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Most Primitive Groups Have Messy Invariants 
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Suppose G is a finite group of complex n x n matrices, and let AC be the 
ring of invariants of G: i.e., those polynomials fixed by G. Many authors, from 
Klein to the present day, have described RG by writing it as a direct sum 
rfzl ~@[8, ,..., 8,]. For example, if G is a unitary group generated by reflections, 
6 = 1. In this note we show that in general this approach is hopeless by proving 
that, for any E > 0, the smallest possible d is greater than 1 G ln-1--c for almost 
all primitive groups. Since for any group we can choose S Q 1 G In--l, this means 
that most primitive groups are about as bad as they can be. The upper bound on 
6 follows from Dade’s theorem that the 19~ can be chosen to have degrees dividing 

I G I, 

Let G be a finite group of complex n x n matrices, If f(xr ,..., x,) is a poly- 
nomial in x1 ,..., x, with complex coefficients, and A = (uij) is an element of G, 
then Af(.r, ,..., x~) =f(C a,,.~~ ,.,., C apzjxj) is the polynomial obtained by 
letting A act as a linear transformation on the variables x1 ,.,., x, . The ring RG 
of inoariunts of G consists of all polynomials f with Af = f for all A E G. The 
central problem is to find a description of RG that is concise and easy to use. 
Several types of bases for RG have been considered ([4, Ch. XVII], [32]), but we 
are concerned here with finding a direct sum decomposition 

whereOr ,..., 19, are algebraicalIy independent homogeneous invariants and q1 = 1, 
Q ,..,, r], are certain other homogeneous invariants. It is known from the theory 
of Cohen-Macaulay rings ([IS, Prop. 131) that RG always has a direct sum decom- 
position (1). Then RC is a finitely generated free @[O, ,..,, 8,]-module of rank 8. 
We are interested in the smallest value of S that can be attained by any choice 
of 6, ,..,, 0,: call this value 6(G). We shall give examples to show that 6(G) may 
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be large, and then show that for most primitive groups S(G) is about as large as 
it can be. 

In [33, Section 3.4.121 T. A. Springer has proved a somewhat similar result 
for the ring of invariants of binary forms of given degree. 

The 8, and rlj in (1) form a polynomial basis for RG. In the past century 
polynomial bases have been given for a number of groups ([l], [lo], [13], [16], 

[21], [23]-[25], [27], [30]-[38]). E. Noether had shown in 1916 ([29]; see also 
[32], [42]) that any group has a polynomial basis containing no more than 
(l”ii”‘> invariants, i.e. about 1 G I”/R! for large / G /. We had always thought that 
this was a very weak bound (cf. also [I 3]), b t u in fact it is not far off, at least for 
primitive groups. 

WC make use of the Afolien series of G, i.e. the generating function 

in which the coefficient of Xj is the number of Iinearly independent homogeneous 
invariants of degree j. Molien ([ZS]; see also [4]> [27], [32]) showed that the 
series can be calculated from the identity 

If  R" has the decomposition (1) then the Molien series may be written as 

where 

THEOREM 1, 

Proof. I f  we equate (2) and (3), multiply by (1 - ,I)“, and let h --f I we 
obtain l/l G 1 = S/d, ... c&, . 

EXAMPLE 1. If  G is a finite unitary group generated by reflections then RC 
is a free ring and may be expressed in the form (1) with 8(G) = 1 and d,d, .*a d, --. 
1 G 1 (Shephard and Todd 1307; see also [5]). 

The next two examples are six-dimensional groups from Lindsey’s list [23]. 

EXkMPLE 2. Let G be a six-dimensional representation of a nonsplitting 
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central extension of Z, by the alternating group A$~, of order 3 * 360. This group 
is of interest because it is generated by matrices with two eigenvalues -1 and 
the rest 1. Such groups are a natural generalization of the class of groups given 
in Example 1, ([18], [41]). We shal1 see that B(G) > 54, which suggests that the 
invariants of these groups do not have such a simple description as those of 
Example 1. 

The Molien series may be calculated from (2), and when written in simplest 
terms (with numerator and denominator relatively prime) is equal to 

(5) 

where 

f,(A) = 1 - A3 + 3h” + x9 + 4P + 3A15 + 5P 
+ 3x21 + 4p4 + A37 + 3A30 - A33 + A36 

and #7 = #,(A) is the r-th cyclotomic polynomial. The numerator of (5) (and of 
(6)-(10) below) is a symmetric polynomial: this is an easy consequence of the 
fact that all the group elements have determinant one. The TayIor series 
expansion of the MoIien series is 

1 + 2x3 + 7x6 + 1 6hg + 38h’2 + 71915 + ]46#8 + . . 

To obtain a lower bound on S(G) we make use of Theorem 1. Let the Molien 
series be written in the form 

@(3)(x) = (1 - ~DI)( 1 _“,‘ti) . ., (1 _ ADo) 

where f3(h) has nonnegative coefficients and the product DID, ... D, is a mini- 
mum. From Theorem 1, 

S(G) > S,(G) = ““y;.; D6 . 

There are some subtleties in the determination of the minimum value of 4 ... De, 
and it seems worthwhile to sketch a method for calculating it. By equating (5) 
and (6) we see that the #i’s in the denominator of (5) can be partitioned into six 
sets, say 

kJ fll 9---r 5&l) 
. . . 

Mt,, I’**> A,,) 
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such that the product of the j-th set divides 1 ~ hDj. (Thus the cjd’s in each set 
are distinct.) Let 

F, 7. l.c.m.{tj, ,..., tjr,}. 

Then the product of thej-th set of +;‘s divides 1 - AF9, Fj divides Dj , and 

Consequently, if we multiply the numerator and denominator of @r)(h) by 

we obtain 

(7) 

which is a form of the Molien series intermediate between @(r)(A) and @(s)(h). 
Then @a)(A) is obtained by multiplying the numerator and denominator of 
CD(~)(X) by 

In the present example it is not difficult to see that only three partitions of the 
+i’s need he considered, namely: 

F6 = 30. 
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Suppose partition (I) occurs. Then 

PyX) = @(l)(A) 

1 -F+3P+“‘+P 
= (1 ~ h3)3(1 ~ P)(l ~ P)(l - P) ’ 

and pIa = 1. Since the numerator of P)(h) contains a negative coefficient, 
pz3(X) # 1. If we take P&) = 1 + P, we obtain 

1+2Xe+4Xg+5X12+‘..+h3g 
@‘3’(h) = (1 - h3)2(] - x6)2(1 - X12)(1 - A15) (8) 

with nonnegative coefficients in the numerator, and D, *a. R, = 32 7 6s * 12 7 15 = 
58320. Any other choice of ps3(X) will give a larger value of D, ‘*a D, . 

Suppose instead that partition (II) occurs. Now 

and 

Plzo) = A0930 

1 ~ 2A3 + ... + P 
@(2)(A) = (1 -h3)4(1 -A'")(1 _ pl) ' 

Again p&X) # 1, and so D, ... D, 2 58320. Similarly for partition (III). We 
conclude that the minimum value of D, I*. D, is 58320, and therefore 

58320 
S(G) 2 S,(G) = m = 54. 

EXAMPLE 3. In this example we consider a member of another important 
class of groups, a six-dimensional representation of S&,(13) og order 2184 
([9, Section 381). Using th e method described in Example 2 (there are now 29 
partitions to be considered) we find that the Molien series when written with 
minimum D, ..f D, is 

@(3)(h) = 
1 + P + 5P + 6h1* + 12hl” + 18P + 25h2” $- ... + X7* 

(1 - A”)(1 - X8)(1 - P)S(l ~ X14)(1 - P) (9) 

= 1 + A4 + 2P -j- Al" + 9P2 + W" -f- 22P + 27X'S + 54P* f .I. 

Consequently 

S(G) 2 S,(G) = 768. 

EXAMPLE 4. Let G be the 24-dimensional representation of the Conway 
group ‘0, of order 83 15553613086720000 ([q), The Molien series is 
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where 

p@) _ 1 $- p3 + jp + 2h28 + p + p + 3A:JJ t . . 

+ 40]07gpO -I- ..- .I. AD'" 

and 

q(h) :~- (I ~ h”)( I ~ P)( 1 ~ P)( I - FO)(l “- A”2)( I - P)3( I - PO)? 

(1 - A=)“( 1 ~ ,b”G)“( 1 ~ pJ)( 1 - pp)( 1 - p?)(l - p2)( 1 - AS”) 

(I ~ A”“)( I ~ A”“)( I - A’“)( I - X7x)( 1 - P), of degree 940. 

JVe have not attempted to minimize D, ... D,, in this example. However, if (10) 
is the minimum-and our experience suggests it should be close to the minimum 
then 6(G) ‘: 8,(G) = D, ... I),,/1 G 1 :- 205679393714995200. 

I<x.AnSrnI,E 5. The direct product ZJ “: Z,,, of the symmetric group of order 6 

with a cyclic group of order m, where m is prime to 6, has a two-dimensional 
representation ([la) for which S(G) is m. 

These examples illustrate the fact that in general S(G) is large. We now give 

our bounds on 8(G). The upper bound is a consequence of the following (un- 
published) theorem of Dade, which we include with his permission. 

Let R = @[+ ,..., x,]. A sequence 8, ,..., 8,,, in R is called an R-sequen.ce 
([20, p. 841, [43, II, p. 3941) if the image of 8,.,., is neither a unit nor a zero- 
divisor in R/(RB, + ..’ 1 Z&9,), for 0 :+; k -:: M. 

rrHFOREIbI 2 (Dade [7]). With G as above, there exists an R-sequence 0, ,, .., 8, 
such thut each Bi is a homogeneous invariant in RF of degree dividin-q 1 G ‘. 

Kemnrk. Once such an R-sequence has been found it is straightforward to 
sholv that there are further invariants Q ,., ., vfi such that (I) holds (see for example 

[351)- 

ProoJ. Let A, consist of the homogeneous linear polynomials in K. Choose 
any non-zero fr E R, , and let f  11 
under G. Set 

= f7 , f,? ,.,., flo, be the distinct images of fi 
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Suppose 0, ,..., Bi (1 < i < n) have been found. Choose fi+l E R, such that 

fi+r is not in the prime ideal (fie, , fir, ,...,fic,) VI) 

for all 1 < c, ,< a, ,.*., 1 < c$ < n, . (Since there are only finitely many of 
these ideals, and each intersects R, in a vector space of dimension i < n, such an 
fi+r can aIways be found.) Let fi+l,l =fi+r , fi+rs2 ,...,f+l,cai+, be the distinct 
images off,+r under G, and set 

The construction implies thatfi+r, j is not in the ideal (11) for all 1 < cr < a, , . _ , 
1 < C~ < ai . Repeat until 0r ,..., 8, have been obtained. Clearly the 0, are 
homogeneous invariants of degrees dividing ] G 1. That 0r ,..., 8, is an R- 
sequence follows from N. Bourbaki, Groupes et Algebras de Lie, Chap. 5, 
Exercise 5, Hermann, Paris, 1968, p. 137. 

COROLLARY 

S(G) < 1 G In--l. 

Proof. Immediate from Theorems 1 and 2. 

THEOREM 3. Let p1 be fixed, and let % be any infinite family of finite, inequiwa- 
lent, n x n complex groups that satisfies 

(Al) every element oj%? is irreducible, and 

(A2) there are finitely many abstract groups HI ,..., H, such that ;f  GE % 
then G/Z(G) g Hk f  OP some h, where Z(G) is the center of G. 

Then for any f&d E > 0, 

and so 6(G) > 1 G ln-1-s for almost all G E ‘X. 

hoof. For G f % let Z(G) have order 7p~. Then by [l 1, Theorem 1.41, 
Z(G) = (~$1: 0 < j < m}, where w == 8,%/m. Suppose G/Z(G) z Ht. Then 
/ G ) = m ) Hk I < mh, where h = maxi] HI I,..., / H, 1). The degree of any 
homogeneous invariant of G must be divisible by m, so in (4) each dj > M. Then 
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As 1 G ] + c$, we must have ] Z(G)] = m -+ cci (since there are onIy finitely 
many H,‘s), which proves (8) and the theorem. 

Let G be an irreducible finite group of 1~ x n matrices acting on a complex 
n-dimensional vector space V. Then G is imp&z&e if I’ is a direct sum of 
vector spaces: 

where m > 2, each Vi j; 0, and for all A E G and all i, A(FJ = Vj for some 
j = j(A,i). 0th erwise G is primitive. G is quasiprimitiwe if for any normal 
subgroup N of G, P is a direct sum (14) where the Vi are invariant under N 
and afford equivalent representations of N. By Clifford’s theorem ([S], [9], [14]) 
a primitive group is quasiprimitive. In the classification of linear groups it is 
customary to restrict attention to primitive or quasiprimitive groups ([l], [2], 
[12], [16], [l 81, [22], [40]) since imprimitive groups are induced from a repre- 
sentation of smaller degree of a proper subgroup (cf. [9, Th. 14.1 (4)]). 

THEOREM 4. The conclusion of Theorem 3 applies to the family of &equivalent 
n X n primitive groups OT quasiprimitive groups. 

Proof. Suppose G is quasiprimitive, and let H be any abelian normal sub- 
group of G. By hypothesis V is the direct sum of one-dimensional subspaces 
that are invariant under I-r, and the elements of H can be taken to be scalar 
matrices. Hence H C Z(G). Th ere ore by Jordan’s theorem ([l], [9]), ] G/Z(G)] f 
is bounded, and so (A2) holds, proving the theorem. 

Remark. It seems likely that a similar result will hold for the class of al1 
n x n groups, or all rz x 71 irreducible groups, The conclusion will not be as 
strong, however, since for any PZ 2 2 there is an infinite family of irreducible 
imprimitive unitary groups generated by reflections with S(G) = 1 (the groups 

Gh P, 4 in [301). 
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