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function obtained by taking w to be the Fourier spectrum
is optimal in some sense. (Perhaps the reader will sense a
challenge in this.)

Finally, we remark that the above threshold decoding
technique is generally applicable to all linear codes over
GF(p) (whether block, cyelie, convolutional, or whatever)
in the sense that any syndrome decoding function can be
implemented using the threshold scheme of (1) and (2).
In the general case, é,,(s) in (1) and (2) is simply the
decoded estimate of the error digit under consideration
that would be made by the decoding function to be realized.
In general, a different estimator matrix B and weight vector
w would be required for the error component of each infor-
mation digit in the block being decoded. For cyeclic codes
and B = 1/b convolutional codes, however, one B and
one w suffice for all decoding decisions.
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Absfract—In this paper, we establish the following result,
Theorem: A, the number of codewords of weight ¢ in the second-
order binary Reed-Muller code of length 27, is given by 4; = 0
unless ¢ = 2m~1 or 271 4 27717 for some 7, 0 < 7 < [m/2], 4o =

Asm =1, and
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INTRODUCTION

S SHOWN by Berlekamp ([1], see. 15.3), the
A rth-order Reed-Muller (RM) code of length 2"
contains 2° codewords, where &k = D> 7., (™). If a
codeword is written as § = [C., Co, Cy, Cay -+ 5 Cam_y],
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its coefficients may be evaluated by
C; = F(Xl.i; X2.7'> DR Xm.i)}

where F(-, -, ---, -) is an m-variate binary polynomial,
of degree at most r, and the binary elements X, ;,
X5+, Xa.; are obtained from the equation

m
= ¥ x. 0
= i %
i=1

where « is a fixed primitive element of GF(2™), and " is
conventionally defined by the equation «” = 0. Each of
the 2* codewords corresponds to a different polynomial F.

It is well known that the minimum distance of the
rth-order RM code of length 2™ is given by d = 2™ and
that the number of codewords of that weight is given by

_ 2@ = )@t — 2t — 2 e (@0 - 27
26 (2 — 2)(2F — 22 — 2) .- (28 — 2°7Y)

where u = m — r. Berlekamp and Sloane [2] have shown
that all possible weights between d and 2d are of the
form 2d — 2°,

In the special case r =
guarantees that every weight is divisible by 2'¢
thus, the only weights between 0 and 2d = 2" must be of
the form 2™ — 2°, [(m — 1)/2] < 7 < m — 1. Since the
code contains the all-one codeword of weight 27, the only

d

2, a theorem of McEliece [5]

m—~1}/2]
)
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weights between 2™ and 2™ must be of the form 2" 4
2, [(m — 1)/2] < 7 < m — 1. This result was first ob-
tained by Kasami [4] using other arguments.

In this paper, we obtain a formula for the number of
second-order RM codewords for each weight between
d and 2d. Using this result, Kasami and Tokura have
recently obtained a formula for the number of rth-order
RM codewords of each weight between d and 2d.

After reading a preprint of this paper, McEliece [5] has
presented a simpler proof of our main result, starting from
results by Dickson ([3], secs. 99, 199-204). McEliece’s
proof also considers nonbinary codes. Since most coding
theorists are not familiar with Dickson’s investigations of
orthogonal groups, we present our own derivation of the
weight enumerator of the second-order RM code. This
proof is longer than the one given by McEliece, but it
requires substantially less background.

WEIGHT ENUMERATOR FOR THE SECOND-ORDER
ReEp-MuLLER CODE

Since each codeword in the second-order RM code
corresponds to a polynomial of degree at most 2 in m
variables, it may be represented as

F(X) = ZFs‘,iXiXi + ZF;,;X«' + G,

> €

®

where each of the 2* codewords corresponds to a different
choice of the £ = (%) 4+ m + 1 binary elements, F; ;, F, ;,
and G. Since the X; are binary variables, X2 = X, and we
may write

FX)+ G = > F.;X.X;.

127

Thus, F(X) + G is a quadratic form, which may be
written as

F,., 0 X,

Fp, F,, 0 X,
[Xng, M me] F3,1 Fa,z Fs.a e 0

_Fm.l Fm,2 Fm.3 Tt Fm.m._ _Xm_

As done by Berlekamp ([1], ch. 16) we now show that
an arbitrary binary quadratic form may be reduced to one
of a few special types by appropriate invertible affine
transformations of the form X; — Y, where

Y,' = ZB;_,’X,‘ + B;.

In the special case of linear transformations, each B; = 0.
Since the transformation is invertible, each vector
X = (X, X, -+ , X.) corresponds to one and only one
vector ¥ = (¥4, Yo, -+, Y,.), and hence, the weight of
the codeword corresponding to the transformed quadratic
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form is equal to the weight of the codeword corresponding
to the original quadratic form. ‘
We now review the two elementary linear transforma-
tions of quadratic forms:
1) Exchange ¢ and j, ie, let ¥V, = X;, ¥V; = X,,
Y, = X, for k # 4, §, where ¢ < j. This transforms the
matrix of the quadratic form as follows.

_Fl’l -
Fi,l Fi,z "’Fz',i
Fi+1,£ )
Fa‘.l Fi.Z "'F,',i 'Fi.i
Fi+1'.' Fi+l.i
LFm.l F'm.2 te F’m.t * Fm,:' ‘ Fm,m._
_Fl_l -
Fi.l Fi.2"'Fi.i
Fi,1+l
- .
Fi.l F.’,z "‘Fi,i /'Fi,i
F:’+l,i Fi+1,i
_Fm.l Fm,2 e Fm,i * Fm.c * Fm.m..

In other words, the elements of the matrix are permuted
according to the arrows in the following diagram.

<>

2) Add row-column ¢ into row-column j, i.e., replace
X;byY; 4+ Y, Xgby Ysfor k # 4, where ¢ < j. This
transforms the matrix as follows.



SLOANE AND BERLEKAMP : WEIGHT ENUMERATION FOR REED~-MULLER CODES

Fe\n F-‘,? : Fs’.i
F«'+1..’
F— :
Fi.l+Fi,1 F€,2+Fy‘.2"'Fi,i Fc’+1.i+F;‘,i+l"' E
F,‘+1_.~ Fi+l,«i + Fi*l.i
_Fm.! Fm,i Fm,a' +Fm,z' . Fm,m—

where £ = F,;; + F;; + F. ; Thus, elements of the
matrix are added according to the arrows in the following
diagram.

[~ -

b e

In order to enumerate the number of binary quadratie
forms that may be transformed into each of the elementary
forms, we reduce a randomly chosen binary quadratic
form.

For notational convenience, we let a, b, ¢, - -+ , denote
arbitrary binary variables, and we use the symbol } for
entries that are independent, randomly distributed, binary
variables, which may be either 0 or 1 with probability %.

Lemma 1

- 7T T
0 o]

e Ol O
a b ¢ ¢ 0 x

a e £ g o 0 ¥y =z

h 1 % % 3 -{o o ¥ % %

J x ¥ ¥ 3 3 o o ¥ % % %

Y
tma L XN ]
n p % % o 0o 3 3

where x = ¢+ ab,y = f + db + ae, 2 = g + de.
Proof: With * denoting scalar multiplication of a
row column,

o - o _
0 10
b ¢ s 10 b ¢+ ab
e f ¢ d e f4+a ¢
i 3 11 bt 3 3 3
o ] 0
1 0 1
Eﬂi" é? 0 z sl 10 0 2
d e vy g 0 e y 2
h i % 3 3% hi 3 % 3
o -
10
adgd h*2
aintit:‘;l O O Z mtoﬁ; A
0 0 y =z

Q.E.D.

We now reexamine the reduction of an arbitrary
quadratic form via linear transformations, according to
Dickson’s theorem ([1], theorem 16.35). A flow chart of
this reduction is shown in Fig. 1. Initially, we start with a
random triangular matrix of the form
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or others that can be found easily from the flow chart.

After working our way through the flow chart, we
terminate with a matrix having one of the simpler forms,
@, ®, & X, W, Y. We illustrate by giving @ and ®, the
other forms can again be found easily from the flow chart

3
EXCHANGE | AND2 @ =
ADD | INTO 2 IF 101
F22%! LEMMA 2 2
1 1 1
10 3 3% 2
LEM - -
EXCHANGE 1AND 3 0
Choes L
IF Fpopst
Fig LEMMA 22 1 0
0 1
2
®B =
003 %
EXCHANGE i AND 4
EXCHANGE 2 AND 4 :
1 1 1
10 0 3 3% 7|

ADD | INTO 2 IF F2 2=t . . o ege
LEMMA Each terminal matrix has one or two initial columns

simplified, plus a submatrix having one of the forms

®, 8, or 3. It can be seen that @, ® contain § as a sub-

Fig. 1. Flowchart reduction of random quadratic form in » vari- matrix, §, X contain ®, and W, Y contain 3. )

ables. If we reenter the flow chart at the appropriate entry,
we may simplify the remaining submatrix and continue to

ER T do so until we eventually terminate with a reduced
? m X m matrix that is a permutation of the following
1 30 forn,
§=11 1 1 - -
: 10
1 1
s 2 j 0 00
At nonterminal states of the flow chart, we have a matrix 2% 2 1 0
that has one of several forms such as matrices
- - .
1 0 [0‘ }
11 0 0 10
5 =
) , 0
1 1] 0 0 OOOO-'-[a]
or L0 0 00 0 0 000 --- |
T 7 where j is some integer < m/2, and
X1 ,
a=| . a{l O] [,
ST S 11
. or the empty matrix. We define the order of the reduced
K 1] matrix as
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7 % is empty
i+3  a=1
[1 0]_

11

We now let R, ., Sn, and T, . be the probability
that a random m X m matrix of the form of ®, §, or 3 is
equivalent (under an invertible linear transformation of
variables) to a reduced matrix of order 7. From the

transition probabilities shown in Fig. 2 (an abbreviation of
Fig. 1) we derive the recurrences

Smi = 3Bn;i + 27800 + G — 277802501, (D)
Rui =2 ""Rus;i+ G — 2 "")Rusins
+ 1Snsia1 F 170 (3)
Toi=3Bpsi+ G — 2_(m*2))Tm-2,i—1
+ 27, @)

order =

i+% 3

1l

and the initial conditions
Swi=Ru;i=7,,=0 ifm<O0
So.o = Rl.l/3 = T2,2/3 = 1.

orji <0

A simpler recurrence may be obtained by allowing
invertible affine transformations as well as invertible
linear transformations. By invoking the binary identity

Xf + X1X2 + X§ = X1 + X1X2 + X2
| = (1+ X)(1 + X») + 1,

followed by the application of Lemma 1, we may transform
a matrix of the form 3 to a matrix of the form ®&. We may
ignore the fact that this transformation changes the
constant term G in (1) to 1 -+ @, since for a random
codeword both G and 1 4+ G are each 0 or 1 with prob-
ability %.

Let R., ;, S..:, and 77, be the probability that a
random m X m matrix of the form of R, S, or T is equiv-
alent (under an invertible affine transformation of
variables) to a reduced matrix of order 7, where 4 is an
integer or an integer -4 4. Then R/ ,, S, and 77 ,;
satisfy (2) and (3) with everything primed, but (4) may
be replaced by

T:n,i = Sr/n-2,i-1'

To convert probabilities to integers, we set

(4)

(m+1)m/2

Sm,i = 2 Sm.i
(m+1)m/2-1

Tmi = 27" R,.; (%)
(m+1Ym/2-3

tm.z =2 Tm.i'

Inserting (5) into (2), (3"), and (4') and using (4’) to
eliminate ¢ gives

Smii = Tm,i + Sm-1,i + (22m_2 - zzmwl)sm—z.i—-h (6)
Tm,g = 2rm—l.i + (221"-2 - 2m)rm—2.i—1

-+ 22m-3sm—-2.i—1- (7)

Fig. 2.

Abbreviation of Fig. 1, showing probabilities.

Using (6) to eliminate r from (7) gives the basic recursion

Spii = B8me1i — 28pen.; + (5.277° — 8.2" Nsmn. i1
— 32" — 2" Mg g,y — (2777 — 27
(27— 2" 8 m > 3, (8
with initial conditions
So.0 = 81,0=1;8,;=0 ifm <0 orj <o
orif m =0or1l and 7 # 0.

Since the matrices whose order is an integer -+ % corre-
spond to codewords of weight 2" 7", we need only consider
$,,.; for integral values of j. In view of Berlekamp’s results
([1], p. 416, see. 16.3), it is clear that s,,; is equal to
Agn-i_ym-1-;, the number of codewords of weight 2™ —
2™ (or 271 + 27777} in the second-order RM code
of length 2™,

For fixed 4, (8) is of the form

Sm,i — 38m—l.i + 28m—-2,i = fm' (9)
If f,, is the impulse function (f, = 1, {,. = 0 for m £ 0),
then the solution of (9) is given by (still for j fixed)

Smy; = (2" —=1) m >0 =0 m<0.

Sm,i
For arbitrary f,, the solution of (9) is given by

S = kz; @™ — Dfs. (10)

By repeatedly applying (9) and (10) to (8), we find that
Sm,o = 1

2%(2™ — 1)(2"" — 1)
Sm.l = 3

2% — D@ = DET = DETE = 1)
Smi2 = 45 ’




Cofactors

TABLE 1
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8
éxn waskarred rows
actors > 3368817
omltted)
293x169937*
60337*
67
23x71X139%220x523
23%107
11x37

47
13x173%307

19

19

1019
23%x211
23x10L
89
H7x53x353
53
53x1481
53x163
11x53
199

* O *x k

70255883456633416018327673 |53x1399

53%9883125925678719699901
7738468439408015059

Th6129
T43
379%33359
132x43x991
1{127x277x653 {33989848801
4oox685141
25046126802457
107X60TXUE6L3
1{112x6374941 | 349x1478663625832L09
550584398867
L7 xU68154046769977
23547124 9x75811037
127x277x653 |23x47x1896589939697L7
13%23x47x277125805459
23xU7x2036190853U4607
47x12939356564430083
571x856254555861352867
10777005233938670609
446294805016274578561
173602348413845831
13x42252498344 0734279
11x10678544684504761019
7738468439408015059

1723
11x2Lo6T
2239
13%23
23x181

3
23

0|23
1{23x181
0{13x23
02239
0{11x24967
01723

5
811} 1j1

mih
100} ojo

S 0V 0 O N Y
0N Y O WY

12{0! 1{1
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1641(19(23

e
—
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3
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v o o N
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TABLE 1 (cont.)

Cofactors
H bis 6 T 8
(In starred rows,
factors > 3388817
w omitted)
68 P 41
70 47x71
T2 37X4T
74 47x163%241
76 W
78 41x47
80 H7%89
82 47x89
84 47x8ox241
86 A7x89x1559
as B7xBoxliog
90 47
92 134T
94 7647
96 73%607
98 53
100 13x53
102 13%53
104 53X163
106 23%563
108 23x71
110 37
112 241 %1151
114
116 U7%359
118
120 997
122 '
12k 109%L73
126
128 13
130

which leads to the correct conjecture that

_ 21‘(1‘+1)(2m_.1)(2m~1___1)(2"»—2__.1)y e ,(2m—2i+1__1)'

S @Z—DE—1), .-, @ -1
(11)
In order to verify that (11) solves (8), let us define
Dn,r) & (@ -DE7 -1 .- (27 -1 12
K; £ 2700@ - D@7 -1 2D, (13)
so that (11) becomes
8..; = K;D{n, 2§ — 1). (14)

Then
AD(n,r) £ Dln 4+ 1,7 — D, )
= 272" — 1) D(n,r — 1) 15)
ASy; = Suat,i = Sug
= K22 — 1) D(n, 2§ — 2).  (16)
and
Dn + 1,7+ 1) = (2" — 1)D(n, 7) an
Ki/Ki—l = 22i/(22i - 1). (18)
Then (8) may be rewritten as
ASpy i = 2 ASun; = (4277° — 32" Asy3. i
+ 2" s,z o1+ Suca,io1)
— @77 =22 = 2750 (19)

and the verification is completed by using (14)-(18) to
reduce both sides of (19) to

Ki-1D(n - 2,2 — 3)22"~2i(22i—1 . 1).
This proves the theorem stated in the abstract.

In order to obtain further data on the weight structure
of Reed—-Muller codes of orders > 2, Brillhart wrote a
computer program to determine the weight enumerators
for some of the duals of the second-order RM codes from
our theorem and MacWilliams’ theorem ({1], theorem
16.21). Brillhart’s results, in factored form, are given in
Table I. The reader will notice many patterns in these
data, which he is invited to try to prove in general.
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