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Abstract—Two subspaces of a vector space are here called “noninter-
secting” if they meet only in the zero vector. Motivated by the design of
noncoherent multiple-antenna communications systems, we consider the
following question. How many pairwise nonintersecting -dimensional
subspaces of an -dimensional vector space over a field can be found,
if the generator matrices for the subspaces may contain only symbols from
a given finite alphabet ? The most important case is when is
the field of complex numbers C; then is the number of antennas. If

= = GF( ) it is shown that the number of nonintersecting sub-
spaces is at most ( 1) ( 1), and that this bound can be attained
if and only if is divisible by . Furthermore, these subspaces remain
nonintersecting when “lifted” to the complex field. It follows that the finite
field case is essentially completely solved. In the case when = C only the
case = 2 is considered. It is shown that if is a PSK-configuration,
consisting of the 2 complex roots of unity, the number of nonintersecting
planes is at least 2 and at most 2 (the lower bound may in
fact be the best that can be achieved).

Index Terms—Multiple-antenna communications, noncoherent systems,
nonintersecting subspaces, space-time codes.

I. INTRODUCTION

The problem studied in this correspondence is motivated by commu-
nication over multiple antenna channels [10], [21], [22]. In [6] and [22],
it was shown that the capacity of the multiple-antenna channel grows
linearly as a function of the minimum of the numbers of transmitting
and receiving antennas. The proof assumed that the receiver has com-
plete information about the channel. In [21], the emphasis was placed
on reducing error probability by introducing correlation between sig-
nals transmitted from different antennas. These points of view can be
combined by observing that there is a tradeoff between rate and relia-
bility [21], [23].

Most of the early work on multiple-antenna communications as-
sumed that the receiver was able to track the channel perfectly—i.e.,
used coherent detection. If coherent detection is difficult or too ex-
pensive, one can use noncoherent detection, as studied in [10]. The
main result from this work is that the capacity is still (almost) linear in
the minimum number of transmitting or receiving antennas [10], [26].
Hence, both in the coherent and noncoherent cases, it was established
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that the use of multiple-antennas leads to a gain in information trans-
mission rate.
In [11], the error probability of multiple-antenna noncoherent com-

munication channels was investigated. It was shown there (and in [26])
that if the channel is not known to the receiver, the coding problem
is equivalent to one of packing subspaces (which represent codewords)
according to a certain notion of distance. If an orthonormal basis for the
subspaces were used, the diversity order [the slope of the error proba-
bility with respect to signal-to-noise ratio was shown to depend on the
dimension of the intersection of the subspaces.
In particular, to obtain maximal diversity, one wishes to construct a

family of subspaces which intersect only at the origin. By a slight abuse
of notation we will say that two vector spaces are “nonintersecting” if
their only common point is the zero vector. An extensive character-
ization and classification of such group differential space-time code
constructions was given in [19]. The focus of much of this work is on
constructing codes which have the nonintersecting subspace property
without imposing any constraints on the number of different symbols
used to define the codewords—that is, the codewords are allowed to
use a signal constellation that is larger than the minimum possible.
Motivated by these observations, the main question addressed in

the present correspondence is the construction of nonintersecting sub-
spaces, subject to the constraint that the codewords are defined using
symbols from a fixed, small constellation. We focus on two cases: one
in which the symbols are taken from a finite field and the other where
they are taken from a phase-shift keying (PSK) arrangement, i.e., are
complex roots of unity. Our aim is to find constructions that give the
largest number of nonintersecting subspaces (i.e., have the highest rate)
subject to these constraints. Note that the constructions given in this
correspondence could result in nonunitary space-time codes.
It is worth remarking that a recent paper by Lusina et al. [16] dis-

cusses an analogous problem for the case of coherent decoders. An-
other related paper by Lu and Kumar [15] explores code constructions
with fixed alphabet constraints for achieving different points on the
rate-diversity tradeoff. Again, only coherent decoders are considered.
A very recent paper by Kammoun and Belfiore [13] directly addresses
the problem of constructing codes for noncoherent systems with a large
value of �(XXX;XXX 0) [see (7)] between subspaces. However, their ap-
proach is quite different from ours.
The present correspondence is organized as follows. In Section II,

we establish notation and formalize the question being studied. In Sec-
tion III, we study the case when the symbols are taken from a finite
field, and in Section IV when they are complex roots of unity (i.e.,
PSK constellations). Section V compares the different constructions
and mentions some directions for further research.

II. PRELIMINARIES

In order to motivate the question studied in this correspondence and
establish notation, consider a multiple antenna channel. Let the number
of transmitting antennas beMt and the number of receiving antennas
beMr . If yyy(k) 2 CM is the received (column) vector at time k, we
can write

yyy(k) =
p
EsHHH(k)xxx(k) + zzz(k) (1)

where thematrixHHH(k) 2 CM �M represents the channel, the column
vector xxx(k) 2 CM is the channel input, Es is the signal power per
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transmitting antenna, and zzz(k) 2 CM is zero mean i.i.d. Gaussian
noise with [zzz(k)zzz(k)H ] = N0III . We assume a Rayleigh flat fading
model, i.e., that the elements ofHHH(k) are i.i.d. with a zero mean com-
plex Gaussian distribution of unit variance. The channel is assumed to
be block time-invariant, that is,HHH(k) is independent of k over a trans-
mission block ofm symbols, sayHHH(k) = HHH (althoughHHH(k)may vary
from block to block). Looking at a single block of length m, during
which the channel is assumed to be time-invariant, we can write

YYY = [yyy(1); . . . ; yyy(m)]

=
p
EsHHH[xxx(1); . . . ; xxx(m)] + [zzz(1); . . . ; zzz(m)]

=
p
EsHHHXXX +ZZZ: (2)

The focus of this correspondence is on constructing the space-time
codewordsXXX , subject to the constraint that the elements ofXXX are se-
lected from a particular alphabet A.

A. Criteria for Code Design

In this correspondence, we assume that the receiver will not attempt
to estimate the channel matrixHHH , i.e., that we have a noncoherent re-
ceiver. Therefore, themaximum likelihood detection rule without using
the channel state information [11] is that we should decode YYY as that
codeword X̂XX which maximizes

exp(�Trace[YYY	�1YYY H ])

j�	jM (3)

where 	 = III + EsXXX
HXXX; H denotes the transposed complex conju-

gate or adjoint matrix, and j � j denotes a determinant. Using the ma-
trix inversion lemma ([12,, p. 19]) and the property that jIII + AAABBBj =
jIII +BBBAAAj, the detection criterion can be rewritten as

X̂XX = argmax
XXX
fEsTrace[YYYXXXH(III +EsXXXXXX

H)�1XXXYYY H ]

� log jIII +EsXXXXXX
H jg: (4)

In the absence of channel state information at the receiver, Hochwald
and Marzetta [11] argue that, at high signal-to-noise ratio, one should
use unitary codewords XXX , satisfying XXXXXXH = mIII . Using this in (4),
it follows that X̂XX should be chosen to maximize

Trace[YYYXXXHXXXYYY H ]: (5)

This implies that, for unitary codewords, the decoder should project
the received signal onto the subspace defined by each of the codewords
and declare the codeword with the maximal projection to be the winner.
In [11] it is shown that, for unitary codewords, the probability that a
transmitted codeword XXX is decoded as the codeword X̂XX is bounded
above by

1

IIIM + � m

4(1+�m)
IIIM � 1

m
X̂XXXXXHXXXX̂XX

H M
(6)

where � = E

N
is the signal-to-noise ratio. If the signal-to-noise ratio

is large, this pairwise error probability behaves like (��
4
)�M � , where

� is the rank of [IIIM � 1
m

X̂XXXXXHXXXX̂XX]

� = �(XXX; X̂XX)

= mIIIM � 1

m
X̂XXXXXHXXXX̂XX

H

+

and j � j+ denotes the product of the nonzero eigenvalues. Note that

XXX

X̂XX
[XXXH X̂XX

H
] = m2IIIM � X̂XXXXXHXXXX̂XX

H

which shows that � = Mt is equivalent to the condition that the rows
ofXXX; X̂XX are linearly independent [11]. For this to happen wemust have
m � 2Mt.
Another interpretation can be given in terms of the principal

angles between subspaces corresponding to pairs of codewords.
The principal angles between subspaces XXX and XXX 0 are given by
cos �i =

1
m
�i(XXX

0XXXH) where �i( � ) is the i-th singular value of the
matrix ([4], [7]). Using this we obtain

�(XXX;XXX 0) = m

�

i=1

[1 � cos2 �i] = m

�

i=1

sin2 �i: (7)

This provides a better measure of how good a code is: not only should
the subspaces be nonintersecting, the value of �(XXX;XXX 0) should be
large for every pairXXX;XXX 0 of distinct subspaces. The error probability
will be dominated by the pair of codewords with the least rank � and
the least “distance” �(XXX;XXX 0). For well separated subspaces this “dis-
tance” can also be approximated by

�

i=1

sin2 �i (8)

which is the the notion of distance between subspaces used in [4]
and [2].
Another way to compare these codes is by using the notion of diver-

sity order (cf. [21]).
Definition II.1: If the average error probability �Pe(�) as a function

of the signal-to-noise ratio � satisfies

lim
�!1

log( �Pe(�))

log(�)
= �d (9)

the coding scheme is said to have diversity order d.
It follows from (6) that the diversity order of the unitary space-time

coding scheme is equal toMr�. The maximal diversity order that can
be achieved is, therefore,MrMt. We call codes that achieve this bound
fully diverse codes.
In brief, to get a diversity order ofMrMt, we need to construct non-

intersecting subspaces which are far apart in the metric defined by (7).
Though this property of nonintersecting subspaces yielding fully di-
verse codes was demonstrated for unitary codewords [11], nonunitary
constructions with this property also yield fully diverse codes using
the appropriate detection rule given in (4). This can be seen from the
following argument. Consider a single receive antenna (Mr = 1). In
the absence of noise, the received signal YYY =

p
EsHHHXXX , and since

HHH 2 C1�M the received vector YYY 2 rowspan(XXX). Therefore, un-
less HHH is zero, we can distinguish the different codewords as long as
the subspaces are nonintersecting. In applying this argument to the high
signal-to-noise ratio regime, we just need kHHHk2 � 1=SNR for us to be
able to distinguish nonintersecting subspaces in the presence of noise.
Since forHHH � CN (0; IIIM ) and high signal-to-noise ratio, we have

[kHHHk2 < 1=SNR] � 1=SNRM

[23], we see that nonintersecting subspaces would yield fully diverse
codes. This argument can be made precise, but that is beyond the scope
of this correspondence since we only use noncoherent multiple antenna
systems to motivate the problem of nonintersecting subspaces with a
finite alphabet.
Given this motivation, we will focus on obtaining maximal diversity

order by constructing families of subspaces which are nonintersecting.
Note that some of the constructions could yield nonunitary space-time
codes. In order to further improve performance we need to maximize
�(XXX;XXX 0) over all pairsXXX;XXX 0 of distinct subspaces. The rate of a code
C is R = 1

m
log(jCj). In trying to construct the maximal number of
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nonintersecting subspaces, we attempt to get the highest rate codes that
achieve maximal diversity order.

B. Statement of the Problem

Definition II.2: Let be a field. A codeword or subspacewill mean
an Mt-dimensional subspace of m. Two subspaces �1 and �2 are
said to be nonintersecting over if their intersection is trivial, i.e., if
�1 \ �2 = f0g.

Suppose �1 is generated by (row) vectors u1; . . . ; uM 2 m, and

�2 is generated by vectors v1; . . . ; vM 2 m. Let P := [
�1

�2

] denote

the 2Mt � m matrix with rows u1; . . . ; uM ; v1; . . . ; vM . Then the
following lemma is readily established.

Lemma II.1: The following properties are equivalent: i) �1 and �2

are nonintersecting; ii) P has rank 2Mt over ; and iii) if m = 2Mt

the determinant of P is nonzero.

Suppose now that instead of allowing the entries in the matrices �1

and �2 to be arbitrary elements of , we restrict them to belong to a
finite subset A � , called the alphabet. In other words, the vectors
u1; . . . ; uM ; v1; . . . ; vM must belong to Am. The question that we
address is the following: given Mt; m and a finite alphabet A � ,
how many subspaces can we find which are generated by vectors from
Am and which are pairwise nonintersecting over ? Furthermore, if
the size of A is specified in advance, which choice of A permits the
biggest codes?

We first dispose of the trivial case when Mt = 1. Two nonzero
vectors u; v are said to be projectively distinct over a field if there
is no a 2 F such that u = av. Then if Mt = 1, the maximum
number of nonintersecting subspaces is simply the maximum number
of projectively distinct vectors in Am.

In the following sections we will investigate the first question for two
kinds of alphabets: a)A is a finite field (Section III), and b)Mt = 2
and A � CCCm is a set of complex roots of unity (Section IV).

Of course, for the application to multiple-antenna code design, the
subspaces need to be disjoint over C. In Section III, Theorem III.4,
we translate the results obtained over to this case by “lifting” the
subspaces to the complex field. Furthermore, for this application, the
case m = 2Mt is the most important.

III. FINITE FIELDS

In this section we assume that the alphabetA and the field are both
equal to the finite field GF(q), where q is a power of a prime p. At the
end of the section we show how to “lift” these planes to the complex
field (see Theorem III.4). In this case, there is an obvious upper bound
which can be achieved in infinitely many cases. Let V denote the vector
space GF(q)m.

Theorem III.1: The number of pairwise nonintersectingMt-dimen-
sional subspaces of V is at most

qm � 1

qM � 1
: (10)

Proof: There are qm�1 nonzero vectors in V and each subspace
contains qM � 1 of them. No nonzero vector can appear in more than
one subspace.

It is convenient here to use the language of projective geometry, cf.
[17, Appendix B]. Recall that the points of the projective space P (s; q)
are equivalence classes of nonzero vectors from GF(q)s+1, where two
vectors are regarded as equivalent if one is a nonzero scalar multiple of
the other.

A spread [9] in PG(s; q) is a partition of the points into copies of
PG(r; q).

Theorem III.2: Such a spread exists if and only if r+1 divides s+1.
Proof: This is a classical result, due to André ([1]; [9, The-

orem 4.1.1]).

Corollary III.3: The bound (10) can be attained whenever Mt di-
vides m, and only in those cases.

Proof: This is immediate from the theorem, since a set of points
in a projective space represents a set of projectively distinct lines in the
corresponding vector space.

Note that the condition is independent of q. If a set of nonintersecting
subspaces meeting (10) exists over one finite field then it exists over
every finite field.
Furthermore, it is straightforward to construct the nonintersecting

subspaces meeting the bound in (10), as we now show. The nonzero
elements of a finite field form a multiplicative group which will be
denoted by �. This is a cyclic group [14, Ch. 2].
SupposeMt dividesm, and consider the fields F0 = GF(q); F1 =

GF(qM ); F2 = GF(qm). ThenF0 � F1 � F2. By regarding GF(qm)
as a vector space of dimensionm over GF(q) we can identify F2 with
V . Similarlywe can regardF1 as aMt-dimensional subspace ofV . The
desired spread is now obtained by partitioning F �

2 into (multiplicative)
cosets of F �

1 .

Example III.1: We consider the case Mt = 2;m = 4, and A =
GF(2) = f0; 1g. Then F0 = GF(2); F1 = GF(4); F2 = GF(16).
Each plane in GF(2)4 contains three nonzero vectors, and GF(2)4 it-
self contains 15 nonzero vectors.Wewish to find a spread ofPG(1; 2)s
inside PG(3; 2), that is, a partitioning of the 15 vectors into five dis-
joint sets of three, where each set of three adds to the zero vector.
Let GF(16) = GF(2)[�], where �4 + � + 1 = 0. A table of the

elements of this field and their binary representations can be found for
example in [17, Fig. 3.3]. Then GF(4) is the subfield f1; �5; �10g, so
F �

1 = f�5; �10g, and we obtain the desired partition

F �

2 =

4

j=0

�jF �

1 :

Only two of the three vectors are needed to define each plane, so we
have the following generators for the five planes

(1; �); (�; �6); (�2; �7); (�3; �8); (�4; �9):

Using the table in [17], we convert these to explicit generator matrices
for the five nonintersecting planes

1000

0110
;

0100

0011
;

0010

1101
;

0001

1010
;

1100

0101
:

The problem is therefore essentially solved as long asMt dividesm.
If not, we can use partial spreads—see the surveys in [5] and [20].
We end this section by observing that a set of nonintersecting sub-

spaces over a finite field A = GF(q); q = pk; p prime, can always be
“lifted” to a set of nonintersecting subspaces over a complex alphabet
�A of the same size.
This can be done as follows. Suppose GF(q) = GF(p)[�], where

� is a root of a primitive irreducible polynomial f(X) 2 GF(p)[X].
Let n = pk � 1 and let �n = e2�i=n. Adjoining �n to the rational
numbers , we obtain the cyclotomic field (�n), with ring of inte-
gers [�n]. It is a classical result from number theory that the ideal
(p) in [�n] factors into g = '(n)=k distinct maximal prime ideals
; ; . . . ; , where '( � ) is the Euler totient function. Furthermore,

for each , the residue class ring [�n]= �= GF( ) (see, for ex-
ample, [3, Theorem 10.45], [18, Ch. 10, Sec. 3B], [24, Theorem 2.13],
[25, Theorem 7-2-4]). If we choose to be the ideal generated by p and
f(�n), then [�n]= is exactly the version of GF(q) that we started
with. Note that since contains (p), it acts as reduction mod p on .



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER 2005 4323

We therefore have a ring homomorphism from [�n] to GF(q) given
by

� : [�n]
modp! ! [�n]=

�=! ( ): (11)

In this way, we can lift vectors over GF(q) to vectors over the alphabet
�A consisting of 0 and the q � 1 powers of �n.

Example: Let GF(8) = GF(2)[�] where � is a root ofX3+X+1.
Then q = 8; n = 7; �7 = e2�i=7. To lift GF(8) to Cwewrite GF(8) =
f0; 1; �; �2; . . . ; �6g, and lift 0 to 0 and �j to �j7 for j = 0; . . . ; 6.

Let � be an Mt-dimensional subspace of GF(q)m. By lifting each
element of a generator matrix we obtain anMt-dimensional subspace
�� � Cm, defined over an alphabet �A of size q.

Theorem III.4: If two subspaces �1;�2 of GF(q)m are noninter-
secting, so are their lifts ��1; ��2.

Proof: LetP :=
�1

�2
and �P :=

��1

��2
. By Lemma II.1,P has

a 2Mt � 2Mt invertible submatrix. Since � is a ring homomorphism,
the lift of this submatrix is also invertible.

It follows that the subspaces constructed in Corollary III.3 are also
nonintersecting when lifted to the complex field.

This construction gives full diversity order noncoherent space-time
codes when the elements of the codewords are restricted to belong to a
finite field. Their rate is

R =
1

m
log(qm � 1)� 1

m
log(qM � 1) < log(q)

which, according to Theorem III.1, is the maximal achievable rate for
diversity orderMtMr . Moreover, this relationship implies that for fully
diverse codes constructed from a finite field, we cannot achieve a rate
higher than log(jAj).

IV. PSK CONSTELLATIONS

Throughout this section, we assume that the alphabet A consists of
the set of complex 2rth roots of unity, that is, A = fe2�ij=2 ; 0 �
j < 2rg, for some r � 1. Let � = e2�i=2 be a primitive 2rth root
of unity;A is a cyclic multiplicative group with generator �. Here, we
assume that Mt = 2, that is, the code consists of a set of pairwise
nonintersecting planes.

Example IV.1: Some examples of roots of unity are as follows:

1. If r = 1; � = �1 and the alphabet is A = f1;�1g.
2. If r = 2; � = i and the alphabet is A = f1; i;�1;�ig.
3. If r = 3; � = (1+i)=

p
2 and the alphabet isA = fe�ij=4; 0 �

j � 7g. This is the 8-PSK constellation.

There is a trivial upper bound.

Theorem IV.1: Let A be the set of 2r roots of unity, r � 1. Then
the number of pairwise nonintersecting planes is at most 1

2
jAjm�1 =

2(m�1)r�1.
Proof: If v1; v2 2 Am are the generators for a plane, that plane

also contains all multiples �jv1 and �jv2, a total of 2jAj vectors. Since
these sets of vectors must all be disjoint, the number of planes is at most
jAjm=(2jAj).

The same argument shows that there are at most 1
M
jAjm�1 non-

intersecting Mt-dimensional subspaces of complex m-dimensional
space for any finite alphabet A. The implication of this in terms of rate
is that

R � m� 1

m
log(jAj)� 1

m
log(Mt) < log(jAj):

Hence, for fully diverse codes constructed from PSK constellations, we
cannot achieve a rate exceeding log(jAj).
Example IV.2: LetA be the set f1; i;�1;�ig and takem = 4. The

total number of vectors inA4 is 44. Each vector has four multiples, so
each plane accounts for at least eight vectors. Therefore, there are at
most 4

8
= 32 planes.

In the other direction we will prove the following.

Theorem IV.2: Assume r � 1 and thatm � 2 is even. There exist
N = jAjm�2 = 2(m�2)r pairwise nonintersecting planes in Cm de-
fined using the complex 2rth roots of unity.

Note that the upper and lower bounds coincide in the case r = 1,
that is, when A = f1;�1g.
The proof is simplified by the use of valuations (cf. [8]). If x 2
; x = 2a b

c
with a; b; c 2 ; c 6= 0; b, and c odd, then the 2-adic

valuation of x is �2(x) = a. Similarly, suppose x belongs to the cy-
clotomic field (�). Since 1 � � is a prime in [�], we can write x
uniquely as (1��)a b

c
with a 2 ; b; c 2 [�]; c 6= 0; b and c relatively

prime to 1� �. The (1� �)-adic valuation of x is then �1��(x) = a.
It is easy to check that for k 2 ; k 6= 0; �1��(1� �k) = 2� (k). In
particular, if k 2 is odd, �1��(1� �k) = 1.
We will also need a lemma.

Lemma IV.3: Let � be a plane in Cm generated by vectors v1; v2,
and denote by

~�1 =
v1 x11 x12
v2 x21 x22

and

~�2 =
v1 y11 y12
v2 y21 y22

two different embeddings of � into Cm+2. Then ~�1 \ ~�2 = f0g if
and only if

y11 � x11 y12 � x12
y21 � x21 y22 � x22

6= 0:

Proof: By Lemma II.1, it is necessary and sufficient that the ma-

trix P := [
~�1

~�2
] have rank 4. Subtracting the first and second rows of

P from the third and fourth rows, we get the matrix

v1 x11 x12
v2 x21 x22
0 y11 � x11 y12 � x12
0 y21 � x21 y22 � x22

:

and the result follows.

We now give the proof of the theorem, for which we use induction
on even values ofm. Form = 2 we take the single plane

1 1

1 �1 :

Suppose the result is true form. For each of the jAjm�2 pairwise non-
intersecting planes in Cm wewill construct jAj2 planes in Cm+2, such
that full set of planes so obtained is pairwise nonintersecting; this will
establish the desired result.
If two planes are nonintersecting in Cm then they are certainly

nonintersecting when embedded in any way in Cm+2. So we need
only show that the jAj2 embeddings of any single plane are pairwise
nonintersecting.
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Let � be a plane in Cm generated by vectors v1; v2, and denote by
~�(a; b) the plane in Cm+2 with generator matrix

v1 �a �b

v2 �a+b �a+2b+1

for a; b = 0; 1; . . . ; 2r � 1.
We will use Lemma IV.3 to show that all the planes f~�(a; b) j a 2

A; b 2 Ag are pairwise nonintersecting. For this we must show that

�c � �a �d � �b

�c+d � �a+b �c+2d+1 � �a+2b+1
= 0

if and only if a = c and b = d.
The above determinant is equal to

�2c+2d+1(1 � �a�c)(1� �(a�c)+2(b�d))

��c+2d(1� �b�d)(1� �(a�c)+(b�d)): (12)

If the determinant is zero, the (1��)-adic valuations of the two terms
on the right must be equal, that is

2� (a�c) + 2� (a�c+2(b�d)) = 2� (b�d) + 2� (a�c+b�d): (13)

We must show that this is true if and only if a = c and b = d. We
consider four cases, depending on the parity of a�c and b�d. If a�c �
1; b� d � 1(mod2) then (12) reads 1 + 1 = 1 + 2� (a�c+b�d) � 3
(since a� c+ b� d is even), a contradiction. Similarly, if a� c � 1;
b � d � 0(mod2) we get 1 + 1 = 2� (b�d) + 1, and if a � c �
0; b � d � 1(mod2) we get 2� (a�c) + 2� (a�c+2(b�d)) = 1 + 1,
which are also contradictions. The fourth possibility is a�c � b�d �
0(mod2). Let a� c = 2sx and b� d = 2ty, where x and y are odd,
s; t � 1. We have

�2(a� c+ 2(b� d)) =

s if s < t

s if s = t

� t if s > t
and

�2(a� c+ 2(b� d)) =

s if s < t

� s if s = t

t if s > t:

Substituting these valuations in (13) again gives a contradiction. This
concludes the proof of Theorem IV.2.

V. DISCUSSION

Table I compares the codes constructed in Sections III and IV in
the case Mt = 2, i.e., codes which are pairwise nonintersecting
2-D subspaces of Cm, for m = 4; 6 and 8, and alphabets A of
sizes 2; 4; and 8. The top entry in each cell gives the number of
planes obtained from the finite field construction (Corollary III.3).
The bottom entry gives the lower and upper bounds obtained using
complex jAjth roots of unity, from Theorem IV.2 and Theorem IV.1.
Asymptotically, the rates of the two constructions are very similar.
Both satisfy log(number of codewords)=m � log(jAj), for m large,
and so both asymptotically achieve the maximal rate possible for fully
diverse codes.

Note that the construction via finite fields results in codes for which
alphabet consists of 0 and the complex (jAj � 1)st roots of unity,
whereas the construction via PSK constellations produces codes in
which the symbols are the complex jAjth roots of unity (and 0 is not
used).

We end by mentioning some topics for further research.

• We also used clique-finding algorithms to search for larger sets
of planes than those given in Theorem IV.2, again taking A to

TABLE I
NUMBER OF PAIRWISE NONINTERSECTING PLANES IN C FOR VARIOUS SIZES

OF THE ALPHABET jAj (SEE TEXT FOR DETAILS)

be the set of 2rth complex roots of unity. These searches were
unsuccessful, and so we have not mentioned them elsewhere in
the correspondence. These negative results lead us to conjecture,
albeit weakly, that the lower bounds in Theorem IV.2 cannot be
improved. It would be nice to have a better upper bound than
that in Theorem IV.1 for the case r > 1. It would also be a
worthwhile project to do a more extensive computer search for
better codes, both for the above alphabet and for other alphabets.

It is straightforward to formulate the search as a clique-finding
problem. The first step is to prepare a list of candidate subspaces,
making sure that the generator matrices use only symbols from
A, and that the subspaces have the specified dimension and are
distinct (a subspacemay havemany different generatormatrices:
only one version is placed on the list of candidates). Then a graph
is constructed with the candidate subspaces as vertices, and with
an edge joining two vertices if and only if the subspaces are
nonintersecting. Then a good code is a maximal clique in this
graph.

• Can the construction in Theorem IV.2 be generalized to the case
when Mt is larger than 2? In particular, it would be interesting
to do a computer search in the caseMt = 3 andm = 6.

• This correspondence has focused only on the existence and con-
struction of finite alphabet codes which achieve maximal diver-
sity order, and we did not consider decoding complexity. The
decoding problem involves weighted projections of the received
matrix YYY onto the candidate subspaces [see (4)]. In general, this
may require a search over 2mR codewords, whereR is the rate of
the code. Since this number grows exponentially with the code
length, a natural question to ask is whether there are codes which
are optimally decodable in polynomial time, or have polynomial
time suboptimal decoders which perform satisfactorily.

• In [4] (see also [2]) a large number of optimal or putatively op-
timal packings of subspaces in Cm were constructed using (8) as
a measure of “distance” between subspaces. It would be worth-
while repeating these calculations using (7) instead.
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The Asymptotic Capacity of Multiple-Antenna
Rayleigh-Fading Channels

M. Ajith Kamath, Student Member, IEEE, and
Brian L. Hughes, Member, IEEE

Abstract—We consider the asymptotic behavior of the capacity of mul-
tiple-antenna Rayleigh-fading channels in the limit as the transmit and re-
ceive arrays become large. We show that the capacity converges in distri-
bution to a Gaussian random variable, and give closed-form formulas for
its mean and variance. These results enable us to derive the first asymptotic
formula for outage rates, as well as a sharper estimate of the error in pre-
viously reported asymptotic formulas for ergodic capacity. Although these
formulas are asymptotic, we show by simulation that they are often quite
accurate, even for relatively small arrays.

Index Terms—Capacity, fading channels, multiple-antenna communica-
tion, random matrix theory, space–time coding.

I. INTRODUCTION

The seminal work of Telatar [8] and Foschini and Gans [3] demon-
strated that using multiple antennas at the transmitter and receiver can
substantially increase the capacity of fading multipath channels. The
input distribution that maximizes the mutual information is known to
be independent and identically distributed (i.i.d.) Gaussian. For a par-
ticular channel realizationH , themutual information in nats per second
per Hertz (nps/Hz) is given by

C(t; r; �) = ln I +
�

t
HH

y (1)

that depends upon the channel fading path gainsH , the signal-to-noise
ratio (SNR) �, and the numbers of transmit and receive antennas t and r,
respectively.C(t; r; �)may be viewed as a random variable defined on
the ensemble of all possible channel matrices. However, the actual op-
erational limit on reliable communication depends on how H evolves
with time: If the path gains are ergodic,C(t; r; �) can be averaged over
many channel realizations, and the corresponding operational limit is
called the ergodic capacity

Ce(t; r; �) = E [C(t; r; �)] : (2)

If the path gains are static, however, we observe only one channel re-
alization and there is often an irreducible outage probability associ-
ated with every positive rate of transmission. For outage probability
0 < q < 1, reliable communication is limited by the outage rate

Cq(t; r; �) = sup fR � 0 : Pr [C(t; r; �) < R] � qg : (3)

Ergodic capacity and outage rates are usually estimated by Monte
Carlo methods, since closed-form formulas are not known, except for
a few special cases. Telatar [8] obtained a general formula for ergodic
capacity in terms of an integral of a series of Laguerre polynomials.
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