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Abstract. Canonical forms are given for {1) the weight enumerator of an {n, §m ~ 1] self-orthog-
onal code, and (i) the split weight enumerator {which classifies the codewords according to the
weipht of the left- and nght-half wotds) of an |, }n} seif-dual code.

1. Eesults

All codes in this pacer are binary. An [#, k] code € is self-orthogonal
if @ ¢ @+ =dual code, self~dual if @ = €*. The weigh' enumerator of €
is the homogeneous polynomial of degree n:

[151% !

n
W (x, v} = E M wHEl W) o E FLEY
T i=0

where A, is the number of codewords of weight i. Sce {2, 19, 30] for
definitions of coding theory terms, and [ 1, 3,6 -8, 1013, 16. 19, 20 -
22, 26 28] for propearties and applications of sclf-dual codes.

C ienotes the complex numbers, and Cla. 8, ...] the ring of polynor:i-
ials in o, 4, ... with complex coefficients.

Theorem 1. (A) For nodd, let @ be an [n 3 (n- 1)) sclf-orthogonal code.
ThusC* = Cu (1 +C). Then

(i) W.(x,y)is an element of the direct sum x Clf,, 8g1 ®p,Clf,. 841,
where o, = x4 T3y, I =x? +;"".g3 =x8 + 14x* ¥ 438 In words:
W.(x, y) can be written tn a unique way as x tiraes a polynominal in 1,
and gg. plus pq times another such polynomial.

(B) Suppose in addition that all weights in C are multiples of 4. Then

* Onginal version received 14 May 1973,
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-«

(i) n must be of the form 8mt 1.

(i) If n = 8m-1. then W,(x, y) is an element of p3 Clgg. h54)
® v, Clgg, f1ag 1. where 733 = x233 + 506x15 38 + 1 288x 11 12 +
53v7 },16' h“ = x4 },4 ‘x# __yd )4 .

(ivY Ifn=8m+ 1, then Wo(x, ¥) is an clement of x Clgg, by
@ U 7 Clgg. hag 1, where g =x17 + 17x13 p4 + 187x9 p8 + 5105 312,

The left and right weight of a vectur v =(0y, ... Upy . Uppaye oo V3 )
are respectively

wy = wiuy, ..., Uy ), Wi = WU 4y 0 Uap )

The sp:it weight emum'rator ofal.m k] code C is

”i’(\’ vX. )= 2y (TNEWL WL m- wRv)y wRE)

v

Theorem 2. éct @ be a | 2m. in] self-dval code satisfving:

(B1) @ cortains the vectors 01 =0..01 ...V and 1;

(B2) the nigmber of codewords with: {w, . wg ) = (j. k) is equal to the
number with{w, . wg) = (k, j). Then

(1) W (x. . X, Y)isan element of Clpg. ng. Bw}, where

py =(x2+yH)y X2 +YY,
ng =xt X0+ Y4 Xyt Y1y x2 52
816 = (x2 X2~y2 y2)2 (x.‘! Y2 0_},2 X2,

(ii) Furthermore, if all weights in @ are multiples of 4, then W, (x,
v. X, Yyis an element of Cing, 04, Y24, where
1'24;{ =X

IEP L CICaBRUS NP ol b ol

A code satisfying (B1), (B2) is “balanced” about its midpoint, and
the division into two halves is & natural one,

In vrinciple, Theorem 2 could be generalized to consider codewords
divided into any number of parts. We shall give one example, applicable
to vodes which, like the Golay code, can be divided into three parts with
complet2 symmetry between the parts.

Foravectorv=(yy,....v3, ), let w, = WH(Uy. ..., Uy, ), Wy =

T_ .2
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WHUpg g s oo Uapg lo W3 S WEHE g s -on Uy ). The 3-split weight enumera-
torofal3m. k) code Cis

w hf walv) wylv)
2 ' "}’z ? -"33( . '

wiz

Theorem 3. For m divisible by 8. let @ be a [3m, Im) self-dual code in
which all weights are divisible by 4. which contains 1™ Q2™ Q™M |mQm,
and O*™ 1™ and in which the number of codewords with (wy, w,, wy)
= (], &k, D is equal to the number with (w . wg, w3) =any permutaticn
of j. k.l Then the 3-split enumerator of @ is an element of

3
7;) v, Clp*. g rs. r® +5%) |
i=

where )

=01+ Dot+ ot

dMod+hoed+ Dot Dot Deriot s hode b,
=i y-é(ej“g sh+riviod+n+riviot+n.

D =yiyivi,

p =B-12D.q=A4-12C

rs=(B+36D) /3i(4 +40),

Yo = Loy =P34y, =iged -3y = 7s.

A
B
¢

Corollary. The 3-split weight enumerator is a polynomial in p. . r, s
{(but not necessarily in a unique way).

Remark. Gleason {10} has characterized the weight enumerators of

[n. n] self-dual codes -~ see [3. 19] for proofs and generalizations. The-
orems |- 3 are of a similar type. However, the proofs differ in several
interesting ways from those given in [ 19], namely in the use of a group
whose order becomes arbitrarily large, and (in Theorem 1) in the intro-
duction of new indeterminates and the use of relative rather than ab-
solute invanants.

2. Examples

Examples of Theorem 1. The code 0: W = x. The [ 7. 3,4] Hamming code:
I = ;. (Aside: the [15, 7, 6] Nordstrom- Robinson nonlinear code
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[25]. to which Theorem T does not apply, nevertheless has W =

Vi fige) v (I 3g) i) The [17.8.4] code I\ of [26]:
W=y,.. The [23, i1, 8] Golay code: W=1,3. The [31,15,8] qua-.
dratic residue or QR code: W = —idgq By + 7338 The [47.23,12] QR
code: W =4 {2530, 2 iy + . 4788 41h,4) ). See [26] for other
examples.

It is net presently known if a projective plane of order 10 exists. If

it dows exist. then from [} the rows of its incidence matrix generate
a[l11.55,12] code with

W e kI (25350 iy + 2412 ?gm 13y ~430551gd hd e g i)
+723(7g8 - ;,./ ’8112" T s ’\?72:5 ]174 +‘1£ "24);;

where ¢, €4 are constants, at present unknown.

Examples of Theorem 2. ifu = (uy, ...y, dand v = (v). ., v, ) letu v =
W, vy ) Foryj=1,2 kt e, be a code of length n with
we.ght enumerator W, (x, v) and split weight enumerator Wix.y. X, Y).
Thzcode €1 @, = {ujv: u€ €,,v: €.} ha ordinary and split
weight enumerators W (x, y) Wy(x, v r ond W (x, ») Wy (X, ). The
equivalent code @ 12, = W'V T u=u'ju" € @, v=v1V" € @,].
where 1 and v are broken in half, has ordinary and split weight enumer-
atars W (x, v) Wolx, v)and W (x, 3 X, Y) Wy(x. v. X, Y). Alcolet
2,20, = w;(u+v) ue Gy, ve €,} (cf [29)).

The Mac Williams identity for split weight enumerators is (¢.f. {17,18])

1) WAx.v. X, Y)=—- "}d(wv x—-y, X+Y. X-Y)

(i

We use a detached-coefficient notation for ¢, and instead of the
terms

al P X YT+ x b XA ye 4 xbye e yd 4 xbyo xd ye)
we writi: a row of i table:
ey ¢« y X Y #
« a b ¢ d 4

giving respectively the coefficient. the exponents, and the number of
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Table § .
Split weight enumerators
Code W cf0 x ¥ X . Y #
Hy ns 1 4 0 3 0 P
12 2 2 2 2 1
016 1 8 0 4 4 4
2 6 2 I3 2 4
4 4 4 4 4 !
Y24 | 10 2 10 2 4
-2 10 2 6 6 4
4 6 [} 6 6 |
‘ | 12 0 12 0 4
Gz 132 i 2 6 6 3
495 4 8 4 4
1584 6 6 6 6 i
Qus 1 M 0 24 0 4
276 L 2 14 10 8
864 20 4 te 8 8
i3524 pAY. 3 2 12 4
8316 I8 [ i3 6 4
125580 i8 ¢ i4 10 5
2361338 16 8 11,3 8 4
930544 16 & 12 12 4
o 1815400 14 10 14 10 4
3480176 12 12 12 12 i

terms of this type. The sum of the products of the first and last columns
is the total number of codewords.

A QR of length 8! = g + 1, where ¢ is a prime, with generator matrix in
the canonical form of [15, Figs. 1, 7], satisfies the hypotheses of Theo-
rem 2ii). Table 1 gives 3 such examples. the [ 8,4, 4] Hamming code
W, the {24, 12, 8] Golay code @4 for whichW =n3 30506 -427,4.
and the [48,24,12) code Q4. Alsoif d; = {00,11}. d,1d;, has
W =p,. Hgi| Hg has W = 0§ +120,¢. Let R(r, m) denote an rth
order Reed--Muller (RM) code of length 2™ . Then RM codes can be
constructed recursively fromR (r+ 1, m)=R . m)=Rr+1.m+1)
(see [29]). The first order RM code of length n obtained in this way
has

W= (W + M2y (XM + Y2y (2n-4) (xy XYYVA

We have also found W for R (2, m).
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Examples of Theorem 3. The 3-split enumerator of 9| Hgl 91;; is
120 +¢2 of (' 1 10" W' (0" |w”; whereu =t' 1u" . v=v' V" w=
wonw' & §Uy, s isirs-1p? - §q?; of the | 24, 12, 8] Golay code in a
form satisfying Theorem 3 is er:—- 2p2+iq? = (1+yHa - yHwd)
+ 2800 w4+ 22a v v ) H 123200, vy st )

3. The proofs

Proof of Theorem 1. Foran # X n matrix A = (ay;) and a2 polynomial
Sy =1(xy. ... x,). the result ~f tran:¥ rming the variables of f by A4 is
denoted A © f(x)=f(Za; x,. ... 04, 5 Note that Be (4 ° f(x)) =
AR e fix).

Let @ ke 1 code of length 4m -V wistying the hypotheses (A) and
(B of Thecrem 1. with weight cnumerator W(x) = W(x, v). Let

o 10 0 I
""" '& & ) = ):: 2
=) re(] Jemem

By the MacWillisuns identity [ 18, 30. p. 120},

Mo ey =2"Vh(x)+ 5> Wixn

Al:oJ e Wix)= #ix). Let W be the set of all polynomials satisfying
theie two equations. It is casily verified that W contains A =

w7 Clgg. hagl © 973 Clgg. hyy]. To show M =N , let ay(by) be the
number of lincarly independent polynomials of degree dinM(N).
Cieatly

'.%3 b8 = AT+ A3 )1 A8 )1 A2,

b

Ve show M = A by showingay = b, forall d.

Let O be a group of n X n complex matrices and let x:6~Cbea
I-dirmensional representation of 8. Then f(x) is called a relative invariant
or ¢4 with zespect to X if 4 © fix) = x{A1f(x) for all 4 € ®. If x is iden-
tically 1. f(x) is calied an (adsolute) invariant of . The number ny of
lincarly independent relative invariants of degree d is given by the Molien
series [24; S p. 301 23, p. 259: 19, Theorem 427} '
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2) i : ;\d:J,_ E X(A)
(2) d AN T T M

The key device is to consider not W(x, y) but f(u,v,x,p) = ulW(x,y)
+uW(y, x). Then f(u, v, x,y) is invariant under

(u
v (M 0O J 0 . | }
M -(0 M) andj*=(0 ,]) actmgongzl.

¥

ietwhbea primitive complex pth root of unity. where p is a prime
greater than deg ¥ = lengtn of €. Then f(u, v, x, ¥) is a relative invari-
ant under P = diag (¢.. w, 1, 1) with respect to x(P) = w

Now M, J geneiate a group 4, of order 192, consisting of the
inatrices

1O (0 1) eyl 8 )
t3) 'v(O a)’ r(a 0)’ e a —af)

whuer" 2N+, 0<p < T fe {10, 1. -i}(see [19]). So M*,
P generate a group O of order 19.p Lonmtmg of the matrices

Q{“m L0<vEp-1, A€ ¥y, Then the set M™ of relative invariants

of 19 wuh respect to x(M‘) x(JPy= ! x(tPy= wisin 1 | correspon-

dence with M up to degree p-- 1. Therefore from (2), forall p > d ay

is the coefficient of A9*1 in

I s xB) _ | 1Rl W

192 p By if [-\Bi 192 acty P ozh =M= wr A)
,L 1 1 2 e“'“’d&

) ac®  U-Mi 2] {—Nel® A

asp->oo, Al < 1,

7 23
- R 2 trace (A4) _ A AT+ from (3).

192 4 U-NATI (1-A8)(1 -A24)

192
This proves (ii1) and ha]f of pari {(ii). The case n =4m + | is treated sim-
ilarty, taking M* = (0 Oy I = (J 0) For part (i) we take J = (¢ N
obtaining a group of mder 16p.

Proof of Theorem 2(ii). (Part (i) and Theorem 3 are similar.) Let €
satisfy the hypotheses of Theorem 2(ii) and have split weight enumet-
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ator W = G {x. v, X, Y). We use the same notation as in the proof of
Ticotem 1. From the hypotheses. ¢q. (1). and the fact that in cach term
XY™ of W j+k =1+m. it follows that O is invariant under M*,
J* . and

‘ p! ‘ 3
S A T DR
o1 D 3 ' w i
T, = i 7y=1y g ?'3,== w1 i
; . - % -1

M. J . T, generaty a group of ordes 1619 Lonsisting of the matrices
(! ya A€W, BED, where y = 8F )8, 1): 8

€ (b1, i ssanmrmal suhgrons; =i 8,9, and 8,9y = UJZ 4, Dy6.
where 4,.... Ay are

YO e (e O R i R

andAg,, =14, 1 <j< 6. ThenM* 7, I'\, T,. Ty generate a group
of order 6144p consisting of che malrices
w* A4 w'A
( w,ﬂ'BA)v (w,,pBA )v osvsp—lq

Now W is invariant under 4. Let ‘W be the set of all invarinats of (4.
Clearly W contains W = Clng, 044, Y241. To show M =A , we define
dg. by as before and will showay = by for all d. We have

Zﬂf@ by dd = 1;(1-A8)(1-A16) (1 -A24),

From (2), for ali p> d. a, is the coefficient of X in

T ’ e _.-\._' 4 - I ~-}=zl+2" say.

6144;; v..4 at,l AP Al - Aw-*BA]  -N2ABA]

nZ; we puz:A = AL B

-_L ‘.. A enmp
% 24pk§p Ay h?) Ay Aa™?)
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where

1
AN == = 5 -

TAcM =1, = 2 B 16 1I-NA, Bl

Infact. fy =(1-AN)"2, f=(1+ X)L, fy =f = (124 428) 1 1, =
fiy ~—(l+>\“+>\8)*‘ £;=(1-28)"1 forj=2,3,6,8,9,12.

i2 \
S =:;.l‘_‘ & {coefft. of w? in f(Ay; Aw) f(Ag; w1} | + O(NP)
“ =3
8 8
= L J2XAT) 6 40+ )}+0()\P)
24 [(1--A8)3  1-ate )24
Similarly.
;L2
In= g o feiad+000)
=1 | 8 4|, +O(\P)
24 xs)z l,,,;‘s.,.)‘mj ’
S+ Z= [ — + O(W),

(1- 7\3)(1 7\‘5)(!—7\’4)

hence ay = by. This completes the proof.
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