EXTREMAL SELF-DUAL LATTICES EXIST ONLY IN DIMENSIONS 1 TO 8, 12, 14, 15, 23, AND 24

J. H. CONWAY, A. M. ODLYZKO AND N. J. A. SLOANE

Abstract. It is known that if Λ is a self-dual lattice in \mathbb{R}^n , then

 $\min \{u \cdot u \mid u \in \Lambda, \quad u \neq 0\} \leq [n/8] + 1.$

If equality holds the lattice is called *extremal*. In this paper we find all the extremal lattices: there are unique lattices in dimensions 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 15, 23, 24 and no others.

§1. Introduction. A lattice Λ in \mathbb{R}^n has minimum squared length

 $d(\Lambda) = \min \{ u \cdot u \mid u \in \Lambda, \quad u \neq 0 \},\$

theta-function

$$\Theta_{\Lambda}(\tau) = \sum_{u \in \Lambda} q^{u \cdot u}, \qquad q = e^{\pi i \tau}, \qquad \text{Im}(\tau) > 0,$$

and dual lattice

$$\Lambda^{\#} = \{ v \in \mathbb{R}^n \mid u \cdot v \in \mathbb{Z} \quad \text{for all } u \in \Lambda \}.$$

Let

$$\theta_2(\tau) = \sum_{m=-\infty}^{\infty} q^{(m+\frac{1}{2})^2},$$

$$\theta_3(\tau) = \sum_{m=-\infty}^{\infty} q^{m^2} = \prod_{m=1}^{\infty} (1 - q^{2m})(1 + q^{2m-1})^2, \tag{1}$$

$$\theta_4(\tau) = \sum_{m=-\infty}^{\infty} (-q)^{m^2},$$

and

$$\Delta_8(\tau) = -\frac{1}{256} \theta_2 (\frac{1}{2}(\tau-1))^8 = q \prod_{m=1}^\infty \{(1-q^{2m-1})(1-q^{4m})\}^8.$$
(2)

If $\Lambda = \Lambda^{\#}$ then Λ is called self-dual. For a self-dual lattice in \mathbb{R}^{n} ,

$$\Theta_{\Lambda}(\tau) = \sum_{r=0}^{\mu} a_r \theta_3(\tau)^{n-8r} \Delta_8(\tau)^r, \qquad (3)$$

for uniquely determined integers $a_0, ..., a_{\mu}$, where $n = 8\mu + v$, $0 \le v \le 7$. For a proof of (3) and an explanation of any undefined terms see, for example, [14]. If $a_0, ..., a_{\mu}$ are chosen so as to make the right-hand side of (3) equal to

 $1 + A_{\mu+1}^{*} q^{\mu+1} + A_{\mu+2}^{*} q^{\mu+2} + \dots$ (4)

(containing no power of q between 0 and $\mu + 1$), the result is called an *extremal* theta-function, and a lattice having an extremal theta-function, if there is one, is called an *extremal* lattice. (This is not to be confused with an *extreme* form.) It can be shown (cf. [10], [13]) that

$$A_{\mu+1}^* > 0 \quad \text{for all } n,$$

which implies

$$d(\Lambda) \le \mu + 1 = [n/8] + 1.$$
(5)

A self-dual lattice is extremal, if, and only if, equality holds in (5), by definition. Furthermore ([10])

$$A_{u+2}^* < 0$$
 for all sufficiently large n,

implying that there is a bound n_0 such that extremal lattices exist only for $n \le n_0$. In this paper we determine all the extremal lattices, and prove the result stated in the Abstract. (This solves Open Problem 6 of [14].) A Type II lattice is a self-dual lattice Λ which is also even, *i.e.* satisfies $u \cdot u \in 2\mathbb{Z}$ for all $u \in \Lambda$. The analogous problem of finding all extremal Type II lattices, for which $d(\Lambda) = 2[n/24] + 2$, remains unsolved.

It should be possible to find all self-dual lattices in up to 23 dimensions from Niemeier's list [12] of Type II lattices in \mathbb{R}^{24} . Such a list would of course include our extremal lattices.

We will sometimes give a generator matrix for a lattice: this is an $n \times n$ matrix whose rows span the lattice.

§2. Dimensions 1-16. The following theorem is contained in Kneser [5].

THEOREM 1. The only extremal self-dual lattices in \mathbb{R}^n for $n \leq 16$ are \mathbb{Z}^n ($1 \leq n \leq 7$), $E_8 = D_8^+$, D_{12}^+ , $(E_7 + E_7)^+$, A_{15}^+ , in \mathbb{R}^n , \mathbb{R}^8 , \mathbb{R}^{12} , \mathbb{R}^{14} , \mathbb{R}^{15} respectively.

These lattices can all be constructed in a uniform way. We write

$$\Lambda = (\Lambda_1 + \Lambda_2 + \dots + \Lambda_k)^+$$

to indicate that the *n*-dimensional integral lattice Λ contains the direct sum

$$\Lambda_1 \oplus \Lambda_2 \oplus \ldots \oplus \Lambda_k$$

of lattices whose dimensions add to n. In this case Λ is generated by this direct sum together with certain glue vectors

$$y = y_1 + y_2 + \dots + y_k,$$

in which y_i belongs to the subspace Λ_i , and therefore to $\Lambda_i^{\#}$ (since y must have integral inner product with every vector in $0 + 0 + ... + \Lambda_i + 0 + ... + 0$). Since the same lattice will be generated if y_i is augmented by any vector of Λ_i , we may in fact regard y_i as a member of the *dual quotient* $\Lambda_i^{\#}/\Lambda_i$, a finite group.

The lattices

 \mathbb{Z} (one integer co-ordinate),

 A_n (n + 1 integer co-ordinates with zero sum; $n \ge 1$),

 D_n (*n* integer co-ordinates with even sum; $n \ge 4$),

 E_6, E_7, E_8 (defined below)

are the only indecomposable integral lattices generated by vectors of squared length 1 or 2, and so are often used for the Λ_i . E_8 has eight co-ordinates x_1, \ldots, x_8 all in \mathbb{Z} , or all in $\mathbb{Z} + \frac{1}{2}$, with even sum; E_7 is that part of E_8 with $x_1 + \ldots + x_8 = 0$; and E_6 is the part with $x_1 + \ldots + x_6 = x_7 + x_8 = 0$.

In this notation, due to Kneser [6] and Niemeier [12], the extremal lattices in dimensions ≤ 16 are:

$$\mathbb{Z}^{n} \quad (n = 1, ..., 7),$$

$$E_{8} = D_{8}^{+} = \langle D_{8}, (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle,$$

$$D_{12}^{+} = \langle D_{12}, (\frac{1}{2}, \frac{1}{2}, ..., \frac{1}{2}) \rangle,$$

$$(E_{7} + E_{7})^{+} = \langle E_{7} + E_{7}, ((\frac{1}{4})^{6}, (-\frac{3}{4})^{2}, (\frac{1}{4})^{6}, (-\frac{3}{4})^{2}) \rangle$$

$$A_{15}^{+} = \langle A_{15}, ((\frac{1}{4})^{12}, (-\frac{3}{4})^{4}) \rangle.$$

Kneser [5] has shown that these, together with the nonextremal lattice

$$D_{16}^+ = \langle D_{16}, (\frac{1}{2}, \frac{1}{2}, ..., \frac{1}{2}) \rangle,$$

are the only indecomposable self-dual lattices in dimensions ≤ 16 .

Generator matrices for these lattices are:

 \mathbb{Z}^n : an $n \times n$ identity matrix

The theta-functions of these lattices are:

$$\begin{split} \Theta_{\mathbb{Z}^{n}}(\tau) &= \theta_{3}(\tau)^{n}, \\ \Theta_{E_{8}}(\tau) &= \frac{1}{2} \{ \theta_{2}(\tau)^{8} + \theta_{3}(\tau)^{8} + \theta_{4}(\tau)^{8} \} \\ &= 1 + 240 \sum_{r=1}^{\infty} \sigma_{3}(r) q^{2r}, \end{split}$$

where $\sigma_3(r)$ is the sum of the cubes of the divisors of r,

$$\Theta_{D_{12}^+}(\tau) = \frac{1}{2} \{ \theta_2(\tau)^{12} + \theta_3(\tau)^{12} + \theta_4(\tau)^{12} \}$$

= 1 + 264 q² + 2048 q³ + ...,

for $(E_7 + E_7)^+$:

$$\Theta(\tau) = \theta_3(\tau)^{14} - 28\theta_3(\tau)^6 \Delta_8(\tau)$$

= 1 + 252q² + 3136q³ + ...,

and

$$\Theta_{A_{15}^+}(\tau) = \theta_3(\tau)^{15} - 30 \,\theta_3(\tau)^7 \,\Delta_8(\tau)$$

= 1 + 240 q² + 3640 q³ +

Remarks. The 240 minimum vectors in E_8 are the 240 Cayley numbers of unit norm, or the root system of type E_8 ([1]). $(E_7 + E_7)^+$ may be obtained by applying Construction A of [8], [14] to the binary code generated by the first 7 rows of the above matrix. The first row of the generator matrix for A_{15}^+ is a pseudo-random sequence ([9]) of length 15. The other rows (except the last) are cyclic shifts of the first row.

§3. Dimensions 17-47.

THEOREM 2. The only extremal self-dual lattices in \mathbb{R}^n for $17 \le n \le 47$ are the Leech lattice Λ_{24} in \mathbb{R}^{24} ([7]), and a certain lattice Λ_{23} in \mathbb{R}^{23} which is derived from the Leech lattice.

Proof. Suppose first that Λ is a Type II (or even) lattice in \mathbb{R}^n , which is also an extremal self-dual lattice. We have $d(\Lambda) \leq 2[n/24] + 2$ (from [10]), $d(\Lambda) = [n/8] + 1$, and $8 \mid n$, which imply $n \leq 24$. From Kneser [5] and Niemeier [12] Λ must be either E_8 or Λ_{24} .

From now on we suppose that Λ is an extremal self-dual lattice which is not even. Let Λ_0 be the even sublattice:

$$\Lambda_0 = \{ u \in \Lambda \mid u \cdot u \in 2\mathbb{Z} \}.$$

Then det $\Lambda = 1$, det $\Lambda_0 = 2$, and

$$\Theta_{\Lambda_0}(\tau) = \frac{1}{2} \{ \Theta_{\Lambda}(\tau) + \Theta_{\Lambda}(\tau+1) \}.$$

To eliminate almost all of the remaining cases we make use of an argument due to Ward [15] (who applied it to the weight enumerators of codes). It turns out that the condition that $\Theta_{\Lambda_0^*}(\tau)$ have integer coefficients implies that the coefficients a_r in (3) must be divisible by high powers of two.

From the Jacobi identity (see e.g. [14; Th. 2])

$$\Theta_{\Lambda}(\tau) = \left(\frac{i}{\tau}\right)^{n/2} \Theta_{\Lambda}\left(-\frac{1}{\tau}\right),$$

$$\Theta_{\Lambda_{0}^{*}}(\tau) = \Theta_{\Lambda}(\tau) + \left(\frac{i}{\tau}\right)^{n/2} \Theta_{\Lambda}\left(-\frac{1}{\tau}+1\right).$$
 (6)

Hence

$$\left(\frac{i}{\tau}\right)^{n/2}\Theta_{\Lambda}\left(-\frac{1}{\tau}+1\right)$$

has integer coefficients in its q-expansion. Suppose the extremal theta-function (4) is

$$\Theta_{\Lambda}(\tau) = \sum_{r=0}^{\mu} a_r^* \theta_3(\tau)^{n-8r} \Delta_8(\tau)^r.$$
(7)

Then

$$\left(\frac{i}{\tau}\right)^{n/2} \Theta_{\Lambda} \left(-\frac{1}{\tau}+1\right) = \left(\frac{i}{\tau}\right)^{n/2} \sum_{r=0}^{\mu} (-1)^{r} 2^{-8r} a_{r}^{*} \theta_{4} \left(-\frac{1}{\tau}\right)^{n-8r} \theta_{2} \left(-\frac{1}{2\tau}\right)^{8r}$$
$$= \sum_{r=0}^{\mu} (-1)^{r} 2^{-4r} a_{r}^{*} \theta_{2} (\tau)^{n-8r} \theta_{4} (2\tau)^{8r}, \tag{8}$$

which implies

$$2^{12r-n} | a_r^* \quad \text{for} \quad n < 12r. \tag{9}$$

The a_r^* are easily computed (by equating (4) and (7)) and condition (9) eliminates all *n* in the range $17 \le n \le 47$ except 22, 23 and 24. For example, when n = 17, $a_0^* = 1$, $a_1^* = -34$, $a_2^* = -204$, and $2^7 \not a_2^*$.

Finally, n = 22 is eliminated by calculating $\Theta_{\Lambda_0^*}(\tau)$ explicitly. It is $1 - 11q^{3/2} + ...$, and the negative coefficient shows that Λ does not exist.

When n = 24 the extremal theta-function is equal to the theta-function of the Leech lattice:

$$\begin{split} \Theta_{\Lambda}(\tau) &= \Theta_{\Lambda_{24}}(\tau) \\ &= \Theta_{E_8}(\tau)^3 - \frac{4.5}{1.6} \{\theta_2(\tau) \, \theta_3(\tau) \, \theta_4(\tau)\}^8 \\ &= 1 + 196560 \, q^4 + 16773120 \, q^6 + \dots . \end{split}$$

The uniqueness of the Leech lattice ([3], [12]) shows that $\Lambda = \Lambda_{24}$. The automorphism group of this lattice has been studied in [2], [4].

In dimension 23 an extremal lattice Λ must have theta-function

$$\theta_3(\tau)^{23} - 46 \,\theta_3(\tau)^{15} \,\Delta_8(\tau)$$

= 1 + 4600 q³ + 93150 q⁴ + ...

The even sublattice Λ_0 (with theta-function $1 + 93150q^4 + ...$) has dual lattice Λ_0^* with theta-function (from (6), (8))

$$1 + 4600 q^{3} + 93150 q^{4} + \dots + 2^{23} q^{23/4} (1 + 23 q^{2} + 253 q^{4} + \dots) + 23 \cdot 2^{12} q^{15/4} (1 + 15 q^{2} + 105 q^{4} + \dots) (1 - 16 q^{2} + 112 q^{4} + \dots) = 1 + 4600 q^{3} + 94208 q^{3\frac{3}{4}} + 93150 q^{4} + \dots$$

From this we can see that the four cosets of Λ_0 in ${\Lambda_0}^{\#}$ contain nonzero vectors of

squared length
$$4 + 2n$$
 $3\frac{3}{4} + 2n$ $3 + 2n$ $3\frac{3}{4} + 2n$
coset representative $y_0 = 0$ y_1 y_2 y_3 (say)

for various integers $n \ge 0$. The union of the cosets Λ_0 and $\Lambda_0 + y_2$ is Λ .

Now the lattice M of even integers also has four cosets in its dual M^* , whose nonzero vectors have

squared length
$$4 + 2n$$
 $\frac{1}{4} + 2n$ $1 + 2n$ $\frac{1}{4} + 2n$
coset representative $z_0 = 0$ $z_1 = \frac{1}{2}$ $z_2 = 1$ $z_3 = -\frac{1}{2}$.

It follows that there is a 24-dimensional lattice

$$(\Lambda_0 + M)^2$$

obtained by extending $\Lambda_0 + M$ by the glue vectors $y_i + z_i$ (i = 0, 1, 2, 3), which is extremal and so must be the Leech lattice. Λ is therefore uniquely characterized as the projection onto the 23-space orthogonal to v of the vectors of Λ_{24} which have even inner product with a minimal vector v in Λ_{24} . This completes the proof of Theorem 2.

§4. Dimensions $n \ge 48$.

THEOREM 3. No extremal lattice exists in \mathbb{R}^n for $n \ge 48$.

Proof. With the same notation as before we show that

$$\Theta_{\Lambda_0^{*}}(\tau) = \Theta_{\Lambda}(\tau) + \sum_{r=0}^{\mu} (-16)^{-r} a_r^{*} \theta_2(\tau)^{n-8r} \theta_4(2\tau)^{8r}$$

contains a negative coefficient for $n \ge 48$, which proves the theorem. The q-expansion of the right-hand side is

$$1 + (-1)^{\mu} 2^{\nu - 4\mu} a_{\mu} * q^{\nu/4} + (-1)^{\mu + 1} 2^{\nu - 4\mu} q^{\nu/4 + 2} \{ (16\mu - \nu) a_{\mu} * + 4096 a_{\mu - 1}^{*} \} + \dots$$

We will show that $a_{\mu}^* < 0$ and $a_{\mu-1}^* < 0$ for $\mu \ge 6$, from which the negative coefficient is apparent. Applying the Bürmann-Lagrange theorem [16; p. 128] to (4) and (7) we obtain, exactly as in [10; Eq. (6)],

$$a_{s}^{*} = -\frac{n}{s!} \frac{d^{s-1}}{dq^{s-1}} \left\{ \frac{d\theta_{3}}{dq} \cdot \theta_{3}^{8s-n-1} \cdot h^{s} \right\}_{q=0},$$
(10)

for $0 \leq s \leq \mu$, where from (2)

$$h = \prod_{m=1}^{\infty} \{(1 - q^{2m-1})(1 - q^{4m})\}^{-8}.$$

Now $d\theta_3/dq$ has non-negative coefficients in its q-expansion. When $s = \mu$ or $\mu - 1$ we have

$$-1 \ge 8s - n - 1 \ge -16.$$

Let $1 \leq k \leq 16$. Then from (1)

$$\theta_3^{-k} = \prod_{m=1}^{\infty} (1-q^{2m})^{-k} \prod_{m=1}^{\infty} (1+q^{2m-1})^{-2k}.$$

The first product has non-negative coefficients. On the other hand,

$$h^{s} \prod_{m=1}^{\infty} (1+q^{2m-1})^{-2k} = \prod_{\underline{m}=1}^{\infty} (1-q^{2m-1})^{-(8s-2k)} \times \prod_{m=1}^{\infty} (1-q^{4m-2})^{-2k} \prod_{m=1}^{\infty} (1-q^{4m})^{-8s}$$

If $n \ge 48$, $\mu \ge 6$, $s \ge 5$, then every product on the right-hand side has nonnegative coefficients and the first has strictly positive coefficients. Therefore the expression in braces in (10) has strictly positive coefficients, showing that $a_{\mu} < 0$ and $a_{\mu-1} < 0$. This completes the proof of Theorem 3.

Acknowledgment. Some of the theta-functions were calculated on the MACSYMA system [11].

References

- 1. N. Bourbaki. Groupes et Algèbres de Lie, Chapitres IV, V, VI (Hermann, Paris, 1968).
- 2. J. H. Conway. "A group of order 8, 315, 553, 613, 086, 720, 000", Bull. London Math. Soc., 1 (1969), 79-88.
- J. H. Conway. "A characterization of Leech's lattice", Invent. math., 7 (1969), 137-142.
 J. H. Conway. "Three lectures on exceptional groups", pp. 215-247 of Finite simple groups, edited by M. B. Powell and G. Higman (Academic Press, N.Y., 1971).
- 5. M. Kneser. "Klassenzahlen definiter quadratischer Formen", Archiv der Math., 8 (1957), 241-250.
- "Lineare Relationen zwischen Darstellungsanzahlen quadratischer Formen" 6. M. Kneser. Math. Ann., 168 (1967), 31-39.
- 7. J. Leech. "Notes on sphere packings", Canad. Math. J., 19 (1967), 251-267.
- 8. J. Leech and N. J. A. Sloane. "Sphere packings and error-correcting codes", Canad. J. Math., 23 (1971), 718-745.
- 9. F. J. MacWilliams and N. J. A. Sloane. "Pseudo-random sequences and arrays", Proc. IEEE, 64 (1976), 1715-1729.
- 10. C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane. "Upper bounds for modular forms, lattices, and codes ", J. Algebra, 36 (1975), 68-76.
- 11. M. I. T., Mathlab Group. MACSYMA Reference Manual, Project MAC, Version 8 (M.I.T., Cambridge, Mass., 1975).
- 12. H.-V. Niemeier. "Definite quadratische Formen der Dimension 24 und Diskriminante 1", J. Number Theory, 5 (1973), 142-178.
- 13. C. L. Siegel. "Berechnung von Zetafunktionen an ganzzahligen Stellen", Göttingen Nach., No. 10 (1969), 87-102.
- 14. N. J. A. Sloane. "Binary codes, lattices, and sphere-packings", pp. 117-164 of Combinatorial Surveys: Proc. 6th British Comb. Conf. (Academic Press, London and New York, 1977).
- 15. H. N. Ward. "A restriction on the weight enumerator of a self-dual code", J. Combinatorial Theory, 21A (1976), 253-255.
- 16. E. T. Whittaker and G. N. Watson. A course of modern analysis, 4th ed. (Cambridge Univ. Press, Cambridge, 1963).

University of Cambridge, Cambridge, England.

10E25: NUMBER THEORY; Geometry of Numbers; Quadratic forms.

Received on the 15th of July, 1977.

Bell Laboratories, Murray Hill, New Jersey, 07974, U.S.A.