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Although the automorphism group of a projective plane of order 10, if one exists, 
must be very small, such a plane could be the derived design of a Steiner system 
S(3, 12, 112) with a larger group. There are several reasons why the Frobenius 
group of order 56 is a promising candidate for the latter group. However, in this 
paper it is shown that there is no S(3, 12, 112) which is fixed by this Frobenius 
group. 

1. INTR~OUCTION 

It is not known if a projective plane of order 10 exists; however, if one 
does exist its automorphism group must have order 1 or 3 [l, 171. A plane 
with such a small group is difficult to analyze. It is possible, however, that 
this plane arises as the derived design of a Steiner system S(3, 12, 112) 
having a larger group, i.e., that it is a cross section of a nicer object. The 
possible orders for the automorphism group of a Steiner system S(3, 12, 112) 
are 

2', 3 * 2' or 7 . 2’, 

for 0 < i < 4. In particular this group is solvable. 
There are several reasons for trying to find an S(3, 12, 112) which is fixed 

by the Frobenius group of order 56. (i) This group is a promising candidate 
to try since any Desarguesian aftine plane of order n is fixed by a Frobenius 
group (namely, the group of order n(n - 1) consisting of the mappings 
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x t+ ax + b, a # 0 [ 16, p. 521). (ii) The 112 points of the Steiner system can 
be identified in a natural way with two copies of the Frobenius group, as we 
shall see, thus giving an auspicious start to the construction. (iii) Once this 
case is eliminated it can be assumed that the Sylow 7-subgroup of the 
automorphism group of any S(3, 12, 112) is a normal subgroup. 

Our main result is the following. 

THEOREM 1. There is no Steiner system S(3, 12, 112) which is fixed by 
the Frobenius group of order 56. 

Several segments of the proof (those assertions stated as propositions) 
were carried out by computer. In all cases the programs used were simple, 
and the total computing time (on a Honeywell 6000) was less than 5 hr. The 
reader would encounter no difftculty in repeating these computations. 

In a sequel [ 15 ] it will be shown that there is no S(3, 12, 112) with an 
automorphism of order 3. Thus the possible orders for the automorphism 
group of an S(3, 12, 112) are now 2’ or 7 . 2’, with 0 < i Q 4, and any Sylow 
7-subgroup is normal. 

We remark that in 1973 Guza [9] showed that no S(3, 12, 112) exists 
with PGL(2, 7) acting transitively on the points. Her result is implied by 
Theorem 1. 

2. DEFINITIONS AND NOTATION USED IN THE PROOF 

We prove Theorem 1 by assuming that such a Steiner system exists and 
arriving at a contradiction. We first set the stage. 

2.1. The Steiner System S 

Let a = { 1, 2,..., 112}, and let S be a Steiner system S(3, 12, 112) on Q; 
that is, S consists of 1036 12-subsets of a, called blocks, with the property 
that any three distinct points of 0 are contained in a unique block (cf. 
[5-71). 

The symmetric group on R will be denoted by C,,, . We write 
permutations on the right, so that if a E R and g E Z,iZ then the image of a 
under g is ag. If A is a subset of 0 and H is a subgroup of Z,,, then AH 
denotes the set of images of A by elements of H, while HA is the largest 
subgroup of H which fixes A. The automorphism group of S consists of all 
g E z,,z such that Bg E S for all blocks B E S. 

The block intersection numbers of S are defined as follows. Let 
{P i,..., P,,} be a block of S. Then A, is the number of blocks of S which 
contain P, ,..., Pi and no not contain Pi+,,..., Pl+j, for 0 < i + j < 12. These 
numbers do not depend on which block is chosen, and are shown in Table I. 
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TABLE1 

Block Intersection Numbers Aij for S(3. 12, 112) 

0 10 0 0 0 

211 

Note. A, lies at the intersection of the (i + j)th row and the ith antidiagonal. 

The last row of the table has the following interpretation. 

THEOREM 2 (The 0, 2, 12)-Intersection Property). Any two blocks of S 
meet in 0, 2 or 12 points. 

2.2. The Code K 

Let K be the binary error-correcting code of length 112 generated by the 
blocks of S (cf. [2, 12, 131). Then K c K’, by Theorem 2. In fact much more 
is known about K. 

THEOREM 3. The code K has the following properties: 

(a) K is self-dual (K = K1) and the weight of every codeword is a 
multiple of 4, 

(b) the minimum nonzero weight in K is 12, 

(c) K contains no codewords of weight 16, 

(d) K contains 1036 codewords of weight 12, and 

(e) the weight distribution of K is given in Table II. 

ProoJ For (a), (b), (c) see [13]; (c) is confirmed by [3, 41. (d) The 
blocks of S give 1036 codewords of weight 12, and there are no others. For 
suppose M is a codeword of weight 12 which is not a block of S. Take three 
points in M. By definition of the Steiner system there is a unique block 
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TABLE II 

Weight Distribution of the Code K Generated by 
the Blocks of S(3, 12, 112) 

i Number of codewords of weight i 

0,112 
12,100 
20,92 
24,88 
28,84 
32.80 
36,76 
40,72 
44,68 
48,64 
52,60 

56 

1 
1036 

868560 
111965910 

10847119360 
581085136170 

15631795001900 
219372154900360 
1662571548245160 
6958514212873685 

16330986833984592 
21682256857734468 

B E S containing these three points. Thus IB nM] > 3. From (a), 
IBnMI=4,6,8or lO.But]BnM]=4impliesthatB+Mhasweight 16, 
violating (c). Similarly ] B n M] > 8 violates (b). Hence lB n MI = 6. Thus 
any three points of M are contained in a unique 6-set A = B n M; and so 
these B-sets form a Steiner system S(3, 6, 12). But no such Steiner system 
exists [5-71. (e) The weight distribution of K now follows from (a)-(d) using 
a theorem of Gleason [ 12, p. 6021. Q.E.D. 

2.3. The Frobenius Group G 

A transitive permutation group I’ on a set X is called a Frobenius group if 
only the identity fixes more than one point of X, and the subgroup fixing a 
point of X is nontrivial [8, p. 37; 11, p. 140; 14, p. 57; 18, p. lo]. Frobenius 
showed that those permutations which displace all the points of X, together 
with the identity, form a normal subgroup of r (now called the Frobenius 
kernel of r). The subgroup of r fixing a point of X is called a Frobenius 
complement of r. 

THEOREM 4. There is a unique Frobenius group G of order 56, 
consisting of the elements 

cajpkyl with 0 < i < 6, j,k,l=Oor 1, 

where 

a2 = p’ = y2 = (-7 = 1, f--Q = Pa, ay = ya, PY = YP9 

as =/3, P” = Y, Y” = aA 
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and aI = [-‘a[, etc. The elementary abelian group E of order 8 generated by 
a, p and y is the Frobenius kernel of G, and the cyclic group of order I 
generated by c is a Frobenius complement of G. 

Proof: Let G be a Frobenius group of order 56 with Frobenius kernel E 
and Frobenius complement H, where ] E ] = m, 1 HI = n and mn = 56. Now m 
and n are relatively prime and m divides n - 1 [ 14, pp. 60, 1821, so n = 8 
and m = 7. Choose elements a E E and [ E H of orders 2 and 7, respectively. 
Then 

1, a, /I := a3 = [-‘a[, 

y := p” = c2, a”‘, as’, ass, as6 

belong to E (since E is normal in G) and are distinct and so form all of E 
(for if, say, aI’ = a then apa-’ = [-’ and aHa-’ n H # { 1 }, violating a 
basic property of Frobenius groups [ 14, p. 181, Condition ii]). Thus the 
nonidentity elements of E have order 2, and E is an elementary abelian 
group. It remains to express y’ in terms of a, /I and y. The only possibilities 
are ys = ab’ or y5 = ay. If y’ = ay, set 4, = c-i, a, = a, /3, = afl, yi =@, and 
then yfl=a,pI. Thus we may assume that y’ = ap, and G is fully 
determined. Q.E.D. 

For future reference we record two other properties of G. 

THEOREM 5. (a) There is a single conjugacy class of involutions in G, 
consisting of the elements of E - { 1). (b) The map r: G+ G determined by 
r(C) = C2, $a) = a, r(J) = y, r(y) = /Iy is an automorphism of G. 

From now on we assume that S is a Steiner system S(3, 12, 112) on 
a = (1, 2,..., 112}, with an automorphism group which contains a group 
isomorphic to the Frobenius group G defined in Theorem 4. We use the same 
letter G to describe this permutation group on 0. 

2.4. New Names for the 112 Points 

No element of G except the identity can fix a point of R, for otherwise the 
blocks containing that point would form a projective plane of order 10 with 
an automorphism of order 2 or 7, which is known to be impossible. Thus G 
is a semiregular group [ 18, p. 81 of order 56 and degree 112, and so has two 
orbits on 0, by [ 18, Propositions 4.1, 4.21. 

If u E L! and v E L? are in distinct orbits of G, then each point of 0 is 
uniquely of the form ug or vg for g E G. We may write R = R, U R,, where 

Q,=uG 

=uEVU~;EVU~~EV..~ VucE, 

O2 = vG. 
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2.5. Signatures 

For each subset A of fi, let 

sig,(A) = {i E Z/7H 1 A f~ uCE # 0) 

be the signature of A with respect to Q,. sig,(A) is defined similarly. Note 
that if sig,(A) = {a, ,..., ak} then sipI = {a, + i ,..., ak + i), for 0 < i < 6. 

2.6. The Centralizer of G 

We shall make extensive use of the centralizer C and normalizer N of G in 
z , i2, and we now describe these groups. For each g E G there is an element 
L,(g) E C which fixes each point of R,, and acts on 0, by (ux)Li(g)= 
u(gx). Similarly L,(g) E C is 1 on R, and (vx)&(g) = u(gx). Let Gi= 
(Li(g) / g E G), for i = 1,2, so that (G,, G2) = G, x G, and Gi z G. Finally 
C contains the involution cr E Z, i2 defined by (ux)a = ux and (vx)a = ux, 
for x E G. Then the centralizer of G is 

and is isomorphic to the wreath product of G by a cyclic group of order 2. 
(We are using the primordial fact that the centralizer of the right regular 
representation is the left regular representation [ 10, p. 291.) 

2.7. The Normalizer of G 

Corresponding to the map r of Theorem 5 there is an element in Z;,,, (also 
designated by r) given by 

and r normalizes G and C. Then the normalizer of G in Xii2 is 

N = (G, G, , G,, 0, r), 

of order 563 . 6. 

3. THE MAIN PART OF THE PROOF 

We shall make use of the normalizer N as follows: by hypothesis, S = Sg 
for all g E G. If x E N, then Sx is also an S(3, 12,112) fixed by G. So we 
shall use N to change S until we have enough control over it to put 
reasonable questions to the computer. 
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3.1. The Action of G on the Blocks 

For each block B E S, the stabilizer GB acts semiregularly on B, so 1 G, 1 
divides 12. Since (12, 56) = 4, 

[Gel= 1,2 or 4 

or equivalently the number of distinct images of B under G is 

lBGl= 56, 28 or 14. 

Let 

S,={BESIIG,I=2or4}, 

sothat S=S,US,. Now ISI=1036=18iX56, andS,isaunionofG- 
orbits each of cardinal 56. Therefore 

lS,I=28 (mod 56). (1) 

Suppose S, contains a G-orbits of cardinal 28 and b of cardinal 14. Then 
(1) gives 

28a + 146 = 28 (mod 56), 

which implies 

b is even (say, b = 2c) and a + c is odd. (2) 

Furthermore the blocks have the (0,2, 12)-intersection property stated in 
Theorem 2. 

So we are led to the consideration of two families Sr;4 and 9&, of 12-sets 
of 52, namely, 

;T;., = (F ) F is a G-orbit of 12-sets of a, of 
cardinal 14, such that if fi, f2 E F 
then Ifi n fil = 0, 2 or 12}, 

sZ;B = {F I F is a G-orbit of 12-sets of Q, of 
cardinal 28, such that if fi, f2 E F 
then If, n f21 = 0, 2 or 12). 

Every G-orbit on S, must belong to Sr;4 or Y&. 
Now N acts, on 6, and on Y&,. In fact since G fixes each member of&, 

fl := N/G acts on 5. The first step in our analysis is to determine the orbits 
of N on s5;., and R&, and to list representatives for these orbits. 



216 SLOANEANDTHOMPSON 

3.2. Class$cation of the Members of &, 

Suppose F = (f, ,,.., j&} E sT;s, where each fi is a 12-set of a, and G,, has 
order 2. By Theorem 5(a) we may assume that 

LEMMA 6. If i E sig,(f,) then there are precisely two elements x of J$E 
such that ux E f, . 

Proof: Let X= (x1,..., x,} be all the elements x of CE such that ux E f,. 
By hypothesis, r > 1. Since f, = f, a and a E E, it follows that if ux E f, then 
uxa E f,, so that xa E X. Thus r = 2s is even, and we may write 

X= {xl,xIa,xz,xzcf ,..., xsrxsa}. 

Suppose s > 2. Then x2 = x, < for some < E E - (a), xi = x2<, and (a, <) is a 
4-group. But then 

By definition of flz8 we have f, = f, <. This mans that G,, has order >2, a 
contradiction. Thus r = 2. Q.E.D. 

LEMMA 7. I sk,(fJ n skdf, Cl1 G 4. 

Proof. Suppose sig,(fi)nsig,(f,[)= {b, ,..., b,}. Then f,[=eUe', 
where sigi(e) = {b ,,..., b,}, sig,(e’) n {b, ,..., b,) = 0, and lel = 21 by 
Lemma 6. Consider the four 12-sets 

If c, q are distinct elements of @, r) then firn f, q = 0, and since E = 
(a) x (/I, y) it follows that each element of e is contained in precisely one of 
fi,f,P,fiv,fJ%- Thus 

21= lenfit + lenf,Pl+ lenf,yl + lenf,Prl. 

Each summand is 0 or 2 since fi [ is distinct from f, < for all < E E. So 1 < 4, 
as asserted. Q.E.D. 

Let f;=f,r‘lO,, f;‘=finQ,. By Lemma6, If;1 and Lf;I are even. 
Replacing F by Fa if necessary, we may assume that (f; I > If :‘I. Thus the 
possible values of (If;I, If:I) are (12,0), (10,2), (8,4) and (6,6). 
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3.3. The Case If;/ = 12 

In this case fi = f ‘1 and sig,(f,) has cardinal 6: sig,(f,) = Z/72 - {i} for 
some i, implying 1 sig ,(fJ n sig ,(f, <)I = 5. But this contradicts Lemma 7. 
Thus If, n R, I# 12. 

3.4. The Case If; I= 10 

If if; I= IO then lsig,(f,)l = 5, and there is an h E G such that 
sk,(f,L,(h))= z/72 - (0, i}, where i E { 1,2,4}. Then, for some t E (r), 
sig,(J,L,(h)t) = Z/72 - (0, 1). Replacing F by FL,(h)t we may assume at 
the outset that sig,(f,) = Z/72 - {0, 1). Replacing f, by fir for a suitable 
r E @, y) we may assume that 

We next choose h’ E G such that f;‘L,(h’) = (u, ua}. Replacing F by 
FL,(h’) we may assume thatf; = {u, ua}. Since (aj?y)” = a and (a/?y)[’ =/I, 
if we replaceS, byf, L,(a/?y) we replace p3 by p3/3. Thus we may assume that 
p3 E (7). So there are 2 . 43 choices for f, (namely, 2 choices for p3 and 4 
choices each for p4, p5, ~1~). These were tested by the computer to see if the 
28 blocks off, G satisfy the (0, 2, 12)-intersection condition. None passed the 
test, establishing: 

PROPOSITION 8. Zff,EFE.&, then If,nQ,l# 10. 

3.5. The Case If; I= 8 
By using G, and (r) we may assume that sigidf,) is one of 

0123, 0356, 0124, 

and using G, we may assume that sig2(f,) is one of 01, 02, 03. Using L,(E) 
and L,(E) we may also assume that 

{u, ua} cfi, {v,ua}Gf~. 

Thus there are 3 . 43 . 3 . 4 choices for fi . The computer showed that none of 
the resulting f, G satisfy the (0,2, 12)-condition, proving: 

PROPOSITION 9. ZfflEFES7;, then If,nOa,I#8. 

3.6. The Case ) f; I = 6 

We are left with the case where sig,V;) and sig,(f,) both have cardinal 3. 
Using G, and G, we may assume that sig,W;) and sig,df,) both belong to 

(012, 013, 014, 015, 024}, 
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and that 

{u, ua} Gf;, {v, ua} c j-l’. 

Finally, since a( = p and as2 = y, we may assume that f; = {U-X 1 X E xl5 
where X is one of the following: 

{1,a.ZU1,C;U,a,r2~2,r2~2a} for p1 E (y),iu2 E Ca, 7). 

11, a, rU,, Ciba, C’fi3, C3P3al for ,4 E (y),c13 E Co9 Y>, 

11, a, L.q, @,a, C4P4, C4P4al for p1 E (y), P4 E Co, Y>, 

11,a,rc11,rU1a,r5~5,r5~5a} for rul E (y),iu5 E Co, Y>, 

11, a, C*P,, C*h,a, C4P4, C4P4al for ,4 E Ca>, iu4 E Ca, 7). 

Thus there are 40 choices for f;, and another 40 for f I’, giving a total Of 
1600 choice for f,. The computer then established: 

PROPOSITION 10. There are 52 f,‘s that satisfy the (0, 2, 12)-condition 
and are inequivalent under the centralizer C. They are shown in Table III, 
where we write f, = uX U uY, with X = X’(a) and Y = Y’(a). 

Some of these cases can be eliminated at once using Theorem 3(c). For if 
sk,(f,) = sig2(fi) = (0, L2}, then 

TABLE III 

The 52 Solutions forf, Described in Proposition 10 

X’ = y  X’ = y’ 

1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 

1 ; r;’ 
1 

1 : 

CIY 

1 i5Y 
1 : C’P 
1 

1 

$BY 

1 ::: :“Y 
1 CY C5P 
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TABLE III-Continued 

X’ Y’ 

29 

30 

31 

32 

33 

34 

35 

36 

31 

38 

39 

40 

41 

42 

43 

44 

45 

46 

41 
48 

49 

50 

51 

52 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 1 ii 
1 QJ 
1 LY 

1 1 i 

1 1 t 

1 iY 

1 1 ii 
1 CY 
1 i 

1 1 :Y 
1 CY 

1 1 : 

1 1 

1 

; 

1 

1 

::;; 

1 ic 

is a 16-set. This excludes cases 1, 2, 3, 4 and 29, 30, 31, 32. Since 
sig,(f,r) = 2 . sigi(fi) we can also exclude those cases where sig,(f,) = 
sig,dfi) = (0, 2,4) or (0,4, 1); that is, we eliminate cases 13, 14, 15, 16, 25, 
26, 27, 28, 41, 42, 43, 44, 49, 50, 5 1, 52, leaving 28 possiblefi’s. 

PROPOSITION 11. These 28 sets f, G fall into 8 orbits under the action of 
N = N/G. As representatives for these orbits, we may take the sets f, = 
UXU vY, where X = X’(a), Y = Y’(a), and X’ and Y’ are shown in 
Table IV. 

We define Fi = fiG, where 1 < i < 8 and f;: is the ith 12-set described in 
Table IV. 

3.7. Class@cation of the Members of T4 

Since the analysis of &, is much easier than that of X& we merely state 
the result. 
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TABLE IV 

The Eight Inequivalent Solutions for f,  Described in Proposition 11 

X’ Y’ 

1. 1 

: 

3 

SY 

1 

2. 1 1 : 

3 

:17 
3. 1 TV C’r 1 iv c’r 
4. 1 f: is 1 
5. 1 C5Y 1 

t is 
i'Y 

6. 1 1 r’ 
1. 1 

i 
1 

t 
C5PY 

8. 1 i 1 c C’PY 

PROPOSITION 12. fl has 3 orbits on 3,) with representatives P, = f, G, 
P, = A G, pj = fS G, where x = uX, U vYi, X, = X{(a, p), Yi = Yi(a, j?) and 
the Xi, q. are as follows. 

Since \I/= 56’ u 6, we conclude that there are at most 8 m 56’ . 6 members 
of .Y& to be considered (given in Proposition 11 and Table IV) and 
3 . 56’. 6 members of s7;4 (given in Proposition 12). We must now 
investigate how these G-orbits may be fitted together. 

3.8. The Oddness Condition 

A further condition on the blocks can be obtained from the fact that every 
2-subset A of R is contained in precisely 11 blocks (see Table I). If A = Aa 
we conclude that an odd number of blocks are fixed by a and contain A. 

LEMMA 13 (The Oddness Condition). For each orbit A of (a) on ~2, the 
number of blocks of S, which areflxed by a and contain A is odd. 

The following observations make it relatively easy to decide if a candidate 
for S, satisfies the oddness condition. Note that the orbits of (a) on Q are 
the sets {ut;b, uc,ua) and {vr’&, &$a1 for i E Z/72, p E (/3,7). 

First, consider a G-orbit F E 9&, and a block f E F with f = fa. Thenf, 
fp, fy, fly are the only members of F which are fixed by a, and if sig i(J) = 
{a ,,..., ak}, there is just one member of F which is fixed by a and contains 
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(UPS, ur(l”a}, for v = l,..., k, while if i & {aI ,..., ak}, then no member of F is 
fixed by a and contains {up, uea}. 

Second, consider FE T;4 and a block f E F with f = fa = @. There are 
precisely two members of F which are fixed by (a,/?), namely, f and fy. 
There are 6 members of F fixed by a, namely, f, fy, fl-‘, f&-l, fl-’ and 
fy(-‘. Let sig!(f) = {b ,,..., bk}. Then sig,(‘$-‘) = (b, - l,..., b, - I] and 
sig,(Em3) = {b, - 3,..., b, - 3). The number of members of F which are fixed 
by a and contain {UC, @a) is 6, + 6-, + 6-,, where Sj= 0 if i & {b, + j,.... 
b, + j] and Sj = 1 if i E {b, + j ,..., b, + j}. 

3.9. Combining Small Orbits: The Case b = 0 

Recall from 3.1 that S, contains a members of Fz8 and b = 2c members 
of T4, with a + c odd. First suppose b = 0. Then S, = E, U ... U E,, with 
Ei E Fzzs and a odd. We check that no single Fi of Table IV satisfies the 
oddness condition, and so 

a > 3. 

We may assume that (E, ,..., E,} f7 {F, ,..., FS} # 0 and that if j is the 
smallest integer such that Fj E (El,..., E,} then 

iE ,,..., E,}cFjfluFj+,Nu... UF,N. 

The computer was used to take each Fj in turn and to list all the members of 
FjN,..., F,N all of whose blocks meet those of Fj in 0 or 2 points. Once this 
had been done it was easy to establish: 

PROPOSITION 14. ;3;8 does not contain 5 pairwise compatible G-orbits, 
so a < 5. 

We conclude that a = 3. It was then not difficult to check that to within 
N-equivalence there are just 3 choices for {E,, E,, E3} which satisfy the 
oddness condition. The computer then eliminated these cases by proving: 

PROPOSITION 15. In each of these three cases the code generated by 
(E,, E,, E,} contains a vector of weight 8 or 16. 

(Since there are 84 vectors in {E,, E,, E,} it was not possible to look at 
all vectors in the code they generate. Instead a generator matrix for the code 
was obtained in canonical form, consisting of some permutation of the 
columns of [I 1 D], where Z is an r x r identity matrix, r is the dimension of 
the code, and D is an r x (112-r) matrix. Then the rows of the generator 
matrix were taken 1,2, 3,... at a time until a codeword of weight 4,8 or 16 
was found. The same algorithm was used to establish Propositions 19 and 21 
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below. In most cases one of the rows of the generator matrix itself had 
weight 8 or 16.) 

Since Proposition 15 violates Theorem 3 we conclude that b # 0. 

3.10. The Case b = 2, a = 0 

Next, suppose S, consists of two G-orbits of size 14, say, E, and E,. The 
(0,2, 12)-condition between E, and E, may be used as follows. Choose 
e, E Ei with e, = eia = ei/?. Then 

sigj(e,) n sigj(e,) = 0 (j= L2), (3) 

I skl(el> n sig&, dl + I &(e,) n sk(e, 831 G 1 
for all g E G. 

This makes it easy to handle the cases E, = P, and E, = P,. 

(4) 

LEMMA 16. If S, =E,UE, with E, E {P,, P,}, then E, = e, G, 
E, = e2 G with 

e, = uX, U uY,, e,=uX,VvY,, 

where 

Xi = xi(a7 P)* Yi = Y::(a, P) 

and Xi and Yi are one of the 9 possibilities given in Table V. 

TABLEV 

The Nine Solutions for S, = E, U E, Described in Lemma 16 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
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The remaining case is when E, = F, and E, E F,fl. Pick e E E, with 
e = ea = e/?. 

(i) First, assume that sigi(e) has cardinal 2. Then sig,(e) = {k} and, by (3), 
k # 0. Choose A E N such that EL = RJ. Then FjA = EA2 and sig,(eil’) = 
(-k}. So we may assume that 

kE {1,2,3). 

By (4) it follows that (sig,(e), sig,(e)) is one of: 

s&h(e) Sk,@) 

3, 5 1 

396 1 

496 1 

496 2 

295 3 

236 3 

Now u(a,P) U u[(a,p) U v(a,/?) = f E F3 is fixed by L,(a), L,(a) and 
L2(p), while y fixes P,. Therefore, given (sigi(e), sig*(e)), the 8 possible 
choices of e are permuted by (L,(a), L,(a), L2@), y). From this we obtain: 

LEMMA 17. Suppose S, =E,UE, with E, =Fj and E,=eGER,& 
where e = ea = e/R If 1 sig,(e)l = 2, there are 9 @inequivalent choices fir e. 
They are given by e = UX U vY, where X = X’(a, p), Y = Y’(a, p), and the 
X’, Y’ are shown in Table VI. 

(ii) This leaves the case where sigi(e) has cardinal 1. In this case, (3) 
and (4) imply that the possibilities for (sigi(e), sig,(e)) are as shown in 
Table VII. 

Now (L,(a), L,(a), L,(p), L,cgY)L,@y), 7) = H fixes pj:, and for each 
choice of (sig,(e), sig2(e)) the 8 possible choices for e are permuted tran- 
sitively by H. Thus we have proved: 

LEMMA 18. Suppose S, = E, UE, with E, =P, and E,=eG EpJN, 
where e = ea = e/l. If Isig,(e)l = 1 there are 17 N-inequivalent choices for e, 
as shown in Table VII. 

Collecting the results from Lemmas 16-18 we see that N has 35 orbits on 
compatible pairs of members of Td. However, out of these 35 pairs, only 
two satisfy the oddness condition. These are the first, 

v, 7 6 01, 

%?a13013 2 
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TABLE VI 

The Nine Solutions for S, = E, U E, 

Described in Lemma 17 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

TABLE VII 

The Possible Signatures 
(sig,(e), sig?(e)) in Case (ii) 

Sk, @I Sk,(e) 

19. 2 3, 4 
20. 2 3, 5 
21. 2 4, 5 
22. 2 4, 6 
23. 2 5, 6 
24. 3 4. 1 
25. 3 4, 5 
26. 3 4, 6 
27. 3 1, 5 
28. 3 6, 1 
29. 4 1, 2 
30. 4 1, 5 
31. 4 6, 1 
32. 5 1, 2 
33. 5 2. 3 
34. 6 1. 2 
35. 6 4, 1 

and the 25th, 

where e = uc3(a, p) u vl;“(a, ,L?) u vc5(a, j?). Furthermore the computer 
eliminated the latter possibility. 
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PROPOSITION 19. The code generated by {Fj:, eG}, with e as above, 
contains a codeword of weight 16. 

We conclude that if b = 2 and a = 0 the only possibility for S, is 
S, = F, U F,o. We return to this case in Section 3.13. 

3.11. The Case b=2, a>2 

The computer was invited to take in succession each of the 35 pairs 
(E,, E,} and to list all the pairs of elements of 58 which are compatible 
with each other and with E, and E,. Then by hand it was (rather trivially) 
verified that the oddness condition of Lemma 13 is never satisfied. The 
cmputer results also showed that b = 2, a > 4 is impossible, since for no pair 
(E,, E,} do there exist four pairwise compatible members of *B which are 
also compatible with E, and E,. Hence: 

PROPOSITION 20. The case b = 2 is excluded, except possibly for the case 
S,=F,UF,a. 

3.12. The Case b>4 

Finally, suppose b = 2c > 4. Let { W, ,..., IV,,} be a 2c-subset of sT;4 whose 
elements are pairwise compatible. For each i = l,..., 2c, pick Wi E Wi with 
wi = wia = w#. Then sig,(wi) n sig,(wj) = 0 = sig,(wi) r? sig,(wJ for i # j. 
Since sig,(w,)~ sig,(wi) lies in a 14-set (2 copies of Z/7Z), and since 
1 sig,(w,) U sig,(wi)l = 3, we have 2c < 4, so 

b = 4, c= 2. 

Since a + c is odd, a > 1. The computer printout of the members of Rz8 
which are compatible with at least one of the 35 pairs of compatible 
elements of 64 showed that there are no elements of 3,, which are 
compatible with a pair (E,, El}, where E,, E, are compatible elements of 
.Kd with E, = pz. Thus in searching for a 4-set { W,, W,, W,, W,} we may 
assume that each KJi E P, NV f13’,lv. 

If W,, W, E I’,N then we may take W, = P,, W, = F,a, and there are 
then no available choices for W,. Thus at most one of W,, W,, W,, W, is 
in F,N. 

(i) First, suppose W, = PI. For i = 2, 3,4 let 

Sig,( WJ = {xi)T Sig*( Wi) = { Yi, zi}* 
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By (4), {y2, z2}, { y,, z3} and { y,, zq} are in distinct orbits under x I--+ x + 1, 
so we may assume that 

{yz, zz} E {OL 12,23,..., 601, 

{Y,,ZJ E 102, 13,24,..., 611, 

{y,,z,} E {03,14,25,...,62}. 

By multiplying W,, W, and W, on the right by a suitable L2(Ck) we may 
assume that 

Now (4) implies that the { yi, zi} are one of the following: 

[ii r:] = [i i]’ [a I] or [4 a]. 

For each of these three possibilities we try to choose x,, x3, x, so that (3) 
and (4) are satisfied. There are three solutions: 

[$ ii lj= [1 4 a]. [4 I 11 or [i g a]. (5) 

(a) @I cc> 

Since L,(a) fixes P, and uC’(a,/3)L,(a) = uC’(a,/3)y, if we are in case (5a) 
or (5b) we may assume that W, contains 

t = d(a, P) U f+, P) U d(a, P). 

The computer showed that no member of .9& is compatible with F”, and (G, 
so we must be in case (5~). 

Since L,(a), L,(a), L#), L,@y)L,(y), y and r all fix W, =i?r, there are 
six possibilities for (wz, w3, WJ as shown in Table VIII. We have written 
wi = rOLi U oY,, where Xi = &(a, /I) and Yi = Y:(a, /I). 

The computer then established: 

PROPOSITION 21. For each of the six cases shown in Table VIII the code 
generated by W, U W, U W, U W, contains codewords of weight 8 or 16. 

(ii) Suppose Wi E P, W for i = l,..., 4. Then (4) implies that not all four 
wi satisfy 

1 sig,(w,)l = 2. 
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TABLE VIII 

The Six Possibilities for (y, w,, wq) 

x; Y’ 2 x; Y’ 3 Xk Y’ 4 

6 

Similarly not all four wi satisfy Isig,(w,)l = 2. Replacing each Wi by W,a, if 
necessary, we may therefore assume that 

[I;!;;; i;t$J] 

is either 

1 2 
2 

L1 ;] Or [i g. 2 

A straightforward case-by-case analysis now shows that it is impossible to 
choose the sigi(wj) so as to satisfy (3) and (4). 

We conclude that 

s, =F,u&J. 

Further analysis is now required, for we must learn something about S,, 
( ‘,:‘) being too large a number for the computer. 

3.13. The “Type” of a Block of S, 

We assume S, = I?, U P,a, and proceed to classify the blocks of S, 
according to their “type.” Let B E S,, and let B’ = B n Q, and B” = B r‘l Q, 
be the left and right halves of B. Then 

lff’IB’I=Oor2 for all f E P,, 

since f G 0, if f E P, (see Proposition 12). Since 

(6) 
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where the summation sign denotes the symmetric difference, it follows that 

IB’I is even. 

For each i E Z/72 let 

and call the vector (uO, a, ,..., u6) the type of B’. The type of B” is defined 
similarly. Now P, contains 

J; = u(a, P) u ?.4(& P) u ur;‘(a, P), 

and 

a,+u,+a,=I~~nB’I+I3,ynB’I 

= 0,2 or 4 from (6). 

Therefore 

a,+~~+~ +u,+,=0,20r4 for all i, (7) 

where the subscripts are to be read modulo 7. From (7) we may deduce that 

IB’( # 10, IB’I # 12. (8) 

To see this, first suppose a, > 3 for some i. Then (7) implies uj Q 1 for all 
j # i, whence Ck ak = IB’ ( < 3 + 6 = 9. On the other hand, suppose ai < 2 
for all i and ) B’ I = 10 or 12. Then the components of the type of B’ are one 
of the following: 

WV, p512), p502j, (24120), (23 14). 

However, it is easily checked that in each case there is no way to choose the 
uifs without violating (7). Thus (8) holds. By symmetry 

IB” # 10, IB”I # 12. (9) 

From (8) and (9) we deduce: 

LEMMA 22. If B E S, then (I B’ 1, I B” I) is one of (8,4), (6,6) or (4,8). 

If C E S, and C’ = C n 0,) C” = C n Q2 with the type of C’ equal to 
(xg T-.-Y xs), we say that the types of B’ and C’ are equivalent if for some n 

xi = a,+, for i = O,..., 6. 

We need a complete list of inequivalent types. 
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Case 1. (B’ ( = 4. 
The components of type (B’) are (406), (3 105), (2’05), (21204) or (1403). 

The second and fourth possibilities violate (7), and we find that type (B’) is 
equivalent to one of 

t, = (4000000). 

t, = (2200000), 

t, = (2020000), 

t, = (2002000), 

1, = (1001011). 

Case 2. IB’ / = 6. 
The components of type (B’) are (606), (5 105), (4205), (41*04), (3’05), 

(32104), (31303), (2304), (221203), (21402) or (160). Using (7) we find that 
type (I?‘) is equivalent to one of 

t, = (300101 l), 

t, = (1003011). 

f, = (1001031), 

t, = (1001013), 

t, = (2220000), 

t lo = (2200200), 

t ,, = (2200020), 

t 12 = (2020200), 

t ,3 = (120101 l), 

t,, = (102101 l), 

f 15 = (1001211). 

Case 3. (B’( = 8. 
Equation (7) implies a, < 3 for all i, and if a, = 3 for some i then aj < 1 

for all j # i. The cases (3 150), (231202) and (216) also violate (7), leaving 
(2403) and (22140), and so type (B’) is equivalent to one of 

1 I6 = (2002022), 

t,, = (122101 l), 

I I* = (120121 l), 

t 19 = (1021211). 
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By symmetry, type (B”) is also equivalent to one of these 20 types. Thus we 
have proved the following result. 

LEMMA 23. If B E S, then type (B’) and type (B”) are equivalent to one 
of &I, 1, ,***, t,, * 

We can immediately eliminate one of the possibilities. 

LEMMA 24. The type t, = (4000000) does not occur. 

Proof: Suppose on the contrary that type (B’) = 1,. Then type (B”) = 
(b 0 ,..., b,) is equivalent to t,6, t,,, t,, or t,, . There are two values i, # i, with 
biO = bi, = 2, and so for v = 0 and 1 we may define a,, p, E E by 

B” n vpE = (upa,, up/?,}. 

Let y, = aJv. Then 

B” n B”y, 2 B” n vr’~E, 

whence y,, # yi (or else (B” f? B”y, 1 > 4). Furthermore since 1 B n Bg 1 = 0 or 
2 for all g E G - { 1) it follows that 

B’nB’y,=m for v E (0, 1 

But B’ = { z&zj 1 1 < j < 4) for some fixed i, where n, 
elements of E. If we set 

E={7r,n,I l<k<1<4} 

we see that 

1. 

9 711, rr3, rtd are distinct 

Therefore y,, , y1 @ i.?. But this is impossible, since I,J?I = 6 and IE - { 1 }I = 7. 
Q.E.D. 

3.14. The Final Step in the Proof 

The final step is to show that S, must contain a G-orbit of blocks of a 
certain kind, but that no such G-orbit satisfies the (0, 2, 12)-intersection 
property. 

For 1 &i< 19 let 

Xi = (B E S, I type (B’) is equivalent to ti}, 

xi=Ixil. 
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Our first goal is to determine the xi. For this purpose, let 

G, = the family of 3-element subsets of uG, 

GT=(<EG,I<cFfor someFEp,}, 

G, = G, - GT. 

If < E G,, then type (0 is equivalent to one of 

u, = (3000000), 

u* = (2 100000), 

uj = (2010000), 

zf4 = (2001000), 

24, = (2000100), 

246 = (2000010), 

u, = (2000001), 

24* = (1110000), 

ug = (1101000), 

u 10 = (1100100), 

IA II = (1100010), 

u 12 = (1010100). 
Let 

bi = I{< E G, 1 type (0 is equivalent to ui}l, 

Ci = [{r E GT 1 type (0 is equivalent to ui}l, 

d, = I{< E C, 1 type (<) is equivalent to uI}J, 

so that 

di = bi - ci. 

It is straightforward to calculate the values of b,, ci and hence of ei := 
dJ56 = (bi - c,)/56. The results are given in Table IX. 

We now relate the xi and di. For 1 Q i < 19, 1 < j Q 12, let B be any 12- 
element subset of R with type (B’) = ti, and set 

aij = l{c E G, I l E B’, type (Q equivalent to uj}l. 
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TABLE IX 

Values of bi, cir ei = dJ56 

i 

1 2 3 4 5 6 

bi 
ci 
ei 

7(i) 56(t) 56(t) W;) 56(t) 56(i) 
12. 14 24 14 24. 14 24. 14 24. 14 24. 14 

4 22 22 22 22 22 

I 8 9 10 11 12 

bi 56& 7 8’ I . 8’ 7 . 8’ 7 . 8’ 1 8’ 
ci 24. 14 0 4’ 14 0 0 0 
ei 22 64 48 64 64 64 

Since every 3-subset of 0, is contained in a unique element of either S, or 
S,, it follows that 

19 

x xiaij = dj, 
i=l 

j = l,..., 12. (10) 

G acts semiregularly on S,, so each xi is a multiple of 56. After dividing 
(10) by 56 and setting yi = xJ56, we obtain 

19 

1 yiaij = ej, j= l,..., 12. (11) 
i=j 

The values of aij are also straightforward to calculate and are given in 
Table X. 

There are three further equations. The first two involve the 3-subsets r of 
0 which are in neither Q, nor L?*. For such r, (I<narj, l<nLI,l) is (1, 2) 
or (2, l), and there are 56( ‘,“) subsets of each kind. For 1 < i < 19, 
1 Q v Q 2, let ulU be the number of r with 1 tf7 Q,I = 1 such that < is 
contained in a 12-subset B of 0 with type (B’) = ti. Then 

Uil = UZO-i.2 = = 112, lgi<4, 

= 90, 5<i< 15, 

ui1= u = 48, 16<i< 19, 
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TABLE X 

Values of ajj 

233 

i 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 2 0 0 0 0 2 0 0 0 0 0 
2 0 0 2 0 0 2 0 0 0 0 0 0 

3 0 0 0 2 2 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 10 111 
5 10 0 3 0 3 3 3 0 3 13 
6 IO 3 3 3 0 0 10 3 3 3 
7 I3 3 0 0 3 0 3 0 13 3 
8 13 0 0 3 0 3 3 0 3 3 1 
9 0 4 2 0 0 2 4 8 0 0 0 0 

10 0 2 0 4 4 0 2 0 0 8 0 0 
11 0 2 2 2 2 2 2 0 0 0 8 0 
12 0 0 4 2 2 4 0 0 0 0 0 8 
13 0 0 10 Ill 3 4 13 5 
14 0 10 11 10 14 5 3 3 

15 0 111 0 0 15 4 3 3 1 
16 0 4 4 4 4 4 4 8 0 8 8 8 
17 0 3 1 1 2 2 3 11 8 9 9 7 
18 0 1 2 3 3 1 2 7 8 11 9 9 
19 0 2 3 2 1 3 1 9 8 7 9 11 

and 

19 

1 

i=l 

( 56 .YiUi”= 2 ) 3 v= 1,2. (12) 

Finally 1.~~1 = 1036 - 28 = 56 * 18, and SO 

19 

\’ yi = 18. 
,r, 

(13) 

The computer then established: 

PROPOSITION 25. Equations (1 l)-( 13) have a unique solution in 
nonnegative integers, namely, 

yi= 1 for l<i<B and 16<i< 19, 

yi = 0 for 9<i< 12, 

yi = 2 for 13 <i< 15. 
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Since y, = 1, there is a G-orbit, BG say, of blocks in S, with type (B’) 
equivalent to t,. Then type (B”) is equivalent to t,,, t,, or t,, . For IB’I = 6 
implies that type (B”) is equivalent to one of t, ,..., t,,; t9,..., t,, do not occur 
since y9 ,..., y,* = 0; and the next lemma eliminates t, ,..., t,. 

LEMMA 26. If B E S, is a block with type (B’) = t,, then type (B”) does 
not have a component equal to 3. 

Proof: Suppose on the contrary that type (B”) is equivalent to t,, t,, t, 
or 18. We represent subsets of Q, or L!, by the corresponding elements in the 
group ring HG. For example, B’ is represented by an element T, E ZG of the 
form 

Tl + q + x3 + t;‘P, + t;‘P, + C”P,~ (14) 

where rci, ,u~ E E; and B” is represented by T2 h E ZG, for some h E G, where 
T, is of the form (14) if type (B”) is equivalent to t,, or has a similar 
expression in the other three cases. 

From Theorem 2, 

f(B):= s IBnBglg b-EC 
is an element of ZG with coefficients 0,2 and 12. We can lindf(B) from the 
observations that 

f(B) = fW + f(B”) 

and 

fW = rTT,, f(B”) = h-‘T$T,h, 

where * is the map ZG -+ ZG given by 

* 
= C a,g-‘. 

gz 

Therefore 

qT, + h-‘cT,h 

is an element of ZG with coefficients 0, 2 and 12. It is easy to verify by hand 
that if T, is given by (14), none of the possible choices for T2 satisfy this 
condition. Q.E.D. 

Thus we may assume B = B’U B” with type (B’) = t, and type (B”) 
equivalent to ti3, t,, or t,,. It is straightforward to verify that there are 64 
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choices for B’ that satisfy the (0,2, 12)-intersection property with the blocks 
of S 1, namely, 

{ 1, ~$3, a$, C3y(a/@“, 15(aPy)‘a”; PP(aP)“a”}, 

for i, j, k, 1, m, v E (0, 1 }. Similarly there are 144 . 56 choices for B” if type 
(B”) is equivalent to t,,, namely, 

B” = Ch, for some h E G, 

where C has the form of either 

{ 1, Qa’, @ya”, ~3(aj3)ia”, &$3yYauv P(ayYa”I 

or 

for i, j, k, 1, m, 8, v E (0, 1 }. There are 2 . 144 . 56 further choices for B” if 
type (B”) is equivalent to t,, or t,,. The computer now established: 

PROPOSITION 27. None of the preceding 64 . 3 . 144 . 56 possible G- 
orbits has the (0, 2, 12)-intersection property among its blocks. 

Thus it is impossible to construct the required set of 56 blocks, and the 
proof of Theorem 1 is complete. 
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