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Abstract

For any q which is a power of 2 we describe a finite subgroup of GLqðCÞ under which the

complete weight enumerators of generalized doubly-even self-dual codes over Fq are invariant.

An explicit description of the invariant ring and some applications to extremality of such codes

are obtained in the case q ¼ 4:
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In 1970, Gleason [5] described a finite complex linear group of degree q under
which the complete weight enumerators of self-dual codes over Fq are invariant.

While for odd q this group is a double or quadruple cover of SL2ðFqÞ; for even qX4

it is solvable of order 4q2ðq � 1Þ (compare [6]). For even q it is only when q ¼ 2 that
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the seemingly exceptional type of doubly-even self-dual binary codes leads to a larger
group.
In this paper, we study a generalization of doubly-even codes to the non-binary

case which was introduced in [11]. A linear code of length n over Fq is called doubly-

even if all of its words are annihilated by the first and the second elementary
symmetric polynomials in n variables. For q ¼ 2 this condition is actually equivalent
to the usual one on weights modulo 4, but for qX4 it does not restrict the Hamming
weight over Fq: (For odd q the condition just means that the code is self-orthogonal

and its dual contains the all-ones word; however here we consider only characteristic

2.) Extended Reed–Solomon codes of rate 1
2 are known to be examples of doubly-

even self-dual codes. For q ¼ 4e another interesting class of examples is given by the
extended quadratic-residue codes of lengths divisible by 4.
We find (Theorems 11 and 16) that the complete weight enumerators of doubly-

even self-dual codes over Fq; q ¼ 2f ; are invariants for the same type of Clifford–

Weil group that for odd primes q has been discussed in [12, Section 7.9]. More

precisely, the group has a normal subgroup of order 4q2 or 8q2 (depending on
whether f is even or odd) such that the quotient is SL2ðFqÞ: Over F4 the invariant ring
is still simple enough to be described explicitly. Namely, the subring of Frobenius-
invariant elements is generated by the algebraically independent weight enumerators
of the four extended quadratic-residue codes of lengths 4, 8, 12 and 20, and the
complete invariant ring is a free module of rank 2 over this subring; the fifth (not
Frobenius-invariant) basic generator has degree 40. In the final section, we use this
result to find the maximal Hamming distance of doubly-even self-dual quaternary
codes up through length 24. Over the field F4; doubly-even codes coincide with what
are called ‘‘Type II’’ codes in [4].
The invariant ring considered here is always generated by weight enumerators.

This property holds even for Clifford–Weil groups associated with multiple weight
enumerators, for which a direct proof in the binary case was given in [8]. The general
case can be found in [9], where still more general types of codes are also included.

2. Doubly-even codes

In this section, we generalize the notion of doubly-even binary codes to arbitrary
finite fields of characteristic 2 (see [11]).

Let F :¼ F2f denote the field with 2f elements. A code CpF n is an F-linear

subspace of F n: If cAF n then the ith coordinate of c is denoted by ci: The dual code

to a code CpF n is defined to be

C> :¼ vAF n
Xn

i¼1
civi ¼ 0 for all cAC

�����
)(
:

C is called self-orthogonal if CCC>; and self-dual if C ¼ C>:
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Definition 1. A code CpF n is doubly-even if

Xn

i¼1
ci ¼

X
ioj

cicj ¼ 0

for all cAC:

Remark 2. An alternative definition can be obtained as follows. There is a unique

unramified extension #F of the 2-adic integers with the property that #F=2 #FDF;

moreover, the map x/x2 induces a well-defined map #F=2 #F- #F=4 #F; and thus a map

(also written as x/x2) from F- #F=4 #F: The above condition is then equivalent to

requiring that
P

i v2i ¼ 0A #F=4 #F for all vAC:

Doubly-even codes are self-orthogonal. This follows from the identity:X
ioj

ðci þ c0iÞðcj þ c0jÞ ¼
X
ioj

cicj þ
X
ioj

c0ic
0
j þ
Xn

i¼1
ci

Xn

i¼1
c0i �

Xn

i¼1
cic

0
i:

Note that Hamming distances in a doubly-even code are not necessarily even:

Example 3. Let oAF4 be a primitive cube root of unity. Then the code Q4pF 4
4 with

generator matrix

1 1 1 1

0 1 o o2

� �
is a doubly-even self-dual code over F4:

Let B ¼ ðb1;y; bf Þ be an F2-basis of F such that tðbibjÞ ¼ dij for all i; j ¼ 1;y; f ;

where t denotes the trace of F over F2: Then B is called a self-complementary (or

trace-orthogonal) basis of F (cf. [10,11,15]). Using such a basis we identify F with F
f
2

and define

j : F-Z=4Z; j
Xf

i¼1
aibi

 !
:¼ wtða1;y; af Þ þ 4Z

to be the weight modulo 4. Since tðbiÞ ¼ tðb2i Þ ¼ 1; we have

jðaÞ þ 2Z ¼ tðaÞ

and (considering 2t as a map onto 2Z=4Z)

jða þ a0Þ ¼ jðaÞ þ jða0Þ þ 2tðaa0Þ
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for all a; a0AF: More generally,

j
Xn

i¼1
ci

 !
¼
Xn

i¼1
jðciÞ þ 2t

X
ioj

cicj

 !
:

We extend j to a quadratic function

f : F n-Z=4Z; fðcÞ :¼
Xn

i¼1
jðciÞ:

Proposition 4. A code CpF n is doubly-even if and only if fðCÞ ¼ f0g:

Proof. For rAF; cAF n;

fðrcÞ ¼ j
Xn

i¼1
rci

 !
� 2t

X
ioj

r2cicj

 !
:

This equation in particular shows that fðCÞ ¼ f0g if C is doubly-even. Conversely, if

fðCÞ ¼ f0g then the same equation shows that tðr
Pn

i¼1 ciÞ ¼ jð
Pn

i¼1 rciÞ þ 2Z ¼ 0

for all rAF; cAC: Since the trace bilinear form is non-degenerate, this implies thatPn
i¼1 ci ¼ 0 for all cAC: The same equality then implies that tðr2

P
ioj cicjÞ ¼ 0 for

all rAF and cAC: The mapping r/r2 is an automorphism of F; so again the non-
degeneracy of the trace bilinear form yields

P
iojcicj ¼ 0 for all cAC: &

Corollary 5. Let F n be identified with F
nf
2 via a self-complementary basis. Then a

doubly-even code CpF n becomes a doubly-even binary code CF2pF
nf
2 :

Remark 6. Let CpF n be a doubly-even code. Then 1 :¼ ð1;y; 1ÞAC>: Hence if C

is self-dual then 4 divides n:

In the following remark we use the fact that the length of a doubly-even self-dual
binary code is divisible by 8.

Remark 7. If f 
 1 ðmod 2Þ then the length of a doubly-even self-dual code over F is
divisible by 8. If f 
 0 ðmod 2Þ then F#F4

Q4 is a doubly-even self-dual code over F

of length 4.

More general examples of doubly-even self-dual codes are provided by extended
quadratic-residue codes (see [7]). Let p be an odd prime and let z be a primitive pth

root of unity in an extension field *F of F2: Let

g :¼
Y

aAðF�pÞ2
ðX � zaÞA *F½X �;
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where a runs through the non-zero squares in Fp: Then gAF4½X � divides X p � 1; and

g lies in F2½X � if g is fixed under the Frobenius automorphism z/z2; i.e. if 2 is a
square in F�p; or equivalently by quadratic reciprocity if p 
 71 ðmod 8Þ: Assuming
f to be even if p 
 73 ðmod 8Þ; we define the quadratic-residue code QRðF; pÞpF p

to be the cyclic code of length p with generator polynomial g: Then dim ðQRðF; pÞÞ ¼
p � degðgÞ ¼ pþ1

2
; which is also the dimension of the extended code gQRQRðF; pÞpF pþ1:

From [7, pp. 490, 508] together with Proposition 4 we obtain the following (the
case F ¼ F4 was given in [4, Proposition 4.1]).

Proposition 8. Let p be a prime, p 
 3 ðmod 4Þ: Then the extended quadratic-residue

code gQRQRðF; pÞ is a doubly-even self-dual code.

3. Complete weight enumerators and invariant rings

In this section, we define the action of a group of C-algebra automorphisms on the
polynomial ring C½xa j aAF� such that the complete weight enumerators of doubly-
even self-dual codes are invariant under this group.

Definition 9. Let CpF n be a code. Then

cweðCÞ :¼
X
cAC

Yn

i¼1
xci

AC½xa j aAF�

is the complete weight enumerator of C:

For an element rAF let mr and dr be the C-algebra endomorphisms of C½xa j aAF�
defined by

mrðxaÞ :¼ xar; drðxaÞ :¼ ijðarÞxa for all aAF;

where i ¼
ffiffiffiffiffiffiffi
�1

p
and j : F-Z=4Z is defined as above via a fixed self-complementary

basis. We also have the MacWilliams transformation h defined by

hðxaÞ :¼ 2�f =2
X
bAF

ð�1ÞtðabÞ
xb for all aAF:

Definition 10. The group

Gf :¼ /h;mr; dr j 0arAFS

is called the associated Clifford–Weil group.

ARTICLE IN PRESS
G. Nebe et al. / Finite Fields and Their Applications 10 (2004) 540–550544



Gleason [5] observed that the complete weight enumerator of a self-dual code C

remains invariant under the transformations h and mr: If C is doubly-even, then
cweðCÞ is invariant also under each dr (Proposition 4). Therefore we have the
following theorem.

Theorem 11. The complete weight enumerator of a doubly-even self-dual code over F

lies in the invariant ring

InvðGf Þ :¼ fpAC½xa j aAF� j pg ¼ p for all gAGf g:

By the general theory developed in [9] one finds that a converse to Theorem 11 also
holds.

Theorem 12. The invariant ring of Gf is generated by complete weight enumerators of

doubly-even self-dual codes over F:

In the case f ¼ 1 Gleason obtained the more precise information

InvðG1Þ ¼ C½cweðH8Þ; cweðG24Þ�;

where H8 and G24 denote the extended Hamming code of length 8 and the extended
Golay code of length 24 over F2:
In general, the Galois group

Gf :¼ GalðF=F2Þ

acts on InvðGf Þ by gðxaÞ :¼ xag for all aAF; gAGf : Let InvðGf ;Gf Þ denote the ring of
Gf -invariant polynomials in InvðGf Þ:

Theorem 13.

InvðG2;G2Þ ¼ C½cweðQ4Þ; cweðQ8Þ; cweðQ12Þ; cweðQ20Þ�

where Qpþ1 denotes the extended quadratic-residue code of length p þ 1 over F4 (see

Proposition 8). The invariant ring of G2 is a free module of rank 2 over InvðG2;G2Þ:

InvðG2Þ ¼ InvðG2;G2Þ"InvðG2;G2Þp40

where p40 is a homogeneous polynomial of degree 40 which is not invariant under G2:

Proof. Computation shows that /G2;G2S is a complex reflection group of order

293 � 5 (Number 29 in [13]) and G2 is a subgroup of index 2 with Molien series

1þ t40

ð1� t4Þð1� t8Þð1� t12Þð1� t20Þ:
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By Proposition 8 the codes Qi ði ¼ 4; 8; 12; 20Þ are doubly-even self-dual codes over
F4: Their complete weight enumerators (which are G2-invariant) are algebraically
independent elements in the invariant ring of G2 as one shows by an explicit
computation of their Jacobi matrix. Therefore these polynomials generate the
algebra InvðG2;G2Þ: &

By Theorem 12 we have the following corollary.

Corollary 14. There is a doubly-even self-dual code C over F4 of length 40 such that

cweðCÞ is not Galois invariant.

A code with this property was recently constructed in [2].
For f42 the following example shows that we cannot hope to find an explicit

description of the invariant rings of the above type.

Example 15. The Molien series of G3 is N=D; where

D ¼ ð1� t8Þ2ð1� t16Þ2ð1� t24Þ2ð1� t56Þð1� t72Þ

and NðtÞ ¼ MðtÞ þ Mðt�1Þt216 with

M ¼ 1þ 5t16 þ 77t24 þ 300t32 þ 908t40 þ 2139t48 þ 3808t56 þ 5864t64

þ 8257t72 þ 10 456t80 þ 12 504t88 þ 14 294t96 þ 15 115t104:

The Molien series of /G3;G3S is ðLðtÞ þ Lðt�1Þt216Þ=D; where D is as above and

L ¼ 1þ 3t16 þ 29t24 þ 100t32 þ 298t40 þ 707t48 þ 1268t56 þ 1958t64

þ 2753t72 þ 3482t80 þ 4166t88 þ 4766t96 þ 5045t104:

4. The structure of the Clifford–Weil groups Gf

In this section we establish the following theorem.

Theorem 16. The structure of the Clifford–Weil groups Gf is given by

Gf DZ:ðF"FÞ:SL2ðFÞ

where ZDZ=4Z if f is even, and ZDZ=8Z if f is odd.

To prove this theorem, we first construct a normal subgroup Nf IGf with

Nf DZ=4ZY21þ2f
þ ; the central product of an extraspecial group of order 21þ2f with
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the cyclic group of order 4. The image of the homomorphism Gf =Nf -OutðNf Þ is
isomorphic to SL2ðFÞ and the kernel consists of scalar matrices only.

Let qr :¼ ðd2
r Þ

h ¼ hd2
r h and

Nf :¼ /d2
r ; qr; iid j rAFS:

Using the fact that ð�1ÞjðbÞ ¼ ð�1ÞtðbÞ for all bAF; we find that

d2
r ðxaÞ ¼ ð�1ÞtðarÞ

xa; qrðxaÞ ¼ xaþr:

For the chosen self-complementary basis ðb1;y; bf Þ; qbj
commutes with d2

bk
if jak

and the commutator of qbj
and d2

bj
is �id: From this we have:

Remark 17. The group Nf is isomorphic to a central product of an extraspecial

group /qbj
; d2

bj
j j ¼ 1;y; fSD2

1þ2f
þ with the center ZðNf ÞDZ=4Z: The representa-

tion of Nf on the vector space "aAF Cxa of dimension 2f is the unique irreducible

representation of Nf such that tAZ=4Z acts as multiplication by it:

Concerning the action of Gf on Nf we have

mad2
r m�1

a ¼ d2
a�1r

; maqrm
�1
a ¼ qar for all a; rAF �:

Since ma conjugates dr to da�1r it suffices to calculate the action of d1

d1d
2
r d�1

1 ¼ d2
r ; d1qrd

�1
1 ¼ ijðrÞqrd

2
r ; for all rAF:

This proves

Lemma 18. The image of the homomorphism Gf -AutðNf =ZðNf ÞÞ is isomorphic to

SL2ðFÞ via

h/
0 1

1 0

� �
; ma/

a 0

0 a�1

� �
; d1/

1 0

1 1

� �
:

Elementary calculations or explicit knowledge of the automorphism group of Nf

(see [14]) show that the kernel of the above homomorphism is Nf CGf
ðNf Þ ¼

Nf ðGf -C�idÞ: It remains to find the center of Gf ; which by the calculations above

contains iid: If f is even, then cweðQ4#F4
FÞ is an invariant of degree 4 of Gf ; so the

center is isomorphic to Z=4Z in this case. To prove the theorem, it remains to
construct an element z8idAGf if f is odd, where z8AC� is a primitive 8th root of

unity.

Lemma 19. If f is odd, then /ðhd1Þ3S ¼ /z8idS:
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Proof. ðhd1Þ3 acts trivially on Nf =ZðNf Þ: Explicit calculation shows that ðhd1Þ3
commutes with each generator of Nf ; hence acts as a scalar. We find that

ðhd1Þ3ðx0Þ ¼
1ffiffiffiffiffiffi
jFj

p 1

jFj
X

b;cAF

ijðcþbÞð�1ÞtðcÞx0:

The right-hand side is an 8th root of unity times x0: If f is odd, then
ffiffiffi
2

p
is

mentioned, which implies that this is a primitive 8th root of unity. &

5. Extremal codes

Let CpF n be a code. The complete weight enumerator cweðCÞAC½xa j aAF� may
be used to obtain information about the Hamming weight enumerator, which is the
polynomial in a single variable x obtained from cweðCÞ by substituting x0/1 and
xa/x for all aa0:

Remark 20. (a) If F0pF is a subfield of F and e ¼ ½F : F0�; then C becomes a code CF0

of length en over F0 by identifying F with F0 e with respect to a self-complementary

basis ðb1;y; beÞ: If a ¼
Pe

i¼1aibi with aiAF0; then the complete weight enumerator of

CF0 is obtained from cweðCÞ by replacing xa by
Qe

i¼1 xai
:

(b) We may also construct a code C0 of length n over F0 from C by taking the F0-
rational points:

C0 :¼ fcAC j ciAF0 for all i ¼ 1;y; ng:

The dimension of C0 is at most the dimension of C; and the complete weight

enumerator of C0 is found by the substitution xa/0 if aeF0: C0 is called the F0-
rational subcode of C:

As an application of Theorem 13 we have the following result. Note that the
results for lengths np20 also follow from the classification of doubly-even self-dual
codes in [4,3,1], and the bound for length 20 can be deduced from [4, Corollary 3.4].

Theorem 21. Let F :¼ F4: The maximal Hamming distance d ¼ dðCÞ of a doubly-even

self-dual code CpF n is as given in the following table:

n 4 8 12 16 20 24

d 3 4 6 6 8 8

For n ¼ 4 and 8, the quadratic-residue codes Q4 resp. Q8 are the unique codes C of

length n with dðCÞ ¼ 3 resp. dðCÞ ¼ 4:
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Proof. Let pAC½x0; x1;xo; xo2 �G2
n ; a homogeneous polynomial of degree n: If p is the

complete weight enumerator of a code C with dðCÞXd; then the following
conditions must be satisfied:

(a) All coefficients in p are non-negative integers.
(b) The coefficients of xa

0x
b
1x

b
oxb

o2
with b40 are divisible by 3.

(c) pð1; 1; 1; 1Þ ¼ 2n:
(d) pð1; 1; 0; 0Þ ¼ 2m for some mpn

2
:

(e) pð1; x; x; xÞ � 1 is divisible by xd :

One easily sees that Q4 is the unique doubly-even self-dual code over F of length 4.
If C is such a code of length 8 with dðCÞX4; then cweðCÞ is uniquely determined
by condition (e). In particular, the F2-rational subcode of C has dimension 4 and
is a doubly-even self-dual binary code of length 8. Hence C ¼ H8#F ¼ Q8:

If CpF 12 is a doubly-even self-dual code with dðCÞX6; then again cweðCÞ ¼
cweðQ12Þ is uniquely determined by condition (e), moreover Q12 has minimal
distance 6.

For n ¼ 16; there is a unique polynomial pðx0; x1; xo; xo2ÞAC½x0; x1; xo; xo2 �
G2
16

such that pð1; x; x; xÞ 
 1þ ax7 ðmod x8Þ: This polynomial p has negative coeffi-

cients. Therefore the doubly-even self-dual codes CpF 16 satisfy dðCÞp6: There are
two candidates for polynomials p satisfying the five conditions above with d ¼ 6:
The rational subcode has either dimension 2 or 4 and all wordsa0; 1 are of weight 8.
One easily constructs such a code C from the code Q20; by taking those elements of
Q20 that have 0 in four fixed coordinates, omitting these 4 coordinates to get a code

of length 16, adjoining the all-ones vector and then a vector of the form ð18; 08Þ from
the dual code. CF2pF 32

2 is isomorphic to the extended binary quadratic-residue code

and the rational subcode of C is two-dimensional.
For n ¼ 20 we similarly find four candidates for complete weight enumerators

satisfying (a)–(e) above with d ¼ 8 (where the dimension of the rational subcode
is 1; 3; 5 or 7). None of these satisfies (e) with d48: The code Q20 has minimal
weight 8 and its rational subcode is f0; 1g: For n ¼ 24; the code Q24 ¼ F4#G24

has dðCÞ ¼ 8: To see that this is best possible let pAC½x0; x1; xo; xo2 �
G2
24 satisfy (b)

and (e) above with d ¼ 9: Then p ¼ p0 þ ah1 þ bh2; for suitable p0; h1; h2
with hið1; x; x; xÞ 
 0ðmod x9Þ; p0ð1; x; x; xÞ 
 1 ðmod x9Þ and a; bAZ: Explicit
calculations then show that p0ð1; 1; 0; 0Þ; h1ð1; 1; 0; 0Þ and h2ð1; 1; 0; 0Þ are all
divisible by 3. Therefore pð1; 1; 0; 0Þ is not a power of 2, hence p does not satisfy
condition (d). &
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