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ON PSEUDO-RANDOM ARRAYS*

J. H. VAN LINT,? F. J. MACWILLIAMS: AND N. J. A. SLOANE

Abstract. An arrays of O’s and l’s has the u v horizontal window property if every nonzero view is seen
once when a u v window is moved horizontally across the array. We study the problem of constructing an
array which, for a given m, has the u x v horizontal window property for all factorizations rn uv. Using
maximal linear shift register sequences for the rows we are able to construct such arrays of size m (2" 1)
for various values of m, including all m =< 34 and m p or p2 where p is prime. Similarly we construct arrays of
size (2" 1) (2 1) which have both the u v horizontal window property and the u v vertical window
property for all factorizations m uv.

1. Introduction. Pseudo-random sequences and arrays have been studied by
many authors (see [1]-[19]). However the problem discussed in this paper seems to be
new. An array of O’s and l’s is said to have the u v horizontal window property if every
nonzero view is seen once when a u v window is moved horizontally across the array.
(To avoid trouble at the ends, the array should be imagined as being written on a vertical
cylinder.) Similarly the u v vertical window property holds if every nonzero view
appears once when the window is moved vertically down the array (and the array is
imagined to be written on a horizontal cylinder).

We are interested in the following questions. Problem (I). Given m, does there exist
a (2"-1) (2m- 1) array which has both the u v horizontal and vertical window
properties for every factorization m uv ? An easier question is: Problem (II). Given m,
does there exist an m (2" 1) array which has the u v horizontal window property
for every factorization m uv? These problems arose from a discussion with M. R.
Schroeder concerning the design of experiments in acoustics.

The following simple construction solves these problems in many cases. Let h (x) be
a primitive binary polynomial of degree m, and let a= a0, a 1,"’, a2-’-2 be the
corresponding maximal length shift register sequence of length 2"- 1 [15], [13]. The
array has first row a, and subsequent rows are obtained by cyclically shifting the
previous row s places to the right. We take either 2"-1 rows to get a solution to
Problem (i), or only m rows to solve Problem (II). Examples are given in Figs. l(b), 2
and 3. Not every s works, and in at least one case no s worksmif h (x) is the primitive
polynomial x 6 + x + x 3 + x 2 + 1 then there is no value of s for which the array is a
solution to Problem (I) or (II). However we conjecture that for every rn there is a
primitive polynomial h (x) and a suitable shift s for which our construction solves both
problems.

2. Construction and properties of the arrays. In this section we construct
the arrays and investigate which window properties hold. Let h(x)=
x"+ h"_lX "-1 +... + hlx + ho be a primitive binary polynomial, where ho 1. The
maximal length shift register sequence a corresponding to h (x) is the sequence

(1) a a0, al, a2m-2

where

(2) a0 a am_2 O, am-1 1
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/IDENTICAL VIEWS’ THE 2x2 HORIZONTAL

/
WINDOW PROPERTY FALLS
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--EVERY VIEW IS DIFFERENT’THE 2 x 2 HORIZONTAL.
WINDOW PROPERTY HOLDS
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0 1 1 1 1000 100 I I 01
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00 1 0101 t I t 0001
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FIG. (a) The array M(x4 + x + l, 1), which has the 4 and 4 window properties, but not the 2 2

horizontal or vertical window property e.g.
O0

appears twice in the first two row (b) The array M(x4 -I- x -t- 1,

2), which has all 4 x 1, 2 x 2 and x 4 horizontal and vertical window properties.

and

(3) ar+,,=hm-lar+,-l+ "+hoar,

r 0, 1, . The set of all binary polynomials taken modulo h (x) is a representation of
the field GF(2")[20], [21]. The polynomial x will be denoted by a, so that h(a)= 0. If

(4) X Cj, X . _.
Cj,oxO (mod h (x))
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FIG. 2.earrayMo(x4+x+l,6),whichhasall4xl, 2x2andlx4horizontalwindowproperties.

where the coefficients ci, are 0 or 1, then

ai cL"-la"-i q-" nt Ci,oao

(6) ---C],"--I

because of the initial conditions (2).

Construction of the arrays M(h, s) and Mo(h, s). Let s be an integer in the range
1 -< s <_- 2" 2. The (2" 1) (2" 1) array M(h, s) has first row a and subsequent rows
are obtained by cyclically shifting the previous row s places to the right. Then Mo(h, s)
consists of the first m rows of M(h, s). We shall see that in many (perhaps all) cases it is
possible to choose h(x) and s so that M(h, s) is a solution to Problem (I), or so that
Mo(h, s) is a solution to Problem (II). (See Tables 1 and 2.)

Examples. For m 4, h (x)= x4 + x + 1, the arrays M(x4 + x + 1, 1) and M(x4 +
x + 1, 2) are shown in Figs. l(a) and (b), and Mo(x4 + x + 1, 6) in Fig. 3. Note that in Fig.
l(b), M(x4 + x + 1, 2) has the 4 x 1, 2 x 2 and 1 x 4 horizontal and vertical window
properties and is therefore a solution to Problem (I). For example, the 2 x 2 horizontal
window property holds because in any two adjacent rows, say the first two, each of

O0 O0 11
01’ 10’ 11

1
is found in the last column followed by the first.) On

0
appears exactly once.

11
the other

hand, in Fig. 1 (a), M(x4 + x + 1, 1) has the 4 x 1 and 1 x 4 window properties but not the
2 x 2 horizontal or vertical window property. A larger example is shown in Fig. 3.

It is clear that the first column of M(h, s) is

(7) ao, a-s, a-2s,

with subscripts taken modulo 2"-1, i.e. it is formed by taking every (2"-1-s)-th
term of the infinite sequence a0, al,’". If g.c.d. (s, 2"-1) 1, then M(h,s) has
repeated rows and cannot be a solution to Problem (I), even though the first m rows

00000100001100010 t001111010001 110t
011111100000100001100010100t 1110
o,o o oo ooooo oooo ooo tol
o ooo oo o . ooooooo oI
0010010110t 1t 0110011010101111110,
01 000111001001011011 lot t001 OlO

1oooo ooooooo
,ooo oo oo ooo oo oo
Ioo oooo oo ooo oo
0110001 01001111010001110010010
,0000100001100010100111 10100011
01 1 1 1 100000100001 1000101 0011

FIG. 3. The array Mo(x + x + 1, 8), which has all 6 x 1, 3 x 2, 2 x 3 and x 6 horizontal window properties.
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TABLE
For each composite m <- 34 the table gives one or two primitive polynomials" h (x ),

si smallest s for which M(h, s0 is a solution to Problem (I), and sn smallest s for
which M(h, su) is a solution to Problem (II).

h(x) Sll

4 X4+X+I
6 X6+X5"bX2+x+l
8 X8+X7-bX6+X5-bX2+X+I
9 X9+X4+1
10 xlO+xS+x6+x4+x2+x+I
12 X12 + xIO-[- X9 + X6 + X2 + X +

x12+x 11 +x9+x8+xT +xS+x2+x
14 x4+xS+x3+x +
15 xlS+x7+x4+x+I
16 X16 + xT + xS + x4 + x3 + x2 +
18 X18 + X12 + X6 + Xz + X 3-[- X +

X18-[- xIO + x9 + xS + xS-[- X4-
20 x2+ x6 + x4 + x +

X20 + xIO + x
g + x6 + xS + x4 + x3 +

21 x2+x2+l
22 xZ2 + x +
24 X24 + X4 + X3 + X +
25 x25+x3+l
26 X26 + X8 + X7 + x +
27 X27 + XS + X7 + x +
28 xz8 + x 13 +
30 X3+ X6 + X4 + X +
32 X32 + X28 + X27 + x +
33 X33 + X6 + X4 + x +
34 X34 + X15-[- X14-[- X +

2t 2t
8 3
4 4
3 3t
5 5

31 6
16 16
7 7t
5 5
8t 8t

94 9t
10 10

116 10
13 13
26 26
74 74

1433 87
5 5
137 13
97 9t

68 68
334

122 69
22 22
17 17"I

Meets the bounds (11).
Minimum Sl for the value of

alone may solve Problem (II). On the other hand, if g.c.d. (s, 2"-1)= 1, then each
column of M(h, s) is obtained by cyclically shifting the previous column places
downwards, where st 1 (mod 2" 1).

Tables of h (x)and a are readily available in the literature [6], [13], [22]-[31] and so
the arrays M(h, s) and Mo(h, s) are easily computed.

The following theorem makes it possible to test whether or not M(h, s)or Mo(h, s)
has a particular window property.

THEOREM 1. The following three statements are equivalent.
(i) M(h, s) or Mo(h, s) has the u x u horizontal window property.
(ii) No linear combination of

1, X, X
2 v--1. s+l s+v-1. 2s
," ",X X ,X ,’" ",X X ,"

(8) o,-:)+: (-)+-
X ,’’’,X

with coefficients 0 and 1 is divisible by h (x ).
(iii) The elements

(9)
(u-1)s+l (u-1)s+v-1

O ," ",0

of GF(2") are linearly independent over GF(2).
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TABLE 2
For various m and h(x) the table gives (unstarred) all values of s ]’or which M(h, s) has all possible

horizontal and vertical window properties and Mo(h, s) has all possible horizontal window properties. If s is
starred then Mo(h, s) has all possible horizontal window properties even though g.c.d.(s, 2" )> 1. The last two
columns give the total number o]:s for which M h, s) is a solution to Problem (I)(Nl(h )), orfor which Mo(h, s) is
a solution to Problem (II)(Nx(h)).

Acceptable for both Problems (unstarred)
m, h(x) Problem (II) only (starred) Ni(h) Nii(h)

m=3 1,2,3,4,5,6. 6 6
h(x)=x3+x +

m 4 2, 6*, 7, 8, 9*, 13. 4 6
h(x)=x4+x+

m 5 1, 2, 3, 30. 30 30
h(x)-- x / x /

m =6 3*, 8, 11, 52, 55, 60*. 4 6
h (x)= x / x / x / x /

m 6 8, 15", 23, 40, 48", 55. 4 6
h(x)=x6+x+

m =8 4, 8, 15", 16, 18", 23, 32, 35", 37, 39", 41, 42", 44, 38 66
49, 50", 52, 54", 55", 62, 64, 65", 67, 73, 76, 77,
78", 86, 99", 100", 106, 108", 110", 118 then 255-s.h(x)= xS / xT / x6 / x / X2 / X /

m =9 3, 6, 17, 22, 25, 26, 29, 31, 33, 34, 35*, 38, 150 186
h(x)=x9+x4+1 43, 47, 48, 50, 55, 56", 58, 62,.

m 10 5, 7, 14, 15", 18", 21", 22", 23, 28, 32, 37, 49,
h(x)= x1+ x + x + x4 + x + x + 50, 53, 65, 67, 68, 74, 86, 95,

162 252

h(x)=x 12

m 12 6", 31, 46, 60", 64, 153", 186", 225", 285", 327", 58 132
353,436, 464, 471", 477", 480", 516", 531",
621", 622,/xIO/x9 /x6/x2/x /

__Z2_
Remark. A similar result holds for windows of irregular shape, e.g. I--I

Proof. (ii)=), (i). Suppose two u x , subarrays of M(h, s) are equal. Thus for some
values of and j

ai-ks-t ai-ks+t

for all 0-<_ k =< u 1, 0 -< =< v 1. Hence by (4)-(6) the m polynomials

i-ks+t j-ks+tx x (mod h (x))

have degree ---m- 2, and are therefore linearly dependent over GF(2). Since

g.c.d.(xi-(u-1)S-xi-(u-1)s, h(x)) 1,

we find that the polynomials (8) are linearly dependent modulo h (x).
(i)=), (ii). Conversely, suppose the polynomials (8) are linearly dependent modulo

h(x), say
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u--1 v--1

(10) Y’, dk,xkS+t---O(mod h(x)),
k=0 t=0

where the coefficients dkt are 0 or 1 and are not all zero. Therefore, for any i,

u--1 v--I

E dktxi-ks+t =_ 0(mod h(x)).
k=0 t=0

By examining the coefficient of x "-1 in this equation, and using (6), it follows that

u-1 v-1, dka-ks+ O.
k=O t-O

Hence the subarray

ai ai+l ai+v-1

ai-s ai-s+l ai-s+v-1

ai-(u-1)s ai-(u-1)s+v-1
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of M(h, s) or Mo(h, s) satisfies a linear constraint, and cannot take on all 2"- 1
different values as varies. Therefore the u x u window property does not hold. (E.g. in
Fig. l(a) any 2 x 2 subarray has a constant main diagonal.)

(ii)<=> (iii). This is simply a translation of the statement that (10) holds if and only if

u--1 v--1

Y’, dk ks+ O. Q.E.D.
k=0 t=0

Obviously if M(h, s) (or Mo(h, s)) has a certain window property then so does
M(h, 2"- 1- s) (or Mo(h, 2"- 1- s)).

COROLLARY 2. The m x 1 horizontal window property holdsforM(h, s)orMo(h, s)
if and only if the minimal polynomial ([20], [21 ]) of" has degree m.

For example M0(x4+ x + 1, 6) (see Fig. 2) has the 4 x 1 horizontal window pro-
6 4

X
3 2perty, and the minimal polynomial of a isx + +x +x+l.

THEOREM 3. Suppose g.c.d.(s, 2" 1)= 1. Then the u x u vertical window property
holds for M(h, s) if and only if the u x p horizontal window property holds.

Proof. Since g.c.d.(s, 2"- 1)= 1 the first column (see (7)) is a maximal linear shift
register sequence. Suppose the u x p horizontal window property holds but the u x p

vertical window property does not. Without loss of generality we may assume that two
identical windows appear in the first s columns. But (see Fig. 4) this implies that two
identical windows appear in the first u rows. Q.E.D.

Thus if m is a prime, and h(x) is any primitive polynomial of degree m, M(h, 1) is a
solution to Problem (I), and Mo(h, 1)is a solution to Problem (II).

Another consequence of Theorem 1 is"
THEOREM 4. If Mo(h, s) is a solution to Problem (H) then

(11) s >-largest divisor of m which is less than m.

Proof. If m up and s < p then the elements (9) are certainly not indepen-
dent. Q.E.D.

Of course this bound is not always met. For example if m 6, h (x)= x6 + x + 1 then
the smallest s is 8 (see Table 2). But we conjecture that for each m there exists an h(x)
such that, if s is the largest divisor of m less than m, then M0(h, s) is a solution to
Problem (II). Table 1 shows the best results known to us. We have already observed that
if m is prime s can be taken to be 1. For composite values of m <_- 34 the table gives one
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ao a
-s

a ai+

ai_

FIG.4. The proof of Theorem 3. If -Is (mod 2 1) then the three windows are equal.

or two primitive polynomials h (x) together with
st smallest value of s for which M(h, &) is a solution to Problem (I),

and
su smallest value of s for which Mo(h, su) is a solution to Problem (II).

For m _-< 20 the values of sx and su in the table are the lowest possible for any choice of
h(x). The above conjecture is seen to hold for m <_-20 and some higher values. For
m > 20 we have not carried out a systematic search for good h (x).

THEOREM 5. If rn uv then M(h, u) and Mo(h, u) have the u x v horizontal
window property.

m-1Proof. With this choice of s the elements (9) become 1, c,..., c and are
linearly independent by definition. Q.E.D.

COROLLARY 6. If m p2 (p prime) then M(h, p) is a solution to Problem (I), and
Mo(h, p) is a solution to Problem (II).

Proof. In this case the only windows to be considered are of sizes p2 1, p x p and
1p2. Q.E.D.

If rn 2n the number of values of s for which the 2 n horizontal window property
holds for M(h, s) or Mo(h, s) is, by Theorem 1, the number of s such that

f(,) + g(,) 0

for all nonzero binary polynomials f(x) and g(x) of degree <-n- 1. This number is
clearly equal to (22"- 1) minus the number of pairs (f(x), g(x)) which are relatively
prime.

THEOREM 7. The number of pairs (f(x), g(x)) of nonzero binary polynomials of
degree <=K which are relatively prime is

(12) N(K) 2z:+a- 1.

Proof. When K 0 there is a unique pair (1, 1), so

(13) N(O)= 1.

Consider all pairs of nonzero polynomials f(x), g(x) with degree _-<k. Let
g.c.d.(f(x), g(x))=e(x)of degree exactly L_->O. Given e(x)there are N(K-L)such
pairs. Therefore

(14) (2:+1-1)2= E 2LN(K-L).
L=0
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The solution of (13) and (14) is (12). Q.E.D.
COROLLARY 8. Ifm 2n there are 22n-1 values ofs for which M(h, s) (orMo(h, s))

has the 2 n horizontal window property.
Of course this number is considerably reduced if we require that all possible

window properties hold. Table 2 shows the values of s which work for various m and
h(x). In the table if s is unstarred then M(h, s) solves Problem (I) and Mo(h, s) solves
Problem (II). If s is starred then Mo(h, s) solves Problem (II) but g.c.d.(s, 2" 1) > 1 and
so M(h, s) does not solve Problem (I). The table also gives Ni(h), the total number of s
for which M(h, s) solves Problem (I), and Nn(h), the total number of s for which
Mo(h, s) solves Problem (II). Rather surprisingly these numbers depend on the choice
of h(x). For example when m 8

Ni(x 8 + x 7 + x 6 + x + x 2 + x + 1) 38,

NII(X s
-[- x 7 + x 6 + x + x 2 + x + 1) 66,

whereas

NI(X 8 -- x 6 -- x -- x -- 1) 26,

NII(X 8 + X
6 + X

5 -[" X -[- 1)-" 60.

3. A shift register which generates the array M0(h, s). From now on we assume
that the array Mo(h, s) has the m 1 horizontal window property (see Cor. 2). By
definition each row of Mo(h, s) is generated by an m -stage linear feedback shift register.
In this section we show that successive columns of Mo(h, s) are also generated by a shift
register.

THEOREM 9. IfMo(h, s) has the m 1 horizontal window property then there is an
m m (0, )-matrix Tsuch that the columns Co, c,- C2m--2 Of Mo(h, s) are related by

(15) Ct+l Tot, O, 1,’’’.

Proof. If Mo(h, s) has the m 1 horizontal window property then by Theorem 1
--2s -(m--1)s1, a ,a ,...,a

are linearly independent. Hence for any r there is a vector b(r)= (b0," , b’-l) such
that

--sia bio
i=o

Taking r 1 we find

i.e.

t+l= E b O t-si,
i=o

at+ E biat-si.
i=0

Applying this to r 1- s, 1- 2s, we find that the vectors b(1), b(1- s), are the
rows of a matrix T such that (15) holds. Q.E.D.

T can be written down directly from Mo(h, s): the ith column of T is the column of
the array that follows the column having a single 1 in the ith place. For example
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mo(x6 + x 4- 1, 8) is shown in Fig. 3, and

(16) T

-0 0 1 0 1

0 0 0 1 0

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

The following properties of T are easily proved" (a) h(T)= 0 (e.g. (16) satisfies
T6 + T+ I 0), (b) T2"- I, and (c)

bin-1 b bo

Ts= i O1 ""’" O0 010 1

where x" + b,n_lx rn-1 4-. 4- bo is the minimal polynomial of a s.
The matrix T determines an m-stage shift register which generates all the columns

of M0(h, s) from the first column. This is best described by means of an example: Fig. 5
shows the shift register corresponding to (16). The feedback connections contain mod 2
adders- in exactly the locations where T contains l’s. The shift register is shown in
a state corresponding to the first column of Fig. 3. Then the next state is the second
column, and so on.

Remarks. (i) There are obvious generalizations of this theory to arrays over larger
alphabets and to arrays of higher dimension, but we do not pursue these topics here.

FIG. 5. The shift register corresponding to the matrix TofEq. (16), which generates successive columns ofFig. 2.
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(ii) One may also study the window properties with the condition that every view,
including the zero view, appears exactly once. In this case it is trivial to use De Bruijn
sequences, [32]-[34], to construct m 2" arrays which have the m 1 and 1 m
horizontal window properties (including the zero view). For example, if m 3,

0 0 1 1 1 0 .]
0 0 0 1 1 1 01J.1 0 0 0 1 1

However, when m is composite it is not in general possible to construct such arrays
having all possible window properties. The first example would be a 4 16 array with
the 4 1, 2 2 and 1 4 horizontal window properties (including the zero view). But
M. E. Best has shown by computer that no such array exists.
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