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EXTREMAL SELF-DUAL LATTICES EXIST ONLY IN
DIMENSIONS 1 TO 8, 12, 14, 15, 23, AND 24

J. H. CONWAY, A. M. ODLYZKO AND N. J. A. SLOANE

Abstract. It is known that if A is a self-dual lattice in R", then

min {u-u | u e A, u # 0} < [M/8] + 1.

If equality holds the lattice is called extremal. In this paper we find all the extremal
lattices: there are unique lattices in dimensions 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 15, 23, 24
and no others.

§1. Introduction. A lattice A in R" has minimum squared length

d(A) = min {u-u | u e A, u i=- 0},

theta-function

= I «""", a = e*", Im (T) > 0,
u c A

and dual lattice

A* = { c 6 R " | « - P 6 2 for all u e A}.
Let

0 3 « = Z qm2 = n (i -q2m)V+q2m-1)2, 0)
tn — "— oo tn — 1

oo

m = — oo

and

8(i(T - l))8 = 9 n {(1 - q21""1)^ - q*m)}s- (2)
nt-1

If A = A# then A is called self-dual. For a self-dual lattice in W,

£© A ( T ) = £ ar03(T)"-8rA8(tr, (3)
r = 0

for uniquely determined integers a0, ...,«„, where n = 8// + v, 0 < v < 7. For
a proof of (3) and an explanation of any undefined terms see, for example, [14].
If a0, ..., a/t are chosen so as to make the right-hand side of (3) equal to

1 + A*+lq" + 1 + A*+2q"+2 + ... (4) ;
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(containing no power of q between 0 and /i + 1), the result is called an extremal
theta-function, and a lattice having an extremal theta-function, if there is one, is
called an extremal lattice. (This is not to be confused with an extreme form.) It can
be shown (c/. [10], [13]) that

A*+1 > 0 for all n,
which implies

d(A) < n + 1 = [n/8] + 1. (5)

A self-dual lattice is extremal, if, and only if, equality holds in (5), by definition.
Furthermore ([10])

A*+2 < 0 for all sufficiently large n,

implying that there is a bound n0 such that extremal lattices exist only for n < n0.
In this paper we determine all the extremal lattices, and prove the result stated in the
Abstract. (This solves Open Problem 6 of [14].) A Type II lattice is a self-dual
lattice A which is also even, i.e. satisfies u-ueU. for all u e A. The analogous
problem of finding all extremal Type II lattices, for which d(A) = 2[n/24] + 2,
remains unsolved.

It should be possible to find all self-dual lattices in up to 23 dimensions from
Niemeier's list [12] of Type II lattices in R24. Such a list would of course include
our extremal lattices.

We will sometimes give a generator matrix for a lattice: this is an n x n matrix
whose rows span the lattice.

§2. Dimensions 1-16. The following theorem is contained in Kneser [5].

THEOREM 1. The only extremal self-dual lattices in U" for n < 16 are

respectively.

These lattices can all be constructed in a uniform way. We write

to indicate that the n-dimensional integral lattice A contains the direct sum

Ax ® A2 © ... © Ak

of lattices whose dimensions add to n. In this case A is generated by this direct
sum together with certain glue vectors

y = >'i +y2 + ••• +}'k,

in which yt belongs to the subspace A,-, and therefore to h* (since y must have
integral inner product with every vector i n 0 + 0 + ... + A f + 0 + ... + 0 ) . Since
the same lattice will be generated if yt is augmented by any vector of A,, we may in
fact regard yt as a member of the dual quotient Af*/A;, a finite group.
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The lattices

Z (one integer co-ordinate),

An (n + 1 integer co-ordinates with zero sum; n > 1),

Dn (n integer co-ordinates with even sum; n > 4),

E6,E7, E8 (defined below)

are the only indecomposable integral lattices generated by vectors of squared length'
1 or 2, and so are often used for the A;. E8 has eight co-ordinates xx, ...,x8 all in 1
Z, or all in Z + i, with even sum; E7 is that part of E8 with xt + ... + x8 = 0;
and E6 is the part with xt + ... + x6 = x7 + x8 = 0.

In this notation, due to Kneser [6] and Niemeier [12], the extremal lattices in
dimensions < 16 are:

= D8
+ =

(£7 +E 7 ) + = <£7 + £7,

Kneser [5] has shown that these, together with the nonextremal lattice

are the only indecomposable self-dual lattices in dimensions

Generator matrices for these lattices are:

Z": an n x n identity matrix

2 0 0 0 0 0 0 0

1 - 0 0 0 0 0 0

1 0 - 0 0 0 0 0
( - stands for - 1)

1 0 Q 0 0 0 - 0

* * * * * * * *

2 0 0 0 0 0 0 0 0 0 0 0

1- 0 0 0 0 0 0 0 0 0 0

1 0 - 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 - 0
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The theta-functions of these lattices are:

= 1 + 240 E <r3(r)q2r,

where <r3(r) is the sum of the cubes of the divisors of r,

©**,(*) = «02(T)12 + 03(T)12 + 04(T)12}

= 1 + 264g2•

for (£7 + £ 7 ) + :

3136g3

and

= 1 +240g2
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Remarks. The 240 minimum vectors in E8 are the 240 Cayley numbers of unit
norm, or the root system of type Es ([1]). (E7 + E-,)+ may be obtained by applying
Construction A of [8], [14] to the binary code generated by the first 7 rows of the
above matrix. The first row of the generator matrix for AiS is a pseudo-random
sequence ([9]) of length 15. The other rows (except the last) are cyclic shifts of the
first row.

§3. Dimensions 17-47.

THEOREM 2. The only extremal self-dual lattices in U" for 17 < n < 47 are the
Leech lattice A24 in R24 ([7]), and a certain lattice A23 in U23 which is derived from
the Leech lattice.

Proof. Suppose first that A is a Type II (or even) lattice in W, which is also an
extremal self-dual lattice. We have d(A) < 2[n/24] + 2 (from [10]), d(A) =
[n/8] + 1, and 8 | n, which imply n < 24. From Kneser [5] and Niemeier [12] A
must be either E8 or A24.

From now on we suppose that A is an extremal self-dual lattice which is not
even. Let Ao be the even sublattice:

Ao = {u e A | u-u e 2Z}.

Then det A = 1, det Ao = 2, and

©AoM = *{©AW + ©A(? + I)}-

To eliminate almost all of the remaining cases we make use of an argument due to
Ward [15] (who applied it to the weight enumerators of codes). It turns out that
the condition that ©A*C0 have integer coefficients implies that the coefficients ar in
(3) must be divisible by high powers of two.

From the Jacobi identity (see e.g. [14; Th. 2])

Hence

/ i V'2 I 1 \
0AO'(T)-©A(T)+(T) © A ( - T + I ) . (6)

i W2
{ ' \ " / 2 / 1

has integer coefficients m itsq-expansion. Suppose the extremal theta-function (4) is

© A W = £ a* 03(zf-Sr A8(T) ' . (7)

Then

( j \ n / 2 / 1 \ / I \ n / 2 n 1 \ \ n - 8 r / \ \8r

t) " A l T / \ T / r = 0 flr4^ ^ j 2 \ 2 T /
= £ (-iy2-4 ra r*02(t)"-8^4(2i)8 ' , (8)
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which implies

2) 2 r -" |«r* for n < 12r. (9)

The ar* are easily computed (by equating (4) and (7)) and condition (9) eliminates
all n in the range 17 ^ n < 47 except 22, 23 and 24. For example, when n — 17,
a0* = 1, fll* = - 34, a2* = - 204, and 27 \ a2*.

Finally,« = 22 is eliminated by calculating 0 A * ( T ) explicitly. I t i s l — llq3 / 2 + . . . ,
and the negative coefficient shows that A does not exist.

When n = 24 the extremal theta-function is equal to the theta-function of the
Leech lattice:

© A W = © A M (T)

= 1 + 196560g4 + 16773120<sr6 + . . . .

The uniqueness of the Leech lattice ([3], [12]) shows that A = A24. The auto-
morphism group of this lattice has been studied in [2], [4].

In dimension 23 an extremal lattice A must have theta-function

= 1 +460043

The even sublattice Ao (with theta-function 1 + 93150q4 + ...) has dual lattice
Ao

# with theta-function (from (6), (8))

1 + 4600g3 + 93150q4 + ...

+ 23.212g15 /4(l + 15g2 + 105<z4 + ...)(1 - 16<j2 + 112g4 + ...)

= 1 + 4600q3 + 94208^3* + 9315(V + . . . .

From this we can see that the four cosets of Ao in Ao
# contain nonzero vectors of

squared length 4 + 2n 3 | + In 3 + In l\ + In

coset representative y0 = 0 yl y2 ^3 (say),

for various integers n > 0. The union of the cosets Ao and Ao + y2 is A.
Now the lattice M of even integers also has four cosets in its dual M*, whose

nonzero vectors have

squared length 4 + In i + 2n 1 + 2n -\ + In

coset representative z0 = 0 zL = \ z2 = 1 z3 = — \ •

It follows that there is a 24-dimensional lattice

(Ao + M) +

obtained by extending Ao + M by the glue vectors yt + z; (i = 0, 1, 2, 3), which is
extremal and so must be the Leech lattice. A is therefore uniquely characterized as
the projection onto the 23-space orthogonal to v of the vectors of A24 which have
even inner product with a minimal vector v in A24. This completes the proof of
Theorem 2.
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§4. Dimensions n > 48.

THEOREM 3. No extremal lattice exists in W for n $s 48.

Proof. With the same notation as before we show that

contains a negative coefficient for n > 48, which proves the theorem. The q-
expansion of the right-hand side is

1 J- (— \W-*Vn *nv/4

- v)«,,* + 4096a* x}

We will show that af < 0 and a*_x < 0 for ft > 6, from which the negative
coefficient is apparent. Applying the Biirmann-Lagrange theorem [16; p. 128] to
(4) and (7) we obtain, exactly as in [10; Eq. (6)],

n ds~l

dq j«=os\ dq'-1 (dq

for 0 ^ s ^ fi, where from (2)

Now dO3/dq has non-negative coefficients in its ^-expansion. When s = n or
\i — 1 we have

- 1 > 8J - » - 1 > - 16.

Let 1 < )fc < 16. Then from (1)

03'
k = n a -42mr* n a +q2m~T2k.

The first product has non-negative coefficients. On the other hand,

hs Tl (1 +q2m'1)~2k = ft (1 _g*--i)-(»'-«)
m = l m = l

n (i -q*
m-2y2k n (i -?4m) 8 s

m = 1

If n > 48, ii > 6, 5 > 5, then every product on the right-hand side has non-
negative coefficients and the first has strictly positive coefficients. Therefore the
expression in braces in (10) has strictly positive coefficients, showing that a# < 0
and aM_! < 0. This completes the proof of Theorem 3.

Acknowledgment. Some of the theta-functions were calculated on the
MACSYMA system [11].
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