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New upper bounds are given for the maximum number, 7m , of nonoverlapping 
unit spheres that can touch a unit sphere in n-dimensional Euclidean space, for 
n < 24. In particular it is shown that 78 = 240 and ~~~ = 196560. 

The problem of finding the maximum number, 7S , of billiard balls that can 
touch another billiard ball has a long and fascinating history (see [2]); the 
answer is known to be 12. But up to now no corresponding numbers TV have 
been determined for higher dimensions. 

We shah use the following theorem. 

THEOREM. Assume n > 3. Iff(t) is a real polynomial which satisfies 

(Cl) f(t) < Ofor - 1 < t < 4, and 
(C2) the coeficients in the expansion off(t) in terms of Jacobipolynomials 

[I, chap. 22J 

where IX = (n - 3)/2, satisfy f. > 0, fl > O,..., fk 2 0, then TV is bounded by 

This theorem may be found (implicitly or explicitly) in [3, 4, 61, but for 
completeness we sketch a simplified proof. A sphericaZ code C is any finite 
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subset of the unit sphere in n dimensions. For -1 < t < 1 let 

4 = St * WI CY 1) * c number of ordered pairs c, c’ E C such that (c, cl} = t), 

where & is a Dirac delta-function, 1 C 1 is the cardinality of C, and ( , } is the 
usual inner product. Then Jtl & dt = 1 C 1. For all k > 0 we have 

since the kernel Pz+f(x, y)) is positive definite. 
If there is an arrangement of T unit spheres S1 ,..., ST touching another unit 

sphere So, the points of contact of S0 with S1 ,..., S7 form a spherical code C 
with At = 0 for & < t < 1. It folIo%s that an upper bound to rG is given by 
the optima1 solution to the following linear programming problem: choose the 
&c--l < t < # so as to maximize J’?f A* dt subject to the constraints 

and 

1 “’ AtPgsa(t) dt > -P;*=(l), for k = 0, l,... . 
-1 

The theorem now follows by passing to the dual problem, and using the fact 
that any feasible solution to the dual problem is an upper bound TV the 
optimal solution of the original problem. 

For n = 8 we apply the theorem with 

f-(t) = y (t + 1) (t + g P (t - ;) 

where Pi stands for PF59z.5(t), and obtain 7-g < 240. %milarly for 72 = 24 

we take 
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f(t) = y (t + 1) (t + ;)z (t + ;)z t2 [f - .14jz (t 

48 
=po+jjpl+~ 1144 ” + 12992 3825 ” + 22185 73888 ” 

+ 2s p5 + ;;!g!g PO + gg P, 

where Pi stands for P~oA5a10.5(t), and obtain +rZd < 196560. Since each sphere 
in the ,?$, lattice packing in 8 dimensions touches 240 others, and each sphere 
in the Leech lattice packing in 24 dimensions touches 196560 others [5], we 
have determined r* and rZ4 . 

For other values of n below 24 we were unable to find such simple and 
effective polynomials. The best polynomial we have found for n = 4, for 
example, is f(t) = PO + alPI + a2P2 + ..* + a9P9, where aI = 2.412237, 
a2 = 3.261973, a3 = 3.217960, a4 = 2.040011, as = 0.853848, a6 = a7 = 
a8 = 0, a9 = 0.128520 (shown to 6 decimal places, although we actually 
used 17 places), and Pi stands for Pi.5To.5(t). This implies 7-4 < 25.5585. This 
polynomial was found by the following method. First replace (Cl) by a 
finite set of inequalities at the points tj = - 1 + 0.0015j (0 <j < 1000). 
Second, choose a value of k, and use linear programming to find ff,...,yt 
so as to minimize 

subject to the constraints 

Let f*(t) denote the polynomial 1 + &l~~P~+(~). Of course this need not 
satisfy (Cl) for aZl points t on the interval [-1, +]. Let E be chosen to be 
greater than the maximum value off*(t) on l---l, +] (e may be calculated by 
finding the zeros of the derivative of f*(t)). Then f(t) =f*(t) - E satisfies 
(Cl) and (C2), and so 

All the upper bounds shown in Table I, except for n = 17, were obtained in 
this way. The degree k was allowed to be as large as 30, but in all the cases 
considered the degree of the best polynomial (given in the third column of the 
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table) did not exceed 14. For n = 8 and IZ = 24 the form of the polynomi& 
obtained in this way led us to (1) and (2), but for the other values of n no 
such simple expression suggested itself. 

For n = 1’7 we made use of the additional inequalities 

Tf&LE I 

Range of Possible Values of TV, the Maximum Number of 
Unit Spheres That Can Touch a Unit Sphere in n Dimensions 

1 2 
2 6 

3 12 

4 24-25 9 

5 4CI-46 10 

6 72-82 10 

7 126-140 10 
8 240 6 

9 306-380 11 

10 50&595 11 

11 582-915 11 

12 840-1416 11 

13 1130-2233 12 

14 1582-3492 12 

15 2564-5431 12 

16 4320-8313 13 

17 5346-12215 13 

18 7398-17877 13 

19 10668-25901 13 

20 17400-37974 13 

21 27720-56852 13 

22 49896-86537 14 

23 93150-128096 14 

24 196560 10 

G The degree of the polynomial used to obtain the upper 
bound. 
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to obtain TV, < 12215. Other inequalities of this tpe could probabIy be 
used to obtain further improvements of these results. Unfortunately for 
~2 = 3 our methods only give TV < 13. 

These upper bounds are a considerable improvement over the old bounds 
[2, 5, 71. For example, the bounds given in [5] (which are based on a still 
unproved conjecture of Coxeter [2]) are 2648, 85, 146, and 244 for n = 4, 5, 
6,7, and 8, respectively. The lower bounds in the table are taken from [5,8,9]. 
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