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Most Primitive Groups Have Messy Invariants
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Suppose (& is a finite group of complex # X # matrices, and let R® be the
ring of invariants of G i.e., those polynomials fixed by G. Many authots, from
Klein to the present day, have described R by writing it as a direct sum
E?:1 7,C[8; ,-.., 8,]. For example, if G'is a unitary group generated by reflections,
8 = 1. In this note we show that in general this approach is hopeless by proving
that, for any € > (), the smallest possible & is greater than | G [*~'~¢ for almost
all primitive groups. Since for any group we can choose § < | G |*, this means
that most primitive groups are about as bad as they can be. The upper bound on
& follows from Dade’s theorem that the 8; can be chosen to have degrees dividing
[G1.

Let G be a finite group of complex # X » matrices. If f{x; ,..., x,) is a poly-
nomial in x, ,..., x,, with complex coefficients, and 4 = (a;) is an element of G,
then Af(xy ..., %) = f(& a1;%; 5., 3 apy%;) is the polynomial obtained by
letting A act as a linear transformation on the variables x, ..., x,, . The ring R%
of invariants of G consists of all polynomials f with Af = f for all A= G. The
central problem is to find a description of RS that is concise and easy to use.
Several types of bases for R have been considered ([4, Ch. XVII], [32]), but we
are concerned here with finding a direct sum decomposition

&
R¢ — 21 niC[Gl EARES] 671]1 (1)
i

where 8, ,..., 8, are algebraically independent homogenecus invariants and ; =1,
7 5e-y 9g Are certain other homogeneous invariants. It is known from the theory
of Cohen-Macaulay rings ([15, Prop. 13]) that R always has a direct sum decom-
position (1). 'T'hen RC is a finitely generated free C{#, ,..., #,]-module of rank &.
We are interested in the smallest value of § that can be attained by any choice
of 6, ,..., 8,: call this value 3(G). We shall give examples to show that §(G) may

* ‘Work done while at Union College, Schenectady, N.Y, 12308.
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be large, and then show that for most primitive groups §(G) is about as large as
it can be.

In [33, Section 3.4.12] T. A. Springer has proved a somewhat similar result
for the ring of invariants of binary forms of given degree.

The & and 7; in (1) form a polynomial basis for RS In the past century
polynomial bases have been given for a number of groups ({11, {10], [13], {16],
[21], [23]-[25], [27], [30]-[38]). E. Noether had shown in 1916 ([29]; see also
{32], [42]) that any group has a polynomial basis containing no more than
({1} invariants, i.e. about | G {#/n! for large | G |. We had always thought that
this was a very weak hound (cf, also [13]), but in fact it is not far off, at least for
primitive groups.

‘We make use of the Molien series of G, i.e. the generating function

Do) = ¥ dimc(RO),
i=0
in which the coefficient of A’ is the number of linearly independent homogeneous

invariants of degree j. Molien ([28]; see also [4], [27], [32]) showed that the
series can be calculated from the identity

] 1
T L de Ay &

AEG

DN =

If RC has the decomposition (1) then the Molien series may be written as

& &;
i A7

T = )1 — Ay (1 A®) @)

Ps(A) =

where

degn; = ¢y, deg 0; = d; .

THEGREM 1.

didy - d,
3 2o e R 4

Proof. If we equate (2} and (3), multiply by (I — Ay, and let A — | we
obtain 1/| G| = é/d, -+ d,, .

ExampLe 1. If G is a finite unitary group generated by reflections then RE
is a free ring and may be expressed in the form (1) with 8(G) = 1 and d\d, -+ d,, =
{ G | (Shephard and Todd [30]; see also [5]}.

The next two examples are six-dimensional groups from Lindscy's list [22].

ExamrLe 2, Let G be a six-dimensional representation of a nonsplitting
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central extension of Z, by the alternating group &%, of order 3 - 360. This group
is of interest because it is generated by matrices with two eigenvalues —1 and
the rest 1. Such groups are a natural generalization of the class of groups given
in Example 1, ([18], [41]). We shall see that 8(G) = 54, which suggests that the
invariants of these groups do not have such a simple description as those of
Example 1.

The Molien series may be calculated from (2), and when written in simplest
terms (with numerator and denominator relatively prime) is equal to

B HiR
DYy = $1°b2"0: iP5 be Prathas .

where
FiA) = 1 — A% 4 3485 + A% 1 4A12 - 3A15  S5p18
+ 31\21 _i_ 4A24 —f— AZ7 + 3Aﬁﬂ — A3 _I_ A36,
and ¢, = ¢,(A) is the r~th cyclotomic polynomial. The numerator of (5) (and of
(6)-(10) below) is a symmetric polynomial: this is an easy consequence of the

fact that all the group e¢lements have determinant one. The Taylor series
expansion of the Molien series is

1 20° 4 728 4 16)° + 38X2 - T6X5 - 146715 |- ---

To obtain a lower bound on 8() we make use of Theorem 1. Let the Molien
series be written in the form

BN} - f5()
PPN = T AEYT = APy (= AP ©

where f,(A) has nonnegative coefficients and the product DyD, -+ Dy is a mini-
mum. From Theorem 1,

85G) = 8,(G) — Lale " Ds

ey
There are some subtleties in the determination of the minimum value of D, -+ Dy,
and it seems worthwhile to sketch a method for calculating it. By equating (3)
and (6) we see that the ¢,’s in the denominator of (5) can be partitioned into six
sets, say

{‘:Fstu ety ?53”1}

Bty ooy}
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such that the product of the j-th set divides 1 — AP: {Thus the ¢,’s in each set
are distinet.,) Let

Fy = Lemdt; .o, ty .
Then the product of the j-th set of ¢,’s divides 1 — A", F; divides D, , and

Dy Dy . P By

-

WO ="Ter 7 e

Consequently, if we multiply the numerator and denominator of $M(A) by

| — 0 | ABs
p12(A) — ’
‘}6;11 d){]rl ‘;stl (ﬁ‘sr,;

we obtain

@(2)(,\) = (1 — /\Fl)fzi(f?)(l — J\Fﬁ) 4 (7)

which is a form of the Molien series intermediate between $U(A) and $3(A).
Then @#A) is obtained by multiplying the numerator and denominator of
&)\ by

L AP 1P
PQS(A) = [ /\F—l_ [ —AF:

In the present example it is not difficult to see that only three partitions of the
$.'s need be considered, namely:

(1) b1 s dshs (b1 ba)s {hy s s
{¢’1 4 ¢2 ’ ?53 H 566}:
{‘?51 * ¢‘2 * 953 1 ‘?S‘i 1 '1'66 4 9612}1
{951 ’ 963 ) 955 ¢ ‘?515},
with
F,=F,=F,=3, F, =6  F,=12, F,=15

(A1) {cy s s {hs » bals by » bl {h » ol
P1obas 3, bas be s Prals
{95'1 * ¢2 ’ QSR ’ ?Ss 4 ‘;56 4 ¢'15}!
with
F—F,—F,—F,—3  F,—12, Fy=30.

(TIIT) {5 babs {15 bals {hr > bl {hy » b
{12 bo by s dal,
{¢1 !¢2 "f’s »‘f’4l‘f’5!¢6!¢'12 l‘?ﬁls}!

Fy—F,—F,—F, =3, F,—6, Fy=060.

with
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Suppose partition (I} occurs. Then

GA()) = PU())
D ey o Ay
= P — X1 — A=yl — Amy

and pyo(*) = 1. Since the numerator of @A} contains a negative coefficient,
pai(A) == 1. If we take pga(A) = [ + A%, we obtain

LT 208 AN SME e e A
@(3)(,\) - (1 _ )‘3)2(] —_ A6)2(l _ )112)(1 — A15) (8)

with nonnegative coeflicients in the numerator,and D, -- Dy =32-62+12 - 15 =
58320. Any other choice of p,,(A} will give a larger value of D, -+ Dy .
Suppose instead that partition (II) occurs. Now

P12(A) = Proyg

and

e

PR = (1= /\3)4(1 — )‘12)(1 — %0}

Again py(A) 5 1, and so Dy - Dy = 58320. Similarly for partition (ILI). We
conclude that the minimum value of D, -+~ D, is 58320, and therefore

58320

3360 >t

8(G) = 3(G) ==

ExampLE 3. In this example we consider a member of another important

class of groups, a six-dimensional representation of SZL.(13) of order 2184

([9, Section 38]). Using the method described in Example 2 (there are now 29

partitions to be considered) we find that the Molien series when written with
minimum D, - Dy is

1 + Alﬂ + SAIE + 6A14 + lzhlb + 18)\18 + 25h20 _+_ fee _+_ /\70 (9)
(= W50 — )1 — MU (T — %)
1A 228 o XIS QM2 L XM L DONIE | Q7M1 | 54A0 | -

D)) =

Consequently
8(G) = §,(G) = 768.

ExampLeE 4. Let G be the 24-dimensional representation of the Conway
group -0, of order 8315553613086720000 ([6]). The Molien series is

D.o(d) = p(A)ald), (10)
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where

PIA) == 1 - A2 D26 D8 L N0 L A3 Bp |
4 40T078A00 |- -oo | YMIG

and

gO) = (F— M) — XY — ML — AO)(1 = AL — NH(| — 2
. (] . A32)2(1 . f\ﬂﬁ)?(t . Adﬂ)(l — ,\42)(1 —_— /\46)(1 _ 1\52)(1 . AEG)
(L — O] — AL - AY(| — Y] — X%), of degree 940,

Thus

DyA) = T_Ii)tz (L A2 | A% L8 L 20 L 22 | 3p

A AT - 3X28 L AN | SAR L S)M | [OX L 8
4 14X £ 1M £ 2208 DTA | 4405 | 45N50 o --)

‘We have not attempted to minimize £3, --- [, in this example. However, if (10)
13 the minimum—and our experience suggests it should be close to the minimum

then 8(G) =2 8,(G) = Dy Dyyf| G| = 205679393714995200.

ExanmpLe 5. The direct product &% % Z,, of the symmetric group of order 6
with a cyclic group of order m, where m is prime to 6, has a two-dimensional
representation ([16]) for which §(G) is m.

These examples illustrate the fact that in general 8(G) is large. We now give
our bounds on 8(G). The upper bound is a consequence of the following (un-
published) theorem of Dade, which we include with his permission.

TLet R = Clxy ..., x,]. A sequence 6, ,...,0,, in R is called an R-sequence
([20, p. 84], [43, 11, p. 394]) if the image of §, , is neither a unit nor a zero-
divisor in R{(R0, + --- + RE,), for 0 = & < .

Turorem 2 (Dade [7]).  With G as above, there exists an R-sequence 0 ,..., ¢
such that each 0; is a homogeneous invariant in RS of degree dividing | G .

n

Remark. Once such an R-sequence has been found it is straightforward to
show that there are further invariants , ,..., 5, such that (1) holds (sec for example
£35]).

Proof. Let R, consist of the homogeneous linear polynomials in &, Choose
any non-zero fi € Ry, and let fi; = £, fi. ""‘f1"1 be the distinct images of f;
under G, Set

"y

HI = Ufrl
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Suppose 8, ,..., 8; (1 =< i < n) have been found. Choose f;, € R, such that

fisr 18 not in the prime ideal ( fi, » foe, soes fic)) (11)

for all 1 < ¢ < 5,0, 1 << g, << @y . (Since there are only finitely many of
these ideals, and each intersects R, in a vector space of dimension 7 < n, such an
fi+1 can always be found.) Let f;.;; = fiia s fiaa,a oo fisaq,,, De the distinct
images of f;,, under G, and set

LSia!

8; IS H fz‘+l.;i .
=1

The construction implies that f;,; ;is notin the ideal (11) foralll < ¢, < a ...,
1 < ¢; < a; . Repeat until &, ,..., 0, have been obtained. Clearly the #; are
homogeneous invariants of degrees dividing | G[. That &, ,...,8, is an R-
sequence follows from N. Bourbaki, Groupes et Algebras de Lie, Chap. 5,
Exercise 5, Hermann, Paris, 1968, p. 137.

CoRoLLARY
5G) < | G ",
Proof. Immediate from Theorems 1 and 2.

TuroreM 3. Let u be fixed, and let € be any infinite family of finite, inequiva-
lent, n X n complex groups that satisfies

(Al) every element of € is trreducible, and

(A2) there are finitely many abstract groups H, ..., H, such that if Ge ¥
then G|Z(G) ~ H, for some k, where Z(G) is the center of G.

Then for any fixed € > 0,

|GS—(ITLG)1:—+00 a | G|—> o (13)

and s0 8(G) > | G |"1* for almost all G €.

Proof. For Ge¥ let Z(G) have order m. Then by [l11, Theorem 1.4],
Z(G) = {wI: 0 < j < m}, where w = &2"'/", Suppose G/Z(G) =~ H, . Then
|G| =m | Hy| < mh, where b = max{| H |,...,} H,|}. The degree of any
homogeneous invariant of G must be divisible by m, so in {4) each d; == m. Then

8(G) dy-d, = m"  mf
IGln—l—e - IG|"7‘ = (mh)n-e T pn—e
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As | G| — w0 we must have | Z(G)| = m — oo (since there are only finitely
many H,’s}), which proves (§) and the theorem.

Let G be an irreducible finite group of # » # matrices acting on a complex
n-dimensional vector space V. Then G is imprimitive if 17 is a direct sum of
vector spaces:

VeV, 0@, (14)

where m == 2, each V7, += 0, and for all A€ G and all ¢, A(V,;) = V; for some
j =j(A,7). Otherwise G is primitive. G is quasiprimitive if for any normal
subgroup N of G, V is a direct sum (14) where the I; are invariant under N
and afford equivalent representations of N. By Clifford’s theorem ([8], [9], [14])
a primitive group is quasiprimitive. In the classification of linear groups it is
customary to restrict attention to primitive or quasiprimitive groups ([1], [2],
[12}, [16], [18], [22], [40]) since imprimitive groups are induced from a repre-
sentation of smaller degree of a proper subgroup (cf. [9, Th. 14.1 (4)]).

"THEOREM 4. The conclusion of Theorem 3 applies to the family of inequivalent
n X n primitive groups or quasiprimitive groups.

Proof. Suppose G is quasiprimitive, and let H be any abelian normal sub-
group of G. By hypothesis V' is the direct sum of one-dimensional subspaces
that are invariant under H, and the elements of A can be taken to be scalar
matrices, Hence H C Z(G), Therefore by Jordan’s theorem ([1], [9]), | G/Z(Q)|
is bounded, and so (A2} holds, proving the theorem.

Remark. It seems likely that a similar result will hold for the class of all
n X n groups, or all # X n irreducible groups. The conclusion will not be as
strong, however, since for any » = 2 there is an infinite family of irreducible
imprimitive unitary groups generated by reflections with §(G) = 1 (the groups
Glm, p, n) in [30]).
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