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Abstract

For any ¢ which is a power of 2 we describe a finite subgroup of GL,(C) under which the
complete weight enumerators of generalized doubly-even self-dual codes over F, are invariant.
An explicit description of the invariant ring and some applications to extremality of such codes
are obtained in the case ¢ = 4.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In 1970, Gleason [5] described a finite complex linear group of degree ¢ under
which the complete weight enumerators of self-dual codes over [, are invariant.
While for odd ¢ this group is a double or quadruple cover of SL,(F,), for even g>4
it is solvable of order 4¢*(¢ — 1) (compare [6]). For even g it is only when ¢ = 2 that
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the seemingly exceptional type of doubly-even self-dual binary codes leads to a larger
group.

In this paper, we study a generalization of doubly-even codes to the non-binary
case which was introduced in [11]. A linear code of length n over F, is called doubly-
even if all of its words are annihilated by the first and the second elementary
symmetric polynomials in # variables. For ¢ = 2 this condition is actually equivalent
to the usual one on weights modulo 4, but for ¢ >4 it does not restrict the Hamming
weight over F,. (For odd ¢ the condition just means that the code is self-orthogonal
and its dual contains the all-ones word; however here we consider only characteristic
2.) Extended Reed—Solomon codes of rate % are known to be examples of doubly-
even self-dual codes. For ¢ = 4¢ another interesting class of examples is given by the
extended quadratic-residue codes of lengths divisible by 4.

We find (Theorems 11 and 16) that the complete weight enumerators of doubly-
even self-dual codes over Fy, ¢ = 2/ are invariants for the same type of Clifford—
Weil group that for odd primes ¢ has been discussed in [12, Section 7.9]. More
precisely, the group has a normal subgroup of order 4¢> or 8¢° (depending on
whether f is even or odd) such that the quotient is SL,(F,). Over F4 the invariant ring
is still simple enough to be described explicitly. Namely, the subring of Frobenius-
invariant elements is generated by the algebraically independent weight enumerators
of the four extended quadratic-residue codes of lengths 4, 8, 12 and 20, and the
complete invariant ring is a free module of rank 2 over this subring; the fifth (not
Frobenius-invariant) basic generator has degree 40. In the final section, we use this
result to find the maximal Hamming distance of doubly-even self-dual quaternary
codes up through length 24. Over the field F4, doubly-even codes coincide with what
are called “Type II” codes in [4].

The invariant ring considered here is always generated by weight enumerators.
This property holds even for Clifford—Weil groups associated with multiple weight
enumerators, for which a direct proof in the binary case was given in [8]. The general
case can be found in [9], where still more general types of codes are also included.

2. Doubly-even codes

In this section, we generalize the notion of doubly-even binary codes to arbitrary
finite fields of characteristic 2 (see [11]).

Let [ :=F, denote the field with 2/ elements. A code C<F" is an [F-linear
subspace of F". If ceF” then the ith coordinate of ¢ is denoted by ¢;. The dual code
to a code C<F" is defined to be

1

ct = {UG[F”

n
cv; =0 for all ceC}.
=1

C is called self-orthogonal if C< C*, and self-dual if C = C*.
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Definition 1. A code C<F" is doubly-even if

Z Zc,c,—O

i=1 i<j
for all ceC.

Remark 2. An alternative definition can be obtained as follows. There is a unique
unramified extension F of the 2-adic integers with the property that [AF/Z[AF; F;
moreover, the map x+— x? induces a well-defined map F/2F - F/4F, and thus a map
(also written as x+— x2) from F— [F/4F. The above condition is then equivalent to
requiring that 3, v? = 0eF/4F for all ve C.

Doubly-even codes are self-orthogonal. This follows from the identity:

Z(ci-i-c (¢j + ) Zc,c,+Zc'c’+ZC,ZC—Zc,

i<j i<j i<j
Note that Hamming distances in a doubly-even code are not necessarily even:

Example 3. Let welF4 be a primitive cube root of unity. Then the code Q4 < [F44 with
generator matrix
( 1 1 1 1 )
01 o o

is a doubly-even self-dual code over Fy.

Let B = (bi, ..., br) be an [F,-basis of F such that t(b;b;) = d; for all i,j =1, ...,f,
where t denotes the trace of F over F,. Then B is called a self-complementary (or

trace-orthogonal) basis of F (cf. [10,11,15]). Using such a basis we identify F with [F-zf
and define

f
p:F->27/47, q)(Z aibi> =wt(ay,...,ar) + 47
i1
to be the weight modulo 4. Since t(b;) = t(h?) = 1, we have
o(a) +2Z = t(a)

and (considering 2t as a map onto 27 /47)

pla+d)=qla) +o(d)+2t(ad)
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for all a,a’ e F. More generally,

{£0)-£r(s)

i=1 i<j

We extend ¢ to a quadratic function

N

¢o:F">2/4Z, ¢(c) = o(ci)-

Proposition 4. 4 code C<F" is doubly-even if and only if $(C) = {0}.

)

This equation in particular shows that ¢(C) = {0} if C is doubly-even. Conversely, if
$(C) = {0} then the same equation shows that t(r>_7_ ¢;) = (> 1, r¢;) +2Z =0
for all relF, ce C. Since the trace bilinear form is non-degenerate, this implies that
% ¢ =0 for all ce C. The same equality then implies that ©(r?Y",_; ¢;¢;) = 0 for
2

Proof. For relF,celF",

i<j
all relF and ce C. The mapping r+r* is an automorphism of F, so again the non-
degeneracy of the trace bilinear form yields ), _ scicp=0forall ceC. 0

Corollary 5. Let F" be identified with [F"f via a self-complementary basis. Then a

doubly-even code C<F" becomes a doubly-even binary code Cr, < [F"/

Remark 6. Let C<F" be a doubly-even code. Then 1 = (1, ...,1)e C*+. Hence if C
is self-dual then 4 divides n.

In the following remark we use the fact that the length of a doubly-even self-dual
binary code is divisible by 8.

Remark 7. If f = 1 (mod 2) then the length of a doubly-even self-dual code over F is
divisible by 8. If /' = 0 (mod 2) then F ®§, Q4 is a doubly-even self-dual code over F
of length 4.

More general examples of doubly-even self-dual codes are provided by extended
quadratic-residue codes (see [7]). Let p be an odd prime and let { be a primitive pth
root of unity in an extension field F of F,. Let

g= [[ x-t"eflx],

ae(F;)?
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where a runs through the non-zero squares in [F,. Then ge F4[X] divides X? — 1, and
g lies in F,[X] if g is fixed under the Frobenius automorphism z+2z%, ie. if 2 is a
square in [, or equivalently by quadratic reciprocity if p = +1 (mod 8). Assuming
f tobeeven if p= +3 (mod 8), we define the quadratic-residue code QR(F,p) <F”
to be the cyclic code of length p with generator polynomial g. Then dim (QR(F, p)) =

p —deg(g) = 1%1, which is also the dimension of the extended code af{([F,p) <FrH
From [7, pp. 490, 508] together with Proposition 4 we obtain the following (the
case F = F4 was given in [4, Proposition 4.1]).

Proposition 8. Let p be a prime, p =3 (mod 4). Then the extended quadratic-residue
code QR(F, p) is a doubly-even self-dual code.

3. Complete weight enumerators and invariant rings
In this section, we define the action of a group of C-algebra automorphisms on the
polynomial ring C|x, | a€ F] such that the complete weight enumerators of doubly-

even self-dual codes are invariant under this group.

Definition 9. Let C<[F" be a code. Then

cwe(C) = Z ﬁ X, €Clx, |ael]

ceC i=1
is the complete weight enumerator of C.

For an element reF let m, and d, be the C-algebra endomorphisms of Clx, | a€F]
defined by

me(Xq) = Xgr, dr(xq) = @y, for all aeF,

where i = v—1 and ¢ : F—>Z/47 is defined as above via a fixed self-complementary
basis. We also have the MacWilliams transformation / defined by

h(xg) =273 (—=1)*“)x, for all acF.
bel

Definition 10. The group
Gr = {hymy,d, | 0#relF)

is called the associated Clifford—Weil group.
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Gleason [5] observed that the complete weight enumerator of a self-dual code C
remains invariant under the transformations % and m,. If C is doubly-even, then
cwe(C) is invariant also under each d, (Proposition 4). Therefore we have the
following theorem.

Theorem 11. The complete weight enumerator of a doubly-even self-dual code over F
lies in the invariant ring

Inv(Gy) = {peClx,|acF]|pg=p for all geGy}.

By the general theory developed in [9] one finds that a converse to Theorem 11 also
holds.

Theorem 12. The invariant ring of Gy is generated by complete weight enumerators of
doubly-even self-dual codes over F.

In the case f = 1 Gleason obtained the more precise information
Inv(G,) = Clewe(#g),cwe(Du)],

where #’g and %4 denote the extended Hamming code of length 8 and the extended
Golay code of length 24 over [F,.
In general, the Galois group

Iy = Gal(F/F,)

acts on Inv(Gy) by y(x,) = x4 for all aeF,yeI’s. Let Inv(Gy, I'r) denote the ring of
I's-invariant polynomials in Inv(Gy).

Theorem 13.

Inv(G,, I';) = Clewe(Q4), cwe(Qs), cwe(Q12), cwe(Qa0))

where Q,11 denotes the extended quadratic-residue code of length p + 1 over F4 (see
Proposition 8). The invariant ring of G, is a free module of rank 2 over Inv(Gy, I'3):

IIlV(Gz) = Il’lV(Gz, Fz) (—DIHV(Gz, Fg)p40
where p4y is a homogeneous polynomial of degree 40 which is not invariant under I';.

Proof. Computation shows that {G,,I>) is a complex reflection group of order
293 .5 (Number 29 in [13]) and G- is a subgroup of index 2 with Molien series

1+
(I =) (1 = &)1 = 2)(1 - )
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By Proposition 8 the codes Q; (i = 4,8,12,20) are doubly-even self-dual codes over
F4. Their complete weight enumerators (which are I';-invariant) are algebraically
independent elements in the invariant ring of G, as one shows by an explicit
computation of their Jacobi matrix. Therefore these polynomials generate the
algebra Inv(G,, I';). O

By Theorem 12 we have the following corollary.

Corollary 14. There is a doubly-even self-dual code C over F4 of length 40 such that
cwe(C) is not Galois invariant.

A code with this property was recently constructed in [2].
For f>2 the following example shows that we cannot hope to find an explicit
description of the invariant rings of the above type.
Example 15. The Molien series of G3 is N/D, where
D= (1 _ l8)2(1 _ Z16)2(1 _ 124)2(1 _ Z56)(1 _ l‘72)
and N(t) = M(t) + M (") with
M =1+ 50"+ 777 + 300672 4 9081* + 2139 + 38087 + 58641%

+ 825717 + 1045675 + 12 50475 + 142947 + 15 115:1%.

The Molien series of { Gs,I'3 ) is (L(7) + L(¢7")#*'®) /D, where D is as above and
L=1+43¢"+29* + 100 + 2981* + 707" + 12681 + 1958

+ 275377% + 3482/ + 4166¢% + 47661°° + 504514,

4. The structure of the Clifford—Weil groups G,
In this section we establish the following theorem.
Theorem 16. The structure of the Clifford—Weil groups Gy is given by
Gr=Z.(F@F).SLy(F)
where Z>7 [4Z if [ is even, and Z>=7 /87 if f is odd.

To prove this theorem, we first construct a normal subgroup Ny<Gy with
N;~7/47Y2" | the central product of an extraspecial group of order 2% with
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the cyclic group of order 4. The image of the homomorphism Gr/Ny— Out(Ny) is
isomorphic to SL,(F) and the kernel consists of scalar matrices only.

Let g, = (d?)" = hd?h and
Ny = {d*, q,iid | reF).
Using the fact that (—1)?®) = (=1)*® for all beF, we find that
d2(xa) = (=1)" X0, qr(Xa) = Xatr.

For the chosen self-complementary basis (by, ..., by), gqp; commutes with dgk if j#k

and the commutator of ¢, and d,fj is —id. From this we have:

Remark 17. The group Ny is isomorphic to a central product of an extraspecial
group < g, dg}_ lji=1,....0/> ;21:21 with the center Z(Ny) =7 /47Z. The representa-

tion of Ny on the vector space @ e Cx, of dimension 2/ is the unique irreducible
representation of Ny such that te Z/4Z acts as multiplication by .

Concerning the action of Gr on Ny we have

madim; = d

1 *
1, Maqrm, =g for all a,relF”.

Since m, conjugates d, to d, 1, it suffices to calculate the action of d,
did?di' = d?,  diqd;t = i°"gd?,  for all ref.
This proves

Lemma 18. The image of the homomorphism Gr— Aut(Ny/Z(Ny)) is isomorphic to

SL,(F) via
0 1 a 0 1 0
h— A ), di— .
1 0 0 a! 1 1

Elementary calculations or explicit knowledge of the automorphism group of Ny
(see [14]) show that the kernel of the above homomorphism is NyCq, (Ny) =
Ny(GrnCrid). It remains to find the center of Gy, which by the calculations above
contains iid. If /" is even, then cwe(Q4 ®,[F) is an invariant of degree 4 of Gy, so the
center is isomorphic to Z/4Z in this case. To prove the theorem, it remains to
construct an element (gide Gy if f is odd, where (3eC" is a primitive 8th root of
unity.

Lemma 19. If f is odd, then { (hd\)’> = ((gid .
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Proof. (hd;)’ acts trivially on Ny/Z(Ny). Explicit calculation shows that (hdy)?
commutes with each generator of Ny, hence acts as a scalar. We find that

() (x0) = == 3 (1),

V |[F| |[F| b,celF

The right-hand side is an 8th root of unity times xo. If f is odd, then V2 is
mentioned, which implies that this is a primitive 8th root of unity. [

5. Extremal codes

Let C<F" be a code. The complete weight enumerator cwe(C) e C[x, | a€ F] may
be used to obtain information about the Hamming weight enumerator, which is the
polynomial in a single variable x obtained from cwe(C) by substituting xo+— 1 and
x,+—x for all a#0.

Remark 20. (a) If F'<F is a subfield of F and e = [F : '], then C becomes a code Cp
of length en over ' by identifying F with F'¢ with respect to a self-complementary
basis (b1, ..., b.). If a = Y _;_,a;b; with a;e ', then the complete weight enumerator of
Cy is obtained from cwe(C) by replacing x, by [];_, x4,

(b) We may also construct a code C' of length n over F' from C by taking the [F'-
rational points:

C'={ceC|c¢elF forali=1,...,n}

The dimension of C’ is at most the dimension of C, and the complete weight
enumerator of C’ is found by the substitution x,+—0 if a¢F. C’ is called the F'-
rational subcode of C.

As an application of Theorem 13 we have the following result. Note that the
results for lengths n<<20 also follow from the classification of doubly-even self-dual
codes in [4,3,1], and the bound for length 20 can be deduced from [4, Corollary 3.4].

Theorem 21. Let F := F4. The maximal Hamming distance d = d(C) of a doubly-even
self-dual code C<[F" is as given in the following table:

4 8 12 16 20 24
d 3 4 6 6 8 8

For n =4 and 8, the quadratic-residue codes Qu resp. Qg are the unique codes C of
length n with d(C) = 3 resp. d(C) = 4.
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Proof. Let peClxy, x1, X, xwz],fz, a homogeneous polynomial of degree n. If p is the
complete weight enumerator of a code C with d(C)>d, then the following
conditions must be satisfied:

(a) All coefficients in p are non-negative integers.

(b) The coefficients of xgx}x x", with b>0 are divisible by 3.
(©) p(1,1,1,1) =2".

(d) p(1,1,0,0) = 2" for some m<?5.

(©) p(1,x,x,x) — 1 is divisible by x.

One easily sees that Qy is the unique doubly-even self-dual code over F of length 4.
If C is such a code of length 8 with d(C)>4, then cwe(C) is uniquely determined
by condition (¢). In particular, the F,-rational subcode of C has dimension 4 and
is a doubly-even self-dual binary code of length 8. Hence C = #s®F = Qs.
If C<F' is a doubly-even self-dual code with d(C)>6, then again cwe(C) =
cwe(Q12) is uniquely determined by condition (e), moreover Q;, has minimal
distance 6.

For n = 16, there is a unique polynomial p(xo,xl,xw,xwz)eC[xo,xl,x(,),xwg}ng
such that p(1,x,x,x) = 1 + ax’ (mod x®). This polynomial p has negative coeffi-
cients. Therefore the doubly-even self-dual codes C <[ '® satisfy d(C)<6. There are
two candidates for polynomials p satisfying the five conditions above with d = 6.
The rational subcode has either dimension 2 or 4 and all words #0, 1 are of weight 8.
One easily constructs such a code C from the code O, by taking those elements of
0y that have 0 in four fixed coordinates, omitting these 4 coordinates to get a code
of length 16, adjoining the all-ones vector and then a vector of the form (18,0%) from
the dual code. Cf, < [F232 is isomorphic to the extended binary quadratic-residue code
and the rational subcode of C is two-dimensional.

For n =20 we similarly find four candidates for complete weight enumerators
satisfying (a)—(e) above with d = 8 (where the dimension of the rational subcode
is 1,3,5 or 7). None of these satisfies (¢) with d>8. The code @,y has minimal
weight 8 and its rational subcode is {0,1}. For n =24, the code O =F4® %2
has d(C) = 8. To see that this is best possible let peC[xo,xl,xw,xwz]gf satisfy (b)
and (e) above with d =9. Then p=pg+ ah + bh,, for suitable pg,h,h
with 7;(1,x,x,x) = 0(mod x°), po(l,x,x,x) =1 (modx’) and a,beZ. Explicit
calculations then show that poy(1,1,0,0), A;(1,1,0,0) and /hy(1,1,0,0) are all
divisible by 3. Therefore p(1,1,0,0) is not a power of 2, hence p does not satisfy
condition (d). O
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