Abstract

For any q which is a power of 2 we describe a finite subgroup of $GL_q(\mathbb{C})$ under which the complete weight enumerators of generalized doubly-even self-dual codes over \mathbb{F}_q are invariant. An explicit description of the invariant ring and some applications to extremality of such codes are obtained in the case q = 4.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Even self-dual codes; Weight enumerators; Invariant ring; Clifford group

1. Introduction

In 1970, Gleason [5] described a finite complex linear group of degree q under which the complete weight enumerators of self-dual codes over \mathbb{F}_q are invariant. While for odd q this group is a double or quadruple cover of $SL_2(\mathbb{F}_q)$, for even $q \ge 4$ it is solvable of order $4q^2(q-1)$ (compare [6]). For even q it is only when q=2 that

^{*}Corresponding author.

E-mail addresses: nebe@mathematik.uni-ulm.de (G. Nebe), quebbemann@mathematik.uni-oldenburg.de (H.-G. Quebbemann), rains@math.ucdavis.edu (E.M. Rains), njas@research.att.com (N.J.A. Sloane).

the seemingly exceptional type of doubly-even self-dual binary codes leads to a larger group.

In this paper, we study a generalization of doubly-even codes to the non-binary case which was introduced in [11]. A linear code of length n over \mathbb{F}_q is called doubly-even if all of its words are annihilated by the first and the second elementary symmetric polynomials in n variables. For q=2 this condition is actually equivalent to the usual one on weights modulo 4, but for $q \ge 4$ it does not restrict the Hamming weight over \mathbb{F}_q . (For odd q the condition just means that the code is self-orthogonal and its dual contains the all-ones word; however here we consider only characteristic 2.) Extended Reed–Solomon codes of rate $\frac{1}{2}$ are known to be examples of doubly-even self-dual codes. For $q=4^e$ another interesting class of examples is given by the extended quadratic-residue codes of lengths divisible by 4.

We find (Theorems 11 and 16) that the complete weight enumerators of doubly-even self-dual codes over \mathbb{F}_q , $q=2^f$, are invariants for the same type of Clifford–Weil group that for odd primes q has been discussed in [12, Section 7.9]. More precisely, the group has a normal subgroup of order $4q^2$ or $8q^2$ (depending on whether f is even or odd) such that the quotient is $\mathrm{SL}_2(\mathbb{F}_q)$. Over \mathbb{F}_4 the invariant ring is still simple enough to be described explicitly. Namely, the subring of Frobenius-invariant elements is generated by the algebraically independent weight enumerators of the four extended quadratic-residue codes of lengths 4, 8, 12 and 20, and the complete invariant ring is a free module of rank 2 over this subring; the fifth (not Frobenius-invariant) basic generator has degree 40. In the final section, we use this result to find the maximal Hamming distance of doubly-even self-dual quaternary codes up through length 24. Over the field \mathbb{F}_4 , doubly-even codes coincide with what are called "Type II" codes in [4].

The invariant ring considered here is always generated by weight enumerators. This property holds even for Clifford–Weil groups associated with multiple weight enumerators, for which a direct proof in the binary case was given in [8]. The general case can be found in [9], where still more general types of codes are also included.

2. Doubly-even codes

In this section, we generalize the notion of doubly-even binary codes to arbitrary finite fields of characteristic 2 (see [11]).

Let $\mathbb{F} := \mathbb{F}_{2^f}$ denote the field with 2^f elements. A code $C \leqslant \mathbb{F}^n$ is an \mathbb{F} -linear subspace of \mathbb{F}^n . If $c \in \mathbb{F}^n$ then the *i*th coordinate of c is denoted by c_i . The dual code to a code $C \leqslant \mathbb{F}^n$ is defined to be

$$C^{\perp} \coloneqq \left\{ v \in \mathbb{F}^n \,\middle|\, \sum_{i=1}^n \, c_i v_i = 0 \quad \text{for all } c \in C
ight\}.$$

C is called self-orthogonal if $C \subset C^{\perp}$, and self-dual if $C = C^{\perp}$.

Definition 1. A code $C \leq \mathbb{F}^n$ is doubly-even if

$$\sum_{i=1}^{n} c_i = \sum_{i < j} c_i c_j = 0$$

for all $c \in C$.

Remark 2. An alternative definition can be obtained as follows. There is a unique unramified extension $\hat{\mathbb{F}}$ of the 2-adic integers with the property that $\hat{\mathbb{F}}/2\hat{\mathbb{F}} \cong \mathbb{F}$; moreover, the map $x \mapsto x^2$ induces a well-defined map $\hat{\mathbb{F}}/2\hat{\mathbb{F}} \to \hat{\mathbb{F}}/4\hat{\mathbb{F}}$, and thus a map (also written as $x \mapsto x^2$) from $\mathbb{F} \to \hat{\mathbb{F}}/4\hat{\mathbb{F}}$. The above condition is then equivalent to requiring that $\sum_i v_i^2 = 0 \in \hat{\mathbb{F}}/4\hat{\mathbb{F}}$ for all $v \in C$.

Doubly-even codes are self-orthogonal. This follows from the identity:

$$\sum_{i < j} (c_i + c'_i)(c_j + c'_j) = \sum_{i < j} c_i c_j + \sum_{i < j} c'_i c'_j + \sum_{i = 1}^n c_i \sum_{i = 1}^n c'_i - \sum_{i = 1}^n c_i c'_i.$$

Note that Hamming distances in a doubly-even code are not necessarily even:

Example 3. Let $\omega \in \mathbb{F}_4$ be a primitive cube root of unity. Then the code $Q_4 \leq \mathbb{F}_4^4$ with generator matrix

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & \omega & \omega^2 \end{pmatrix}$$

is a doubly-even self-dual code over \mathbb{F}_4 .

Let $B = (b_1, ..., b_f)$ be an \mathbb{F}_2 -basis of \mathbb{F} such that $\tau(b_i b_j) = \delta_{ij}$ for all i, j = 1, ..., f, where τ denotes the trace of \mathbb{F} over \mathbb{F}_2 . Then B is called a self-complementary (or trace-orthogonal) basis of \mathbb{F} (cf. [10,11,15]). Using such a basis we identify \mathbb{F} with \mathbb{F}_2^f and define

$$\varphi : \mathbb{F} \to \mathbb{Z}/4\mathbb{Z}, \quad \varphi\left(\sum_{i=1}^f a_i b_i\right) := \operatorname{wt}(a_1, \dots, a_f) + 4\mathbb{Z}$$

to be the weight modulo 4. Since $\tau(b_i) = \tau(b_i^2) = 1$, we have

$$\varphi(a) + 2\mathbb{Z} = \tau(a)$$

and (considering 2τ as a map onto $2\mathbb{Z}/4\mathbb{Z}$)

$$\varphi(a+a') = \varphi(a) + \varphi(a') + 2\tau(aa')$$

for all $a, a' \in \mathbb{F}$. More generally,

$$\varphi\left(\sum_{i=1}^{n} c_{i}\right) = \sum_{i=1}^{n} \varphi(c_{i}) + 2\tau\left(\sum_{i < j} c_{i}c_{j}\right).$$

We extend φ to a quadratic function

$$\phi: \mathbb{F}^n \to \mathbb{Z}/4\mathbb{Z}, \quad \phi(c) := \sum_{i=1}^n \varphi(c_i).$$

Proposition 4. A code $C \leq \mathbb{F}^n$ is doubly-even if and only if $\phi(C) = \{0\}$.

Proof. For $r \in \mathbb{F}$, $c \in \mathbb{F}^n$,

$$\phi(rc) = \varphi\left(\sum_{i=1}^{n} rc_i\right) - 2\tau\left(\sum_{i < j} r^2 c_i c_j\right).$$

This equation in particular shows that $\phi(C) = \{0\}$ if C is doubly-even. Conversely, if $\phi(C) = \{0\}$ then the same equation shows that $\tau(r \sum_{i=1}^n c_i) = \phi(\sum_{i=1}^n rc_i) + 2\mathbb{Z} = 0$ for all $r \in \mathbb{F}$, $c \in C$. Since the trace bilinear form is non-degenerate, this implies that $\sum_{i=1}^n c_i = 0$ for all $c \in C$. The same equality then implies that $\tau(r^2 \sum_{i < j} c_i c_j) = 0$ for all $r \in \mathbb{F}$ and $c \in C$. The mapping $r \mapsto r^2$ is an automorphism of \mathbb{F} , so again the non-degeneracy of the trace bilinear form yields $\sum_{i < j} c_i c_j = 0$ for all $c \in C$. \square

Corollary 5. Let \mathbb{F}^n be identified with \mathbb{F}_2^{nf} via a self-complementary basis. Then a doubly-even code $C \leq \mathbb{F}^n$ becomes a doubly-even binary code $C_{\mathbb{F}_2} \leq \mathbb{F}_2^{nf}$.

Remark 6. Let $C \leq \mathbb{F}^n$ be a doubly-even code. Then $\mathbf{1} := (1, ..., 1) \in C^{\perp}$. Hence if C is self-dual then 4 divides n.

In the following remark we use the fact that the length of a doubly-even self-dual binary code is divisible by 8.

Remark 7. If $f \equiv 1 \pmod 2$ then the length of a doubly-even self-dual code over $\mathbb F$ is divisible by 8. If $f \equiv 0 \pmod 2$ then $\mathbb F \otimes_{\mathbb F_4} Q_4$ is a doubly-even self-dual code over $\mathbb F$ of length 4.

More general examples of doubly-even self-dual codes are provided by extended quadratic-residue codes (see [7]). Let p be an odd prime and let ζ be a primitive pth root of unity in an extension field $\tilde{\mathbb{F}}$ of \mathbb{F}_2 . Let

$$g \coloneqq \prod_{a \in (\mathbb{F}_p^*)^2} (X - \zeta^a) \in \tilde{\mathbb{F}}[X],$$

where a runs through the non-zero squares in \mathbb{F}_p . Then $g \in \mathbb{F}_4[X]$ divides $X^p - 1$, and g lies in $\mathbb{F}_2[X]$ if g is fixed under the Frobenius automorphism $z \mapsto z^2$, i.e. if 2 is a square in \mathbb{F}_p^* , or equivalently by quadratic reciprocity if $p \equiv \pm 1 \pmod 8$. Assuming f to be even if $p \equiv \pm 3 \pmod 8$, we define the quadratic-residue code $QR(\mathbb{F},p) \leqslant \mathbb{F}^p$ to be the cyclic code of length p with generator polynomial g. Then $\dim (QR(\mathbb{F},p)) = p - \deg(g) = \frac{p+1}{2}$, which is also the dimension of the extended code $\widetilde{QR}(\mathbb{F},p) \leqslant \mathbb{F}^{p+1}$. From [7, pp. 490, 508] together with Proposition 4 we obtain the following (the case $\mathbb{F} = \mathbb{F}_4$ was given in [4, Proposition 4.1]).

Proposition 8. Let p be a prime, $p \equiv 3 \pmod{4}$. Then the extended quadratic-residue code $\widetilde{\mathbf{QR}}(\mathbb{F}, p)$ is a doubly-even self-dual code.

3. Complete weight enumerators and invariant rings

In this section, we define the action of a group of \mathbb{C} -algebra automorphisms on the polynomial ring $\mathbb{C}[x_a \mid a \in \mathbb{F}]$ such that the complete weight enumerators of doubly-even self-dual codes are invariant under this group.

Definition 9. Let $C \leq \mathbb{F}^n$ be a code. Then

$$\operatorname{cwe}(C) := \sum_{c \in C} \prod_{i=1}^{n} x_{c_i} \in \mathbb{C}[x_a \mid a \in \mathbb{F}]$$

is the *complete weight enumerator* of C.

For an element $r \in \mathbb{F}$ let m_r and d_r be the \mathbb{C} -algebra endomorphisms of $\mathbb{C}[x_a \mid a \in \mathbb{F}]$ defined by

$$m_r(x_a) := x_{ar}, \quad d_r(x_a) := i^{\varphi(ar)} x_a \quad \text{for all } a \in \mathbb{F},$$

where $i = \sqrt{-1}$ and $\varphi : \mathbb{F} \to \mathbb{Z}/4\mathbb{Z}$ is defined as above via a fixed self-complementary basis. We also have the MacWilliams transformation h defined by

$$h(x_a) := 2^{-f/2} \sum_{b \in \mathbb{F}} (-1)^{\tau(ab)} x_b$$
 for all $a \in \mathbb{F}$.

Definition 10. The group

$$G_f := \langle h, m_r, d_r \mid 0 \neq r \in \mathbb{F} \rangle$$

is called the associated *Clifford–Weil group*.

Gleason [5] observed that the complete weight enumerator of a self-dual code C remains invariant under the transformations h and m_r . If C is doubly-even, then cwe(C) is invariant also under each d_r (Proposition 4). Therefore we have the following theorem.

Theorem 11. The complete weight enumerator of a doubly-even self-dual code over \mathbb{F} lies in the invariant ring

$$\operatorname{Inv}(G_f) := \{ p \in \mathbb{C}[x_a \mid a \in \mathbb{F}] \mid pg = p \quad \text{for all } g \in G_f \}.$$

By the general theory developed in [9] one finds that a converse to Theorem 11 also holds.

Theorem 12. The invariant ring of G_f is generated by complete weight enumerators of doubly-even self-dual codes over \mathbb{F} .

In the case f = 1 Gleason obtained the more precise information

$$\operatorname{Inv}(G_1) = \mathbb{C}[\operatorname{cwe}(\mathscr{H}_8), \operatorname{cwe}(\mathscr{G}_{24})],$$

where \mathcal{H}_8 and \mathcal{G}_{24} denote the extended Hamming code of length 8 and the extended Golay code of length 24 over \mathbb{F}_2 .

In general, the Galois group

$$\Gamma_f := \operatorname{Gal}(\mathbb{F}/\mathbb{F}_2)$$

acts on $\operatorname{Inv}(G_f)$ by $\gamma(x_a) := x_{a^{\gamma}}$ for all $a \in \mathbb{F}, \gamma \in \Gamma_f$. Let $\operatorname{Inv}(G_f, \Gamma_f)$ denote the ring of Γ_f -invariant polynomials in $\operatorname{Inv}(G_f)$.

Theorem 13.

$$\operatorname{Inv}(G_2, \Gamma_2) = \mathbb{C}[\operatorname{cwe}(Q_4), \operatorname{cwe}(Q_8), \operatorname{cwe}(Q_{12}), \operatorname{cwe}(Q_{20})]$$

where Q_{p+1} denotes the extended quadratic-residue code of length p+1 over \mathbb{F}_4 (see Proposition 8). The invariant ring of G_2 is a free module of rank 2 over $Inv(G_2, \Gamma_2)$:

$$\operatorname{Inv}(G_2) = \operatorname{Inv}(G_2, \Gamma_2) \oplus \operatorname{Inv}(G_2, \Gamma_2) p_{40}$$

where p_{40} is a homogeneous polynomial of degree 40 which is not invariant under Γ_2 .

Proof. Computation shows that $\langle G_2, \Gamma_2 \rangle$ is a complex reflection group of order $2^93 \cdot 5$ (Number 29 in [13]) and G_2 is a subgroup of index 2 with Molien series

$$\frac{1+t^{40}}{(1-t^4)(1-t^8)(1-t^{12})(1-t^{20})}.$$

By Proposition 8 the codes Q_i (i = 4, 8, 12, 20) are doubly-even self-dual codes over \mathbb{F}_4 . Their complete weight enumerators (which are Γ_2 -invariant) are algebraically independent elements in the invariant ring of G_2 as one shows by an explicit computation of their Jacobi matrix. Therefore these polynomials generate the algebra $\text{Inv}(G_2, \Gamma_2)$. \square

By Theorem 12 we have the following corollary.

Corollary 14. There is a doubly-even self-dual code C over \mathbb{F}_4 of length 40 such that cwe(C) is not Galois invariant.

A code with this property was recently constructed in [2].

For f > 2 the following example shows that we cannot hope to find an explicit description of the invariant rings of the above type.

Example 15. The Molien series of G_3 is N/D, where

$$D = (1 - t^8)^2 (1 - t^{16})^2 (1 - t^{24})^2 (1 - t^{56})(1 - t^{72})$$

and $N(t) = M(t) + M(t^{-1})t^{216}$ with

$$M = 1 + 5t^{16} + 77t^{24} + 300t^{32} + 908t^{40} + 2139t^{48} + 3808t^{56} + 5864t^{64}$$
$$+ 8257t^{72} + 10456t^{80} + 12504t^{88} + 14294t^{96} + 15115t^{104}.$$

The Molien series of $\langle G_3, \Gamma_3 \rangle$ is $(L(t) + L(t^{-1})t^{216})/D$, where D is as above and

$$L = 1 + 3t^{16} + 29t^{24} + 100t^{32} + 298t^{40} + 707t^{48} + 1268t^{56} + 1958t^{64}$$
$$+ 2753t^{72} + 3482t^{80} + 4166t^{88} + 4766t^{96} + 5045t^{104}.$$

4. The structure of the Clifford–Weil groups G_f

In this section we establish the following theorem.

Theorem 16. The structure of the Clifford–Weil groups G_f is given by

$$G_f \cong Z.(\mathbb{F} \oplus \mathbb{F}).\mathrm{SL}_2(\mathbb{F})$$

where $Z \cong \mathbb{Z}/4\mathbb{Z}$ if f is even, and $Z \cong \mathbb{Z}/8\mathbb{Z}$ if f is odd.

To prove this theorem, we first construct a normal subgroup $N_f \subseteq G_f$ with $N_f \cong \mathbb{Z}/4\mathbb{Z} Y 2_+^{1+2f}$, the central product of an extraspecial group of order 2^{1+2f} with

the cyclic group of order 4. The image of the homomorphism $G_f/N_f \to Out(N_f)$ is isomorphic to $SL_2(\mathbb{F})$ and the kernel consists of scalar matrices only.

Let
$$q_r := (d_r^2)^h = h d_r^2 h$$
 and

$$N_f := \langle d_r^2, q_r, iid | r \in \mathbb{F} \rangle.$$

Using the fact that $(-1)^{\varphi(b)} = (-1)^{\tau(b)}$ for all $b \in \mathbb{F}$, we find that

$$d_r^2(x_a) = (-1)^{\tau(ar)} x_a, \quad q_r(x_a) = x_{a+r}.$$

For the chosen self-complementary basis $(b_1, ..., b_f)$, q_{b_j} commutes with $d_{b_k}^2$ if $j \neq k$ and the commutator of q_{b_j} and $d_{b_i}^2$ is —id. From this we have:

Remark 17. The group N_f is isomorphic to a central product of an extraspecial group $\langle q_{b_j}, d_{b_j}^2 | j = 1, ..., f \rangle \cong 2_+^{1+2f}$ with the center $Z(N_f) \cong \mathbb{Z}/4\mathbb{Z}$. The representation of N_f on the vector space $\bigoplus_{a \in \mathbb{F}} \mathbb{C} x_a$ of dimension 2^f is the unique irreducible representation of N_f such that $t \in \mathbb{Z}/4\mathbb{Z}$ acts as multiplication by i^t .

Concerning the action of G_f on N_f we have

$$m_a d_r^2 m_a^{-1} = d_{a^{-1}r}^2, \quad m_a q_r m_a^{-1} = q_{ar} \quad \text{for all } a,r \in \mathbb{F}^*.$$

Since m_a conjugates d_r to $d_{a^{-1}r}$ it suffices to calculate the action of d_1

$$d_1 d_r^2 d_1^{-1} = d_r^2, \quad d_1 q_r d_1^{-1} = i^{\phi(r)} q_r d_r^2, \quad \text{for all } r \! \in \! \mathbb{F}.$$

This proves

Lemma 18. The image of the homomorphism $G_f \to \operatorname{Aut}(N_f/Z(N_f))$ is isomorphic to $\operatorname{SL}_2(\mathbb{F})$ via

$$h \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad m_a \mapsto \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \quad d_1 \mapsto \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Elementary calculations or explicit knowledge of the automorphism group of N_f (see [14]) show that the kernel of the above homomorphism is $N_f C_{G_f}(N_f) = N_f(G_f \cap \mathbb{C}^* \mathrm{id})$. It remains to find the center of G_f , which by the calculations above contains $i\mathrm{id}$. If f is even, then $\mathrm{cwe}(Q_4 \otimes_{\mathbb{F}_4} \mathbb{F})$ is an invariant of degree 4 of G_f , so the center is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ in this case. To prove the theorem, it remains to construct an element $\zeta_8\mathrm{id} \in G_f$ if f is odd, where $\zeta_8 \in \mathbb{C}^*$ is a primitive 8th root of unity.

Lemma 19. If f is odd, then $\langle (hd_1)^3 \rangle = \langle \zeta_8 id \rangle$.

Proof. $(hd_1)^3$ acts trivially on $N_f/Z(N_f)$. Explicit calculation shows that $(hd_1)^3$ commutes with each generator of N_f , hence acts as a scalar. We find that

$$(hd_1)^3(x_0) = \frac{1}{\sqrt{|\mathbb{F}|}} \frac{1}{|\mathbb{F}|} \sum_{b,c \in \mathbb{F}} i^{\varphi(c+b)} (-1)^{\tau(c)} x_0.$$

The right-hand side is an 8th root of unity times x_0 . If f is odd, then $\sqrt{2}$ is mentioned, which implies that this is a primitive 8th root of unity. \square

5. Extremal codes

Let $C \leq \mathbb{F}^n$ be a code. The complete weight enumerator $\mathrm{cwe}(C) \in \mathbb{C}[x_a \mid a \in \mathbb{F}]$ may be used to obtain information about the Hamming weight enumerator, which is the polynomial in a single variable x obtained from $\mathrm{cwe}(C)$ by substituting $x_0 \mapsto 1$ and $x_a \mapsto x$ for all $a \neq 0$.

Remark 20. (a) If $\mathbb{F}' \leq \mathbb{F}$ is a subfield of \mathbb{F} and $e = [\mathbb{F} : \mathbb{F}']$, then C becomes a code $C_{\mathbb{F}'}$ of length en over \mathbb{F}' by identifying \mathbb{F} with \mathbb{F}'^e with respect to a self-complementary basis (b_1, \ldots, b_e) . If $a = \sum_{i=1}^e a_i b_i$ with $a_i \in \mathbb{F}'$, then the complete weight enumerator of $C_{\mathbb{F}'}$ is obtained from cwe(C) by replacing x_a by $\prod_{i=1}^e x_{a_i}$.

(b) We may also construct a code C' of length n over \mathbb{F}' from C by taking the \mathbb{F}' -rational points:

$$C' := \{c \in C \mid c_i \in \mathbb{F}' \text{ for all } i = 1, \dots, n\}.$$

The dimension of C' is at most the dimension of C, and the complete weight enumerator of C' is found by the substitution $x_a \mapsto 0$ if $a \notin \mathbb{F}'$. C' is called the \mathbb{F}' -rational subcode of C.

As an application of Theorem 13 we have the following result. Note that the results for lengths $n \le 20$ also follow from the classification of doubly-even self-dual codes in [4,3,1], and the bound for length 20 can be deduced from [4, Corollary 3.4].

Theorem 21. Let $\mathbb{F} := \mathbb{F}_4$. The maximal Hamming distance d = d(C) of a doubly-even self-dual code $C \leq \mathbb{F}^n$ is as given in the following table:

n	4	8	12	16	20	24
d	3	4	6	6	8	8

For n = 4 and 8, the quadratic-residue codes Q_4 resp. Q_8 are the unique codes C of length n with d(C) = 3 resp. d(C) = 4.

Proof. Let $p \in \mathbb{C}[x_0, x_1, x_{\omega}, x_{\omega^2}]_n^{G_2}$, a homogeneous polynomial of degree n. If p is the complete weight enumerator of a code C with $d(C) \ge d$, then the following conditions must be satisfied:

- (a) All coefficients in p are non-negative integers.
- (b) The coefficients of $x_0^a x_1^b x_\omega^b x_{\omega^2}^b$ with b > 0 are divisible by 3.
- (c) $p(1,1,1,1) = 2^n$.
- (d) $p(1,1,0,0) = 2^m$ for some $m \leq \frac{n}{2}$.
- (e) p(1, x, x, x) 1 is divisible by x^d .

One easily sees that Q_4 is the unique doubly-even self-dual code over \mathbb{F} of length 4. If C is such a code of length 8 with $d(C) \geqslant 4$, then $\mathrm{cwe}(C)$ is uniquely determined by condition (e). In particular, the \mathbb{F}_2 -rational subcode of C has dimension 4 and is a doubly-even self-dual binary code of length 8. Hence $C = \mathcal{H}_8 \otimes \mathbb{F} = Q_8$. If $C \leqslant \mathbb{F}^{12}$ is a doubly-even self-dual code with $d(C) \geqslant 6$, then again $\mathrm{cwe}(C) = \mathrm{cwe}(Q_{12})$ is uniquely determined by condition (e), moreover Q_{12} has minimal distance 6.

For n = 16, there is a unique polynomial $p(x_0, x_1, x_\omega, x_{\omega^2}) \in \mathbb{C}[x_0, x_1, x_\omega, x_{\omega^2}]_{16}^{G_2}$ such that $p(1, x, x, x) \equiv 1 + ax^7 \pmod{x^8}$. This polynomial p has negative coefficients. Therefore the doubly-even self-dual codes $C \leqslant \mathbb{F}^{16}$ satisfy $d(C) \leqslant 6$. There are two candidates for polynomials p satisfying the five conditions above with d = 6. The rational subcode has either dimension 2 or 4 and all words $\neq 0$, 1 are of weight 8. One easily constructs such a code C from the code Q_{20} , by taking those elements of Q_{20} that have 0 in four fixed coordinates, omitting these 4 coordinates to get a code of length 16, adjoining the all-ones vector and then a vector of the form $(1^8, 0^8)$ from the dual code. $C_{\mathbb{F}_2} \leqslant \mathbb{F}_2^{32}$ is isomorphic to the extended binary quadratic-residue code and the rational subcode of C is two-dimensional.

For n=20 we similarly find four candidates for complete weight enumerators satisfying (a)–(e) above with d=8 (where the dimension of the rational subcode is 1, 3, 5 or 7). None of these satisfies (e) with d>8. The code Q_{20} has minimal weight 8 and its rational subcode is $\{0,1\}$. For n=24, the code $Q_{24}=\mathbb{F}_4\otimes \mathcal{G}_{24}$ has d(C)=8. To see that this is best possible let $p\in\mathbb{C}[x_0,x_1,x_\omega,x_{\omega^2}]_{24}^{G_2}$ satisfy (b) and (e) above with d=9. Then $p=p_0+ah_1+bh_2$, for suitable p_0,h_1,h_2 with $h_i(1,x,x,x)\equiv 0 \pmod{x^9}$, $p_0(1,x,x,x)\equiv 1 \pmod{x^9}$ and $a,b\in\mathbb{Z}$. Explicit calculations then show that $p_0(1,1,0,0)$, $h_1(1,1,0,0)$ and $h_2(1,1,0,0)$ are all divisible by 3. Therefore p(1,1,0,0) is not a power of 2, hence p does not satisfy condition (d). \square

Acknowledgments

We thank O. Jahn for computations in connection with Theorem 13 at an early stage of this work. We also thank the referees for their comments.

References

- [1] K. Betsumiya, On the classification of Type II codes over \mathbb{F}_{2^r} with binary length 32, 2002, preprint.
- [2] K. Betsumiya, Y.J. Choie, Codes over \mathbb{F}_4 , Jacobi forms and Hilbert-Siegel modular forms over $\mathbb{Q}(\sqrt{5})$, 2002, preprint.
- [3] K. Betsumiya, T.A. Gulliver, M. Harada, A. Munemasa, On type II codes over F₄, IEEE Trans. Inform. Theory 47 (2001) 2242–2248.
- [4] P. Gaborit, V.S. Pless, P. Solé, A.O.L. Atkin, Type II codes over F₄, Finite Fields Appl. 8 (2002) 171–183.
- [5] A.M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, in: Actes, Congrés International de Mathématiques (Nice, 1970), Vol. 3, Gauthiers-Villars, Paris, 1971, pp. 211–215.
- [6] M. Klemm, Eine Invarianzgruppe f
 ür die vollst
 ändige Gewichtsfunktion selbstdualer Codes, Archiv Math. 53 (1989) 332–336.
- [7] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
- [8] G. Nebe, E.M. Rains, N.J.A. Sloane, The invariants of the Clifford groups, Des. Codes Cryptogr. 24 (2001) 99–121.
- [9] G. Nebe, E.M. Rains, N.J.A. Sloane, Self-Dual Codes and Invariant Theory, a forthcoming book, research announcement available via arXiv math.NT/0311046.
- [10] G. Pasquier, Binary self-dual codes construction from self-dual codes over a Galois field F_{2^m}, in: C. Berge et al. (Eds.), Combinatorial Mathematics (Luminy, 1981), Ann. Discrete Math. 17 (1983) 519−526.
- [11] H.-G. Quebbemann, On even codes, Discrete Math. 98 (1991) 29-34.
- [12] E.M. Rains, N.J.A. Sloane, Self-dual codes, in: V. Pless, W.C. Huffman (Eds.), Handbook of Coding Theory, Elsevier, Amsterdam, 1998, pp. 177–294.
- [13] G.C. Shephard, J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274-304.
- [14] D.L. Winter, The automorphism group of an extraspecial *p*-group, Rocky Mountain J. Math. 2 (1972) 159–168.
- [15] J. Wolfmann, A class of doubly even self-dual binary codes, Discrete Math. 56 (1985) 299-303.