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function obtained by taking w to be the Fourier spectrum 
is optimal in some sense. (Perhaps the reader will sense a 
challenge in this.) 

Finally, we remark that the above threshold decoding 
technique is generally applicable to all linear codes over 
GF(p) (whether block, cyclic, convolutional, or whatever) 
in the sense that any syndrome decoding function can be 
implemented using the threshold scheme of (1) and (2). 
In the general case, Z,,(s) in (1) and (2) is simply the 
decoded estimate of the error digit under consideration 
that would be made by the decoding function to be realized. 
In general, a different estimator matrix B and weight vector 
w would be required for the error component of each infor- 
mation digit in the block being decoded. For cyclic codes 
and R = l/b convolutional codes, however, one B and 
one w suffice for all decoding decisions. 
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Weight Enumerator for Second-Order 
Reed-Muller Codes 

NEIL J. A. SLOANE, MEMBER, IEEE, AND ELWYN R. BERLEKAMP, MEMBER, IEEE 

Abstract-In this paper, we establish the following result. 
Theorem: Ai, the number of codewords of weight i in the second- 

order binary Reed-Muller code of length 2m, is given by Ai = 0 
unless i = 2m-1 or 2m-1 f 2m+-i, for some j, 0 < j < [m/2], A0 = 
A2m =l,and 

Azm- 
j(f+l) (2” - 1>(2+l - 1) 1*zsn-,-i = 2 

1 4-l I 

‘(2m-2 
i 

- 1)(2”-3 - 1) 
. 

42 - 
1 

. . . 
1 

(2m-2i+2 _ 1)(2m-Zi+l _ 1) 

. 1 4’ - 1 I , 

1 I j I [M4 

INTRODUCTION 

S SHOWN by Berlekamp ([l], sec. 15.3), the 
&h-order Reed-Muller (RM) code of length 2” 
contains 2k codewords, where lc = c:+ (1). If a 

codeword is written as e = [C,, C,, C,, C,, . . . , C,.b-,], 
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In the special case r = 2, a theorem of McEliece [5] 
guarantees that every weight is divisible by 21(m-1)‘21, 
thus, the only weights between 0 and 2d = 2”‘-l must be of 
the form 2”-l - 2’, [(m - 1)/2] 5 i < m - 1. Since the 
code contains the all-one codeword of weight 2”, the only 

its coefficients may be evaluated by 

Ci = F(X,,i, -Li, e-e , .L.i), 

where F(., ., . .. , .) is an m-variate binary polynomial, 
of degree at most T, and the binary elements X,, i, 
&,i, *- ’ , X,,i are obtained from the equation 

i=l 

where a! is a fixed primitive element of GF(2n), and crw is 
conventionally defined by the equation OL- = 0. Each of 
the 2k codewords corresponds to a different polynomial F. 

It is well known that the minimum distance of the 
rth-order RM code of length 2” is given by d = 2”-’ and 
that the number of codewords of that weight is given by 

A 
d 

= 2”(2m - 2”)(2m - 2’)(2” - 27 * * - (2” - 2q 
2’ (2fi - 2”)(2P - 2’)(2” - 27 - * * (aF - ap-‘) 

where p = m - T. Berlekamp and Sloane [2] have shown 
that all possible weights between d and 2d are of the 
form 2d - 2i. 
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weights between 2”-’ and 2” must be of the form 2”-’ + 
2’, [(m - 1)/2] < i < m - 1. This result was first ob- 
tained by Kasami [4] using other arguments. 

In this paper, we obtain a formula for the number of 
second-order RM codewords for each weight between 
d and 2d. Using this result, Kasami and Tokura have 
recently obtained a formula for the number of rth-order 
RM codewords of each weight between d and 2d. 

After reading a preprint of this paper, McEliece [5] has 
presented a simpler proof of our main result, starting from 
results by Dickson ([3], sets. 99, 199-204). McEliece’s 
proof also considers nonbinary codes. Since most coding 
theorists are not familiar with Dickson’s investigations of 
orthogonal groups, we present our own derivation of the 
weight enumerator of the second-order RM code. This 
proof is longer than the one given by McEliece, but it 
requires substantially less background. 

WEIGHT ENUMERATOR FOR THE SECOND-ORDER 
REED-MULLER CODE 

Since each codeword in the second-order RM code 
corresponds to a polynomial of degree at most 2 in m 
variables, it may be represented as 

F(-R = C Fi,iXJi + C Fi,iXi + G, (1) i>i 

where each of the 2k codewords corresponds to a different 
choice of the k = (G) + m + 1 binary elements, Fi,j, Fi,i, 
and G. Since the Xi are binary variables, Xi = Xi, and we 
may write 

Thus, F(z) + G is a quadratic form, which may be 
written as 

1.1 0 0.. 

F m.nl 

As done by Berlekamp ([l], ch. 16) we now show that 
an arbitrary binary quadratic form may be reduced to one 
of a few special types by appropriate invertible affie 
transformations of the form Xi ---) Yi, where 

Y< = C Bi*iXi + Bi. 
i 

In the special case of linear transformations, each B< = 0. 
Since the transformation is ‘invertible, each vector 
d = (Xl, x2, ** * , X,) corresponds to one and only one 
vector P = (Yl, Yz, ... , Y,J, and hence, the weight of 
the codeword aorresponding to the transformed quadratic 
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form is equal to the weight of the codeword corresponding 
to the original quadratic form. 

We now review the two elementary linear transforma- 
tions of quadratic forms: 

1) Exchange i and j, i.e., let Yi = XI, Yi = X,, 
Y, = Xk for k # i, j, where i < j. This transforms the 
matrix of the quadratic form as follows. 

. . . 
Pi.1 pi.2 * * * pi.6 

Fi+l.i 

Ft.1 Fj.2 . ‘- Fjsi . . . Fivj 

Fi+lsi F,+l.i 

F,., F,,z -.. Fisi .a. F,>< 

Fi+l,i Fic1.i 

F m.1 F,,z ... F,,j ... F,+i ... F,,, I_ 

In other words, the elements of the matrix are permuted 
according to the arrows in the following diagram. 

. . . 

2) Add row-column i into row-column j, i.e., replace 
Xi by Y, + Yj, X, by Y, for k # j, where i < j. This 
transforms the matrix as follows. 
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where 6 = Fi.6 + Fi,; + Fi,i. Thus, elements of the where x = c + ab, y = f + db + ae, x = g + de. 
matrix are added according to the arrows in the following Proof: With * denoting scalar multiplication of a 
diagram. row column, 

i 

L. 

. . 

c > 

In order to enumerate the number of binary quadratic 
forms that may be transformed into each of the elementary 
forms, we reduce a randomly chosen binary quadratic 
form. 

For notational convenience, we let a, 5, c, . . . , denote 
arbitrary binary variables, and we use the symbol + for 
entries that are independent, randomly distributed, binary 
variables, which may be either 0 or 1 with probability 3. 

Lemma 1 

r 0 
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a b c 
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h i 4 & & 

jkt$$8 

c la 5 

: : . 
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np Q 

0 

1 0 0 
0 0 x 
0 0 y-7. 
0 0 $ & 3 
0 0 8 Q  B # 

. . . 

0 0 5 3 

0 

1 0 

add b*l 
into3 -- + 

sdd 8’1 

a 

add 0.2 

w 

0 

1 0 

0 0 2 

de Y 

h i 4 

0 

1 0 

0 0 x  

0 0 Y 

h i 3 

0 
1 0 

0 b c+cdl 

f+ae g 

4 3 4 

add d*2 

intoe) 

Q.E.D. 

We now reexamine the reduction of an arbitrary 
quadratic form via linear transformations, according to 
Dickson’s theorem ([l], theorem 16.35). A flow chart of 
this reduction is shown in Fig. 1. Initially, we start with a 
random triangular matrix of the form 



XCHANGE I AND2 
DD I INTO 2 IF 

XCHANGE i AND 4 
XCHANGE 2 AND 4 

DD I INTO 2 IF F2,2’1 

Fig. 1. Flowchart reduct ion oLbgdorn  quadrat ic form in TZ vari- 

S= 

At nonterminal states of the flow chart, we have a matrix 
that has one of several forms such as 

3= 

or 
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or others that can be found easily from the flow chart. 
After working our way through the flow chart, we 

terminate with a matrix having one of the simpler forms, 
~3, 63, E, X, W, y. We  illustrate by giving CC and 63, the 
other forms can again be found easily from the flow chart 

C%= 

Each terminal matrix has one or two initial columns 
simplified, plus a submatrix having one of the forms 
CR, S, or 3. It can be seen that a, CB contain s as a sub- 
matrix, E, X contain CR, and W, y contain 3. 

If we reenter the flow chart at the appropriate entry, 
we may simplify the remaining submatrix and continue to 
do so until we eventually terminate with a reduced 
m  X m  matrix that is a  permutation of the following 
form. 

T i 
2x2 

matrices 

1 

-0 

-1 0  1 
00 i 0  1 I 0 

00 00 0 0 

00 00 0 0 

“00 

000 * *‘* [ 31 
000 * ** _ 

where j is some integer 2 m/2, and 
r -l 

a= l O, 

1  1  
PI1 

1 1 

or the empty matrix. We  define the order of the reduced 
matrix as 
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3 is empty 

B = [l] 

We now let R,,i, Sm,i, and T,,,,( be the probability 
that a random m X m matrix of the form of CR, S, or CJ is 
equivalent (under an invertible linear transformation of 
variables) to a reduced matrix of order i. From the 
transition probabilities shown in Fig. 2 (an abbreviation of 
Fig. 1) we derive the recurrences 

S,,i = 3Rm.i + 2-“S,-l,i + (4 - 2-m)Sm-2,j-~, (2) 

R,,i = 2-(m-1’R,-l,i + (3 - 2-‘“-*‘)R,-z,i-1 

+ $Sm-z,i-l + tTm,i, (3) 

T,,i = &Rm-z,j-1 + (+ - 2-(m-2))T,-z,i-l 

and the initial conditions 
+ 2- (m-2)T,-l,i, (4) 

S,,i = Rm3i = Tmai = 0 ifm<O orjI0 

S o,o = Rl,lj, = Tz,z,s = 1. 

A simpler recurrence may be obtained by allowing 
invertible affine transformations as well as invertible 
linear transformations. By invoking the binary identity 

XT + x1x-2 + x; = Xl + x*x, + x2 

= (1 + X*)(1 + x2> + 1, 

followed by the application of Lemma 1, we may transform 
a matrix of the form 3 to a matrix of the form CK We may 
ignore the fact that this transformation changes the 
constant term G  in (1) to 1 + G, since for a random 
codeword both G  and 1 + G  are each 0 or 1 with prob- 
ability +. 

Let R;,i, i?&, and TAzi be the probability that a 
random m X m matrix of the form of R, S, or T is equiv- 
alent (under an invertible afiine transformation of 
variables) to a reduced matrix of order i, where i is an 
integer or an integer + $. Then R:,,, Sg+i, and T&,i 
satisfy (2) and (3) with everything primed, but (4) may 
be replaced by 

T:,j = S6--2+-1. 

To convert probabilities to integers, we set 

(4’) 

s m,i = 
2(m+lh/z~m,j 

r7n,i = 
‘J(7?L+1,“d2-1R,,i (5) 

t,,i = 2 h+*h/2-3Tm,is 

Inserting (5) into (a’), (3’), and (4’) and using (4’) to 
eliminate t gives 

Sm,i = r7n.i + s,-l,f + (22m-2 - 22m-1)Sm-2,i-*. 03) 

Tm.f = 2r,-1,i + (22,-2 - 2m)r,-2,+.l 

+ 22m-3Sm-2,i-*m (7) 

1 

Fig. 2. Abbreviation of Fig. 1, showing probabilities. 

Using (6) to eliminate r from (7) gives the basic recursion 

6n.i = ~s,-I,~ - 2~m-z.~ + (5.2+’ - 3.2m-1)~,-z,i-l 

- 3(2’,-’ - 2m-1)~,-3,i-l - (2+’ - 2m) 

. (2,,-, - 2n--3)Sm-4, i-2 m 2 3, (8) 

pith initial conditions 

so,0 = s*,o = 1; s,,: = 0 ifm<O orj < 0 

or if m = 0 or 1 and j # 0. 

Since the matrices whose order is an integer + $ corre- 
gpond to codewords of weight 2”-‘, we need only consider 
g,n, i for integral values of j. In view of Berlekamp’s results 
$11, p. 416, sec. 16.3), it is clear that s,,f is equal to 
4Zm--1-2,,,-z-;, the number of codewords of weight 2”-’ - 
)n-l-i (or 2”-’ + 2*-l-‘) in the second-order RM code 
if length 2”. 

For fixed j, (8) is of the form 

hz,i - 3S,-l,j + 2S,-z,j = fme (9) 

[f fm is the impulse function (f,, = 1, fn = 0 for m # 0), 
;hen the solution of (9) is given by (still for j fixed) 

s,,~ = (2,+’ - 1) m 2. 0; S7lt.i =0 m<O. 

For arbitrary fm, the solution of (9) is given by 

S n,j = z (2m+1-B - 1)fk. 00) 

3y repeatedly applying (9) and (10) to (8), we find that 

&n,o = 

Snhl = 

S m.2 = 

1 

22(2m - l)(am-’ - 1) 
3 

28(2” - l)(am-’ - 1)(2”+ - 1)(2m-3 - 1) 
45 , 
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TABLE I (cont.) Then  

Cofactors 

I 

w  

68 
70 
72 
74 
76 
78 
80 

82 
84 
86 
88 
90 
92 
94 
96 
98 

100 
102 
104 
106 
108 
110 
112 
114 
116 
118 
120 
122 
124 
leb 
128 
130 

6  

- 

7 

. . . 

8 
n 6 arrea POWS 

hfctofs > 338881: 
omitted)- 
421 and 
47x71 
37x47 
47x163~241 
47 

AD@, r) k  D(n + 1, r) - o(n, r) 

= y-y,-jr+l - 1) D(n, r - 1) 

As,.i e  s,+l,i - s,,i 

(15) 

= Ki2”-2i+l (22’ - 1) D(n, 2j - 2). (16) 

D(n + 1, T  + 1) = (2n+1 - l)D(n, r) (17) 

Ki/K+ = 2zi/(2”i - 1). W ) 
41x47 
4'7x89 
47x89 
47x89x241 
47X89x1559 
47x89x409 
47 
13x47 

Then (8) may be rewritten as 

As,-~,~ - 2  As,-~,~ = (4.22”-3 - 3.2”-‘)*As,-,,i-, 

+  22n-3(Sn-2.i-l + Sn-3,i-11 

- (2a*-z - 2n)(22,-6 - 2n-3)S,-4,i-z 

REFERENCES 

(19) 
7%647 
73x607 
53 
13x53 
13x53 
53x163 
23x563 
23X71 
37 
241x1151 

4?X359 

997  

109x173 

13 

and the verification is completed by using (14)-(18) to 
reduce both sides of (19) to 

KiJI(n - 2, 2j - 3)22n-2f(22i-1 _ 1). 

This proves the theorem stated in the abstract. 

In order to obtain further data on the weight structure 
of Reed-Muller codes of orders > 2, Brillhart wrote a 
computer program to determine the weight enumerators 
for some of the duals of the second-order RM codes from 
our theorem and MacWill iams’ theorem ([l], theorem 
16.21). Brillhart’s results, in factored form, are given in 
Table I. The reader will notice many patterns in these 
data, which he is invited to try to prove in general. 

which leads to the correct conjecture that 

% l,i = 
p(f+l)(y- l)(y-l- 1)(y-2- 11, . . . , (2m-2i+1- 1). 

(22-1)(24-l), * * * , (2”i--1) 
(11) 

In order to verify that (11) solves (8), let us define 

D(n, r) %  (2” - 1)(2*-l - 1) * * * (2,-) - 1) (12) 
& c 2"'+1'{(22' _  1)(22i-2 _ I)... (2' _  I))-‘, (13) 

so that (11) becomes 

% i = K$(n, 2j - 1). (14) 
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