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On Ternary Self-Dual Codes of Length 24 
JEFFREY S. LEON, VERA PLESS, AND N. J. A. SLOANE, FELLOW, IEEE 

A hstract-A partial classification is given of the self-dual codes of 
length 24 over GF(3). The main results are as follows: there are exactly 
two codes with minimum Hamming distance d = 9; most of the codes have 
d = 6 and are indecomposable; one code with d = 6 has a trivial automor- 
phism group (this is the first such self-dual code that has been found); the 
codes generated by the 59 inequivalent 24 X 24 Hadamard matrices have 
been investigated and there appear to be only nine inequivalent codes (two 
with d = 9 and seven with d = 6); and in all there are 27 decomposable 
codes, at least % indecomposable codes with d = 6, and the total number of 
inequivalent codes is at least 140. 

I. SUMMARYOFRESULTS 

T HE TERNARY self-dual codes with a length less than 
or equal to 20 have been completely classified in [4], 

[8], and [ 111. This paper gives a partial classification of the 
ternary self-dual codes of length 24. The following are the 
main results. 

1) There are exactly 27 decomposable codes (see Section 
II). 

2) Let the numbers q be defined by 

where the sum is over all indecomposable inequivalent 
codes C containing exactly 2i codewords of weight 3. Let 
us say that a code is of ;tvpe ie, +je, if it contains exactly 
2i + 8j codewords of weight 3 and these codewords form a 
code equivalent to ie3@je, (see [ 111). Then q gives the 
total “mass” of the indecomposable codes of type ie,. 
These numbers are derived in Section III and are shown in 
Table I. 

3) A computer program has been developed to find the 
full automorphism group of a code. This program will be 
described in detail later [6]. 

4) There is a close connection between certain ternary 
self-dual codes of length 24 and the Hadamard matrices of 
order 24. The latter have recently been classified: there are 
exactly 59 inequivalent matrices [5]. Any of these matrices 
generates a self-dual code of length 24 (see Theorem 4). 
Using the computer program described in 3), we have 
investigated the codes generated by these 59 matrices and 
their transposes: there are exactly two codes with minimum 
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Fig. I. Generator matrices for quadratic residue code Qz4 and symme- 

try code Pz4, the only two ternary self-dual codes of length 24 with 
minimum distance 9. 

distance d= 9 (see 5) below), and it appears that there are 
seven inequivalent codes with d = 6 (see Section IV). 

5) Among all the self-dual codes of length 24 (not just 
those generated by Hadamard matrices) there are precisely 
two inequivalent codes with minimum distance 9 (see The- 
orem 6). These codes are the quadratic residue code Qz4 
and the symmetry code Pz4 ([7, chapter 16, $81, [lo]). Both 
are indecomposable. Generator matrices for these two codes 
are given in Fig. 1. The automorphism groups are Aut(Q,,) 
= 2. PSL,(23) and Aut( Pz4) = Z, . PGL,( 1 l), of orders 
22023.24 and 5280 respectively ([7, p. 4931, [8, p. 6621). 

6) Most self-dual codes of length 24 have minimum 
distance 6 and are indecomposable (see Theorem 7). 

7) In view of 5) and 6) we now concentrate on the 
indecomposable codes C with d= 6. The possible primes 
that divide IAut(C)I are 2, 3, 5, 7, 11, and 13 (Theorem S), 
and there are unique codes which are fixed by automor- 
phisms of orders 7 and 13 (Theorem 9). Using the com- 
puter program given in the Appendix, we generated 300 
random codes. Their groups were determined by the com- 
puter program described in 3); naturally, most of them are 
small. One code was found with an automorphism group of 
order 2, the smallest possible value. A generator matrix is 
shown in Fig. 2. This is the first known example of a 
self-dual code with a trivial automorphism group. Combi- 
natorial structures with trivial or almost trivial automor- 
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111 II 1000000000000000000 
000000111111000000000000 
000000000000111111000000 
2t0000t11000000000000010 
02100000000041i000000010 
oo2tooooot2otoo2oooooooo 
000210000t02000000120000 
000021000000000012102000 
100002000000020010000'011 
000000t2000000000011~100 
20001002000100000000200t 
000000000120t02000010200 

Fig. 2. Generator matrix for the (probably unique) code with automor- 
phism group of order 2. For this code A, =O, A, ~40, and the hexad 
graph r = 8C,j + 4C;. 

TABLE I 
THE VALUES OF 7; 

i 7; 

8 0 
7 l/80621568= 1.24 X IO -’ 
6 23/89579520 e 2.57 X IO -’ 
5 23/6718464 m 3.42 X 10 -’ 
4 5233/107495424=4,87X lo-* 
3 452689/56043 1872 m 8.08 X IO -’ 
2 567913/34836480 m 0.0163 
I 19968947/51321600~0.389 
0 1 61084634i79343/68746309632OOw8.8855147 

phism groups have recently been studied in other areas [l], 
[91. 

8) Since the codes with d = 9 are the most interesting we 
curtailed our search at this point. The results are sum- 
marized in Table II. The total number of inequivalent 
codes is at least 140. (The precise number is probably 
much larger.) The codes shown with d = 6 contribute about 
7.8886 to T,, leaving 0.9969 . . . to be accounted for. If the 
need arises we believe that the classification could be 
completed, although the analysis will become extremely 
tedious. Further progress could be facilitated if a computer 
program were available for determining whether two codes 
are equivalent, but no such program presently exists. Such 
a program could be used, for example, to show that the 
Hadamard matrices of order 24 give rise to &actfy nine 
inequivalent codes. 

9) The weight distribution of any of these codes is 
determined by the number of words of weights 3 and 6 (i.e. 
by A, and A6), as shown in Table III. 

The following sections give further information about 
these results. 

II. DECOMPOSABLE CODES AND CODES WITH d = 3 

The 27 decomposable codes are easily found from the 
shorter codes given in [ 111. There is a unique decomposable 
code with minimum distance 6, namely the direct sum of 
two copies of the Golay code g,,. (This code is the Hada- 
mard code H, in Section IV.) The rest have d = 3. The 
groups of these codes are quite large, the smallest group 
order being 213. 3 = 24576. 

As for the indecomposable codes with minimum distance 
3, one can show that there are respectively 0, 1, and 4 
indecomposable codes of types 8e,, 7e,, and 6e,. We did 
not attempt to find the codes of types 5e3,4e3, . . . . 

TABLE II 
SUMMARY OF TERNARY SELF-DUAL CODES OF LENGTH 24 

Decomposable : 27 codes 

Indecomposable 

Minimum distance 3 : At least I3 codes. 

Type: 8e, 7e, 6e, 5e, 4e, 3e, 2e, e3 
Number: 0 1 4 >2 b2 a2 b2 >2 

Minimum distance 6 : At least 96 codes. 

Group Number Group Number Group Number 
2 21 I28 >I 276480 a 1 
4 23 14 192 21 373248 P 2 
8 2 14 256 >I 622080 a 1 

12 24 960 >I 8294400 2 1 
16 2 18 3072 21 88957440 1 
24 25 3456 21 missing >4 
32 28 8192 21 
48 25 31104 21 
64 25 49152 >I 
96 22 241920 I 

Minimum distunce 9 : Exactly 2 codes. 

TABLE IfI 
THE WEIGHT DISTRIBUTION {A,} OF A SELF-DUAL 

CODE OF LENGTH 24 EXPRESSED IN TERMS 
OF A, AND A, 

A, = I 
A, = 1 .A, 
A, = 1 .A, 
A, = 4048 + 249.A, - 6.A, 
A I2 = 61824 - 308.A, + 15.A, 

,415 = 242880 - 564.A4, - 20.A, 

AI, = 198352 + 1029.A, + 15.A, 

,421 = 24288 - 386.4, - 6.A, 
A 24 = 48 - 2l.A, + 1 .A, 

III. THE TNUMBERS 

The numbers 7;: were defined in Section I. There are two 
quite different ways of computing them. The first requires 
that a complete list of the 27 decomposable codes of length 
24 be available (as it is from Section II), and makes use of 
the following analog of Theorem 2 of [4]. 

Theorem 1: For i= 8,7;. -,l,O we have 

= (1 + 1)(3 + 1)(32 + 1) 3 . . (3”~’ + 1) 
i112i.224-3i(24- 3i)! ’ 

where mi( j) is the number of times the code ie, occurs as a 
subcode of the jth decomposable code of length 24, and 
g(j) is the order of the automorphism group of that code. 

From this theorem, the values of T,; . . ,T, can be 
successively computed and are shown in Table I. The 
second method does not distinguish between decomposable 
and indecomposable codes but has the advantage of not 
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requiring the initial list of decomposable codes. Thus it can 
be used in situations where the codes of shorter length have 
not yet been classified. Suppose we wish to classify the 
codes of length n. For all pairs of nonnegative integers iJ 
with 3i + 4 j < n we define 

where the sum is over all (decomposable or indecomposa- 
ble) inequivalent ternary self-dual codes C of length n and 
type ie, + je,. 

u=l 1 ... 1 1 1.e. 1 

w=l 1 -1. 1 -1 -1 . . . -1 
-L----y--J 

i 12-i 

Theorem 2: The numbers 7;Ij may be obtained recur- 
sively from 

lyj = 
(1 + 1)(3 + 1)(32 + 1) . . . (3n/2--i-2j--1 + 1) 

12'.i!.48i.j!(n-3i-4j)!2"-3'-4/ 

- x mi$‘kl 4’9 ;)( ;)( i’̂ ; jTL,,, (1) 
(k./)ES(i.j) m=i+j--l 

where S( i,j) consists of all pairs of nonnegative integers k, I 
satisfying (k, I) # (ij), i + j < k + 1, 3k + 41< n, and j < 1. 

Proof: The first term on the right side of (1) is the 
total number of ternary self-dual codes of length n contain- 
ing a subcode ie,@ je, (compare [4, theorem 11). Suppose 
such a code has type ke, + le,. Certainly the last three 
inequalities in the statement of the theorem must hold. 
Furthermore these codes can be divided into those with 
(k, I) = (i,j), giving the term on the left side of (l), and 
those with (k,l) # (i,j), corresponding to the last term in 
(1). Let us consider in how many ways a code of type 
ke, + le, can contain one of type ie, + je,. We must first 
choose j out of the 1 copies of e4, and then some number m 
of the k copies of es and (i - m) out of the remaining 
(1 -j) copies of e4. Each of the last (i - m) choices can be 
made in four ways. Thus (1) follows. Q.E.D. 

Once the IT]:j have been calculated we can obtain the 
values of T, from 

T = To - F ,*&), ’ 

where the sum is over all decomposable codes C of length n 
and type ie,. For n = 24 we successively compute 
T~,o,T~,o,T~,,,TQ,o,T;,,,~~~,T~,o. We find that T,l,, = 
l/7739670528; hence TR = 0, and so T;,, = T, = 
l/80621568, and so on, in agreement with Table I. Theo- 
rems 1 and 2 can be easily generalized to give the sum of 
IAut(C)I -’ over all codes C containing a subcode of any 
specified type; compare with [4, theorem 21. 

IV. CODESGENERATEDBYHADAMARDMATRICES 

Theorem 3: Let C be a ternary self-dual code of length 
24 and d = 9. Then C contains exactly 48 codewords of 
weight 24, and these vectors form the rows of a Hadamard 
matrix and its negative. 

Proof: We see from Table III (with A, = A, = 0) that 
A,, = 48. Without loss of generality we may assume that C 
contains the all-ones vector. Then the complete weight 
enumerator of C is given in [8, fig. 61, and in particular C 
contains 46 vectors of shape 112( - 1)12 and two vectors 
-+ ( 124). Suppose C contains the vectors 

-1 -1 . . . -1 -1 . . . -1 

,l 1 i” 1, -1 . . . -1 

12 -i i 

with i#O,12. Then v.w=4i-24. Since v.w=O over 
GF(3), i = 3, 6, or 9. If i = 3 or 9, v +- w has weight 6, 
contradicting the fact that d = 9. Therefore i = 6, and 
v.w = 0 over the reals. Thus C contains a Hadamard 
matrix and its negative. Q.E.D. 

The next theorem gives a partial converse. 

Theorem 4: If a 24 X 24 Hadamard matrix is used as the 
generator matrix of a code C, then C is self-dual. 

Proof: Clearly C c C I. Let d,, . 3 . , d,, be the elemen- 
tary divisors of H. Then /detH] = d, . . ad = 2412 = 2363’2. 
Therefore there are at most twelve 3s along the di, and 
rank3(H)=dimC>12.ThusC=C’-. Q.E.D. 

The same proof applies whenever n is a multiple of 12 
but not of 36. The self-dual code obtained must have 
minimum distance at least 6 because a codeword of weight 
3 would force three columns of the Hadamard matrix to be 
dependent, an impossible task. For n = 12 of course this 
constructs the Golay code g,,, as has been known for a 
long time (cf. [2], [7, p. 6471). By combining Theorems 3 
and 4 we obtain the following result. 

Theorem 5: A self-dual code of length 24 with d = 9 is 
generated by a Hadamard matrix. 

The computer program described in Section I, result 3) 
was now used to study the codes generated by the 59 
inequivalent Hadamard matrices of order 24 and their 
transposes (cf. [5]). There are exactly two codes with d = 9, 
namely Q24 and P24, and none with d = 3. The next theo- 
rem then follows from Theorem 5. 

Theorem 6: There are exactly two inequivalent self-dual 
codes of length 24 and minimum distance 9, namely Q24 

and P24. 

The remaining Hadamard codes have d = 6, and there 
are at least seven inequivalent codes. We conjecture that 
there are exactly seven, but in the absence of a program for 
testing code equivalence we cannot assert this conjecture as 
a theorem. But from the weight distribution, the group 
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order, the orbits of the automorphism group on the hexads 
and on the 24 coordinates positions, and from other 
parameters, it appears that every Hadamard code with 
d = 6 is equivalent to one of these seven. 

The first of these seven codes is the decomposable code 
HI = g,2@ g,2, when g,, is the Golay code. Generator 
matrices for H2,. . . , H6 are shown in Fig. 3. These matrices 
have been transformed by hand into a form in which the 
rows all have weight 6 and some or all of the structure of 
the code is apparent. Much more of the structure will 
become visible if the reader will generate all the codewords 
of weight 6. The following are th,e main properties of these 
seven codes. 

H, =g,2@g,2 has A, =O, A, =528, g=IAut(H,)I = 
72260812800, and its hexad graph I (see [l 11) is 2~::~. 

H2 has A, = 0, A, = 96, g = 31104, IY = 8C46, and con- 
tains two copies of the [9, 3, 61 component code g, (see 
[ill>. 

H3 has A, = 0, A, = 144, g = 49152, and I = 6Ci*. 
H4 has A, = 0, A, = 48, g = 960, and I = 24Cd. 
H, has A, = 0, A, = 240, g = 8294400, and I = 4c,?,O. 

This code contains two copies of a new component code, 
y12, which is the [12, 5, 61 code generated by the first 5 
rows of Fig. 3(d). y,2 is a subcode (or hyperplane) in g,,, 
and has weight distribution A, = 1, A, = 90, A, = 140, and 
A,, = 12. As glue vectors we may take +x, ?y, -+x ?y 
where x = 0000 12 000000 and y = 000000 0 1022 1. Further- 
more ]Aut(y,,)] = 26.32.5 = 2880. 

H6 has A, = 0, A, = 48, g = 3072, and I = 24Cd. 
H, has A, = 0, A, = 96, g = 3456, and I = SC:. We end 

this section with a corollary to Theorem 6. 

Theorem 7: Most self-dual codes of length 24 are inde- 
composable and have d = 6. 

Proof: The number of distinct codes containing ex- 
actly 2i words of weight 3 is 224.24!. T. From Table I we 
see that To is very much larger than the other 7;. Now T, is 
the sum of IAut(C)I -’ over the codes with both d = 6 and 
d = 9, but from Theorem 6 the contribution from the codes 
with d = 9 is negligible. The assertion of the theorem now 
follows. Q.E.D. 

IV. THE POSSIBLE GROUP ORDERS 

Theorem 8: If C is a self-dual code of length 24 with 
d= 6, then only the primes 2, 3, 5, 7, 11, and 13 can divide 
Put(C 

Proof: We must eliminate 17, 19, and 23. Suppose C is 
fixed by an element u of order 17. It follows from a 
theorem of Hering ([l], [3]) that the subcode of C consist- 
ing of vectors fixed by u has dimension 4. The remaining 
3’* - 34 codewords of C are divided into sets of 17 under 
the action of 0, but 312 - 34 is not a multiple of 17, a 
contradiction, A similar argument eliminates 19. If 23 
divides ]Aut(C)], then C is an extended cyclic code and 
hence is equivalent to Q24, which has d= 9. Q.E.D. 

Theorem 9: There is a unique code with d = 6 that 
admits an automorphism of order 7, namely the code 

II t 1 lo 0 010 0 olc 0 2 0 0 21 
(a) 

1111ti 
ill141 

1122000000~2 
00004 2 'I 12200 

!+1f11 
till14 

H3 ~~2200000012 
000012~i2200~ 

122100 ~20000 
0~0122 OOf200 

522100 T 20000 
0101 22 001200 

(b) 

1111lf 
(f!fff 

i200001012000l0f0200l 
to2oooloo12oolooio2ol I H4 

Y 

(4 

_j:/i:::jl 
1 121012 

11201011 
000012 040227 

0102210000f2 

(4 

oot2~2f2 
1200122? 

0012f242 
12001221 

4 4 4 4 13 

11 41 I I 1221 11 11 I I 
(e) 

(9 

Fig. 3. Generator matrices for Hadamard codes H2, , H,. 
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Fig. 4. The code g,c + v,~, with group order 28.33.5.7 = 241920. 

Fig. 5. The code g,, +p13, with group order 29.35.5. I 1.13 = 88957440. 

g,, + q,4 shown in Fig. 4. Similarly the code g,, +P,~ 
shown in Fig. 5 is the unique code admitting an element of 
order 13. 

Proof: Suppose C has d = 6 and admits an automor- 
phism u of order 7. From Section II we may assume that C 
is indecomposable. If u has i cycles of length 7 and 24 - 7i 
fixed points, then by Hering’s theorem the invariant sub- 
code C’ has dimension (l/2)(24 - 6i) = 12 - 3i. As in the 
proof of Theorem 8 we must have 312 E 3’2-3i (mod 7), 
which implies i = 2. Then (compare [3]) C’ corresponds to 
a [ 12, 6, 61 self-dual code, which must be g,,. Therefore, on 
the ten fixed points of u, C contains a component g,,. The 
complementary component of C on the remaining 14 coor- 
dinates is a [14, 6, 61 code with group order divisible by 7. 
From [ 1 l] we see that the only possibility is ?I,~. Finally 
there is a unique way to glue the components g,, and n,4 
together. The proof of the second assertion is similar. 

Q.E.D. 

These two codes are included in Table II, as are the 
unique codes of types g,, +p,, and g,, + h,,, and two 
codes of type 2p,,. It is worth mentioning that the two 
2p,, codes have different weight distributions but isomor- 
phic groups. 
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APPENDIX 
ALGORITHMTOGENERATEARANDOMSELF-ORTHOGONAL 

CODEOVER GF(3) 

Aim: Generate a random self-orthogonal [n ,k] code over 
GF(3) spanned byvectorsu,.=(u,.(l);~~,u,.(n)), for r=l;..,k. 
Given vectors Q,; . . ,v, spanning an [ n,i] code, the algorithm 
finds v,+,, (i=O,l;.+, k - 1). The coordinates B, ,. . . ,B, are 
such that u,(B,,) = S,,, and B(i) denotes (1,2; ..,n) - 
{B,;. .,B;). 

Program: 
i t 0; 
while i < k do 

begin 
for each j E B(i) do u(j) t RAND(GF(3)); 
for 1 t 1 until i do u(B,) t -ZjEBci,vl( j)u( j); 
if u-u=0 then 

begin 
utu-u(B,)v, - . ..--u(B.)v,; 
if u#O then 

begin 
iti+ 1; 
Choose Bi with u( Bi) # 0; 
ut u(B,)-‘u; 
forltl untili-ldo 

v, t v, - u,( B,)u; 
vi t u 
end 

end 
end 
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