) [0 v\ N

Designing an Auditing Procedure, or
How to Keep Bank Managers on Their Toes

C. L. MaLLows
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A bank inspector has N banks under his supervision, and wishes to plan his visits to these
banks for many years in advance so that

(i) there is a high probability, or even certainty, that every bank will be audited at least once a
year,
(ii) the visits are unexpected, and
(iii) the total number of banks he visits each year is minimized.

Furthermore the plan must be fair: every bank must be treated in the same way. We wish to
design a method for selecting M banks to be audited each week so as to satisfy conditions (i)—(iii)
as far as possible. We assume the banks will know (or can find out) what algorithm we intend to
use.

We first analyze two of the more obvious inspection plans (Plans A and B), and show that
neither meets all the requirements. Then three schemes (Plans C, D and E) are described that do
satisfy (i)—(iii). Plans C and D both have drawbacks, however, and the final scheme, Plan E,
appears to be the best. Some numerical values of the parameters for the case of 2000 banks are
given in TABLES I-1I1.

We are not aware of any previous work on this problem, although [4], [8], [9] and the paradox
of the unexpected hanging [3] are tangentially related.

The inspection plans

We assume that the diligent inspector spends 50 weeks each year visiting his banks (this
parameter can easily be changed.) The other parameters in the analysis are:

N = total number of banks (assumed for simplicity to be a multiple of 50),

P = probability that every bank is visited at least once during the year,

Q =probability that the ith bank is visited more than once during the year (this will be
independent of i),

H, ,= probability that the ith bank is visited in week 7, conditional on that bank having been
last visited g weeks previously (i.e., in week t — g), for t=1,2,...,50 and g=1,2,...,¢ -1,

T = average number of banks visited by the inspector during each year, and

W = average number of weeks between visits to the ith bank.

In practice, a team of inspectors would be used to visit such a large number of banks each
week. But for simplicity we speak as if only a single inspector were involved. Also, unlike the
notorious traveling salesman problem, we are not concerned with the distance the inspector has to
travel each week. (Perhaps the inspections can be carried out by telephone.)

Our first three sampling schemes work on a calendar year basis; everything starts afresh at the
beginning of the year.
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Plan A: Weekly selection without replacements. At the beginning of each year N balls bearing the
names of the banks are placed in an urn and thoroughly shuffled. Each week M = N /50 balls are
drawn without replacement and these banks are inspected.

This plan certainly satisfies conditions (i) and (iii), since by the end of the year all the banks
will have been visited exactly once (in fact P=1, Q=0 and T = N). Condition (ii) is partially
satisfied, since a bank manager does not know in advance when he will be audited. On the other
hand once he has been visited he knows he is safe from further inspection for the rest of the year,
so that H, ,= 0 for all g, # > 1. With this scheme the average time W between the inspector’s visits
is one year. Since one of the goals implied by condition (i) is that the inspections may occur at
any time, this plan is not completely satisfactory. Also there is a good chance that the time
between visits will be substantially longer than one year, if a visit is made early in one year and
the next visit is late in the following year.

Plan B: Weekly selection with replacement between weeks. Each week the names of all N banks
are mixed in an urn and a random subset of M names is selected (without replacement) for
inspection.

This plan certainly satisfies condition (ii), for whether or not a bank is inspected one week is
independent of whether it was inspected the previous week. In fact H, , = M /N, independently of
g and ¢. Furthermore it is clear that, if M is sufficiently large, condition (i) is also satisfied. How
large must M be? To answer this, we note that this is a version of the classical occupancy problem
(1], [2], [S].

50
In one year there are a total of ( A";) possible ways of selecting the banks to be inspected, each

having probability | ¥ . The number of these selections having the property that a particular
M p

50
set of k banks all fail to be visited during the year is (N e ) . The principle of inclusion and
exclusion [1, p. 242], [2, Section IV.2] shows that the probability that there are exactly k banks not
visited during the year is

N—k—M 50 50
N _Ni(N—kY(N—k—i N
)L e () /) ®

In particular, the probability that every bank is visited in the year is

p="T (N /) @

This expression can be evaluated exactly only for small values of N and M. For larger values the
following Poisson approximation is appropriate (compare [1, Chapter 14], [2, p. 94]). The
probability that the ith bank is not visited during the year is

M=(l_ﬂ)”,

N\ N
()
and therefore the average number that are not visited is
50
A= N(l - %) . 3)

It is straightforward to show from (1) that if N and M increase while A remains fixed, then the
probability that exactly k£ banks remain unvisited is approximately

)\k
A

e AR
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In particular, the probability that every bank is visited is

P=e™?, (4)
Thus using Plan B with N banks and a desired probability P, we choose a value of A from (4),
and take
A \1/50
M=N{1—(N) } )
The total number of banks visited during the year is then
—14\1/50
T=50M=50N{1—(1n; ) } (6)
The probability that the ith bank is visited more than once is
M\*  50M M\*
Q—l—(l—,ﬁ) _T(l_ﬁ)
A N+49M
*l-§ N-m’ )
using (3), and the average time between visits is approximately
W= 5—1(,) = 50 weeks. (8)

The difference N — M is A%2N*8 (from (5)), which approaches 0 as N increases (for A fixed).
TABLE I gives some typical values of P, A, M and T for N =2000. It is clear that although
conditions (i) and (ii) are satisfied, (iii) is not, as T is unacceptably large.

It is worth remarking that, in the case M = 1, (4) also leads to an approximation for the Stirling
numbers of the second kind. Although this approximation seems very natural in the present
context, it does not appear to have been pointed out before. (It is not included for example among
the half-dozen similar approximations analyzed in Chapter 16 of [1}.)

Our next scheme is a generalization of Plans A and B, and appears to satisfy all three
conditions.
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TABLE 1. Typical values of the parameters P \ M T
for Plan B when visiting /N = 2000 banks. 3 533 374 16220
The columns show P = probability that every 20 223 333 - 16640
bank is visited in the year, \ = average num- 85 163 343 17170
ber not visited, M = number visited each 90 105 358 17880
week, T = 50M = total number of visits dur- 95 051 381 19060
ing a year.

Plan C: A and B combined. As in Plan A, M = N /50 names are drawn without replacement for
each of the 50 weeks. In addition, for each week we place the N — M names not drawn for that
week in an urn, and choose from it a random subset of K additional names. All M + K banks are
visited that week.

This plan combines some of the best features of Plans A and B, since each bank will be drawn
exactly once during the year in one of the sets of size M, and in addition may also be drawn in
any other week in one of the sets of size K. If K= 0, it reduces to Plan A, while if we change M
from N /50 to zero, it reduces to Plan B. For this scheme P=1, 7= 50(M + K) and
K 49
¢=1 (1 49M) ©)
The parameters H, ,-and W are more difficult to calculate, and a formula for W is derived at the
end of this paper. We can see, however, that H, , depends strongly on g and ¢ Suppose for
example that g > ¢, so that in the current year the ith bank has not yet been visited. Then

oo M L_N-M__ K
&£ N-M(t—1) N-M(t—-1) N-M

1

K
T (1 (30 ’)49M)’
which increases from (M + K)/N to 1 as ¢t goes from 1 to 50. If g < ¢, the situation is improved;
for these cases we have K/N< H, , < (K+ M)/N. (We are assuming that when it is visited, a
bank does not learn whether the visit is an M-type or a K-type.)

Some typical values of the parameters when N = 2000 are shown in TABLE II. Taking K in the
range 10 to 40 gives an inspection scheme which meets requirements (i)—(iii), and were it not for
the strong dependence of H, , on g and ¢ in the range g > ¢, Plan C would be a quite satisfactory
solution.

The last two plans to be considered are stationary, in the technical sense that no part of the
calendar year has any special role. They do not have the drawbacks of Plans A, B and C that the
probability that a particular bank is visited in a particular week can vary over a wide range as a
function of the calendar date. As a side benefit, this approach will result in our satisfying
condition (i) in a stronger sense than before; we shall be able to guarantee that no bank is ever left
unvisited for more than twelve months.

K 1-90 T w
TaBLE II. Typical values of the parameters 0 1 2000 50
for Plan C when N = 2000 and M = 40. The 10 178 2500 40
columns show K = number of banks chosen 20 .605 3000 333
randomly (in addition to the M that are cho- 30 470 3500 28.6
sen without replacement), 1 — @ = probability 40 364 4000 25
that any given bank is visited more than once 50 282 4500 222
during the year, T = 50(M + K) = total num- 60 218 5000 20
ber of visits, W = average time between visits. 70 168 5500 18.2

80 130 6000 16.7
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Plan D: Independent renewals. To implement this scheme, we first specify a probability distribu-
tion 7= {m, m,,...,msx} on the integers 1,2,...,50. (We shall soon see what properties this
distribution should have.) Then, for each bank separately, the following plan is followed. First, an
initial visit is scheduled, for week ¢, say, in a way that will be described shortly. Then an integer
g between 1 and 50 is chosen, with Prob{g, =;} =;, for 1 < <50, and the second visit is
scheduled for week ¢, + g,. A second integer g, is chosen (with the same probability distribution
as g;), independent of everything else so far, and the third visit is scheduled for ¢, + g; + g,, and
so on. Once the plan is under way, the average time between visits is W= + 27, + - - - + 507,
which is simply the mean of the distribution .

We have still to specify how ¢, is to be chosen. We do this in such a way as to ensure that the
probability that a chosen bank is visited in any particular week is a constant, independent of the
week. The constant will turn out to be simply 1/W. It is easy to see that for this to happen we
must make

PI‘Ob{t1=k}=iW(7Tk+7Tk+1+ "‘+7750), (10)

for k=1,...,50. This much complication seems to be unavoidable if the sampling plan is to be
completely independent of the calendar.

Since under Plan D the banks are treated independently, it is straightforward to derive the
following formulae for P, Q (and more generally the probability that a particular bank is visited
more than once during any period of 50 consecutive weeks), H, ,, and T (and more generally the
average number of banks visited during any period of 50 consecutive weeks). We denote the
right-hand side of (10) by p,. Then

P=1,

49
0= pu(m+m+ - +msy_y)
k=1

50

=1- WZ DPrDs1—k>s (11)
k=1
m, T, (12)

g’l=77'g+77g+1+ +7750= W_pg,
T=5N/W. (13)

Thus H, , is independent of ¢, as desired, and can be written simply as H,. Note that Hy,=1.
Also M, the number of banks that are visited in any given week, has an average value of N/ W
and a variance of N(W — 1)/ W?. These quantities do not depend on the distribution =, except
through its mean W, and we choose this so that the resulting value of M has a high probability of
being acceptable.

For example, when N = 2000, if we wish to make no more than 70 inspections per week, we
may take W = 40, so that M has a mean of 50 and a standard deviation of 6.98, and so has only a
small chance of exceeding 70. (This would happen with probability 0.003, i.e., about once every six
years.) The total number T of inspections per 50-week period is 2500 + 49.4.

Now we consider how the probability distribution # should be chosen, supposing that its mean
W is given in advance. Clearly it is undesirable to have 7, =0 for any g, since this makes H, =0

g
and the bank is certain not to be visited that week. Also Hj, is constrained to be 1. A reasonable

choice for 7 is to make H; = H, = - -- = H,y = H, say, which we can do by setting
m=HQ-H)"", k=1,...,49, (14)
o= (1— H)”, - (15)
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TaBLE III. Typical values of the parameters for Plans D il T H 750 M
44.34 2255 .005 782 45
and E when N=2000. For Plan D the columns show
. . 39.50 2532 01 611 51
W = average time between visits to any bank, T = average
. . . . 35.35 2829 .015 477 57
number of banks visited in any 50-week period, H = 31.79 3146 02 371 63
probability that a particular bank is visited in any week, ) ' ’
oo . . . . 28.72 3482 025 .289 70
conditioned on the previous visit having been less than 50
- o 26.06 3837 .03 224 77
weeks earlier, 5y = probability that a bank goes 49 weeks
. g . . 23.76 4209 .035 174 84
without a visit, and M = average number of banks visited
. 21.75 4598 .04 135 92
per week. These values also apply (approximately) to Plan
E, in which case T and M are constants. 20.00 3000 045 105 100
i ) 18.46 5417 .05 .081 108
where H is determined by the equation
1 50
mean{vr}=7_1—(1—(1—H) )=w. (16)
Also
k=1
pe=(1-H)ywiork=1,...,50. (17)

Some numerical values are given in TABLE III.

The probability distribution = we have arrived at, given by equations (14) and (15), is very
nearly the distribution of waiting-time until the appearance of the first head in a sequence of
independent coin-tosses with Prob{head} = H at each trial. The only difference is that at trial 50
the outcome “head” is forced. Thus Plan D is only a minor modification of Plan B! This suggests
two things: Plan D should be easy to implement, and can be easily modified to make the number
of inspections each week a constant.

To implement Plan D, once the start-up phase is over and every bank has been visited at least
once, each week the inspector must visit

(a) all banks that have gone 49 weeks without a visit, and
(b) a random selection of the remaining banks, with each bank having independently a chance
H of being selected.

In the start-up phase, we must implement the probability distribution ( p;,...,pso) given in
(10), (17). For each bank, we simply toss a coin having Prob{head} = H until the first head
appears, and schedule the first visit to occur in the corresponding week, except that if no head
appears in the first 50 tosses, we start again at week 1.

The modification of Plan D in which the number of inspections per week is constant is given
by our final scheme, Plan E, which combines most of the attractive features of Plans B and D.

Plan E: Truncated geometric renewals, constrained to have fixed sample size. In this scheme, after
a start-up phase that is described below, each week we determine which banks have gone 49 weeks
without a visit. Suppose there are S of them. Then that week the inspector visits

(a) these S banks, and
(b) a random subset of size M — S of the remaining banks.

Thus every week exactly M banks are visited, and no bank goes for more than 50 weeks
between visits; also for each bank there is a constant probability each week that it will be visited
(except if it is 50 weeks since the last visit, in which case another visit is sure). It is easy to see that
we shall never find S > M, since the banks in the S group are a subset of the M banks that were
inspected exactly 50 weeks ago.

The number of different ways a schedule for 50 consecutive weeks can be written down (with
M visits each week, and so that every bank is visited at least once) is simply Z = ( Z)SO P where P
1s given in (2) above. It turns out that when Plan E is used, then for any set of 50 consecutive
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weeks, each of these Z ways is equally likely. A proof of this result is given below.

Now we must consider how to start up Plan E. If we simply use Plan B (weekly random
selections with replacement) for the first 49 weeks, we run the risk that more than M banks will
escape visitation, so that in the 50th week we have an impossible task. Better would be Plan C,
which does force every bank to be visited at least once in the first year. However, this start-up rule
does not exactly achieve the stationarity condition, though the approximation appears to be quite
good in the cases (small N and a “year” with only 2 or 3 weeks) that we have been able to work
out in detail. To achieve a better approximation, it suffices to generate several years’ worth of Plan
E (with Plan C start-up) before coming to a part that will actually be used.

Although Plan E is simple to state and to implement, we have not been able to obtain tractable
expressions for all of its parameters. As an approximation, however, we can use the values given in
TaBLE III (for N = 2000 banks), interpreting the columns as follows:

M =number of banks visited each week,

W = average time between visits to any bank,

T =50M = total number of visits per 50-week period,

H = approximate probability that a particular bank is visited in any week, except when the
previous visit was 49 weeks earlier, and

75, = approximate probability that a bank goes 49 weeks without a visit.

Calculation of the expected time between visits in Plan C

We consider the ith bank, and say that it is in state (j,0), where 1 </ < 50, if at the beginning
of the jth week it has not yet been drawn in one of the M-sets, and in state (j,1) if it has. Let
P(j,0) and P(j,1) denote the probabilities of being in these states, and let 7 (j,0) [resp. 7(j,1)]
be the probability of going from state (,0) to state (j + 1,0) [resp. (j + 1,1)]. These states and
probabilities are related by the Markov chain shown in FIGURE 1. For 1 <j < 49 we have (using
N=50M)

(N—jM—l)
0y M _ 50—y
M
. 1
7(J,1 G

and therefore P(j,0)= (51 —;)/2500, P(j,1)=(j—1)/2500, for 1 <j < 50. The probability of
this bank being drawn during the jth week in the K-set, given that it was not drawn in the M-set,

P(1,0) P(2,0) P(3,0) P(50,0) P(1,0)

P(2,1) P(3,1) P(50,1)

FIGURE 1. Markov chain describing Plan C.
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is
N-M-1
1 K __K
(N—M) 49M°

g=
K

We wish to determine W, the average number of weeks to the next time this bank is drawn,
given that it has just been drawn. There are three possibilities: (a) the bank was in state (j,0) and
in the jth week was drawn in the M-set, (b) the bank was in state (j,1) and in the jth week was
drawn in the K-set, and (c) the bank was in state (,0) and in the jth week was not drawn in the
M-set but was drawn in the K-set. The expression for W contains terms corresponding to these
three possibilities; we omit the details and simply state the result, which is

_ Wt Wt W,
W= D,+D,+D,’ (18)
where
50
w,= 2 P(j,0)n(j,)W,,
j=1
50—
w,= Y r(l-0)"o
r=1
100— r+j—51 ‘
+ Y r(l—o)r_l{ I w(i,O)}{w(r+j—50,1)+77(r—|—j—50,0)a},
r=51—j i=1
50
Wb= Z P(jal)aVVa/a
j=1
50
w,= Y P(j,0)7(;,0)0W,,
j=1
50— (r+j—1
wi= L | T1 w00} =0) 7 (a0 w(r+50)a),
r=1 i=j+1
and
50
D,= X P(j,0)n(j,1),
j=1
50
Db= Z P(jil)a,
j=1
50
D.= ) P(j,0)7(j,0)0.
j=1
(An empty product is equal to 1 by convention.) Therefore
50 . 50— 100— r—1
_ IM+(j—1K 1 r_(l——o)_ .
W, = ;1 2500 %< 49M ;r(l o) o+ _Z_. 50 {1+(100-r—j)o}|,
j= r=1 r=51—j
(19)
50 o 50—j i1
W= 5% Y r(l—0)"  {1+(50—r—j)a}, (20)
Jj=1 00 r=1
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and the denominator is

M+ K
Da+Db+Dc_50—M' (21)

Equations (18)-(21) were used to calculate the values shown in TABLE II.

Proof of the equidistribution property of Plan E

We first establish some notation. Let X|, X,,... be the subsets of {1,2,...,N} that indicate
which banks are to be visited in weeks 1,2,... . The number of visits each week is | X,| = M, for all
t. We have to show that under Plan E, if

=N (22)

so that all the banks are visited in the 50-week period (¢ — 49,...,¢), then
1
Prob{X,_49,...,X,‘1,X,}=§. (23)

The defining property of Plan E is that the conditional probability
Prob{ X,|X,_49,..., X,_1} (24)

is constant over all sets X, such that (22) holds. Let the coverage of { X,_4,...,X,_,} be

t—1

0.
Jj=t—49
Then, at week ¢, S=N — C, banks are forced into X,, leaving M — (N — C,) to be chosen
randomly from the remaining N — (N — C,) = C, banks. Thus the probability in (24) equals

1 1

)

To prove that (23) is correct, it is sufficient to show that this specification satisfies the
recurrence condition

PI‘Ob{X,_49,...,X,} = Z PI‘Ob{X}_w,...,X,_l}PI‘Ob{X,IXv,_@,...,X;_l}, (25)
Xi-s0

Ct=

G
M-N+C

where the sum is over all sets X,_ s, such that

t—1
U X

Jj=t—50

=N.

By the same argument as before, the number of such sets is just (NS'M), so the sum in (25) has this

many terms, each equal to 1 /Z(NS'M)V; the sum is thus 1 /Z, and the result is established.

Finally, we note that there is no difficulty in implementing any of these schemes. In particular
efficient algorithms are readily available for choosing random subsets from a larger set (see [6,
§3.4.2], [7)).
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On the Existence of Group Automorphisms
Whose Inverse Is Their Reciprocal

Ricuarp E. Dowbps
ALBERT D. PoLIMENI
State University College
Fredonia, NY 14063

Students of elementary mathematics frequently confuse f~*(x) with 1,/f(x) when working with
functions of a real variable, but students in junior and senior level mathematics courses have
matured sufficiently to understand the difference between the two expressions. Since such
students normally take a course in abstract algebra, we propose finding an algebraic setting in
which f~1(x) and (f(x))~! actually coincide. We use elementary number theory to determine
conditions on a finite group which guarantee the existence of an automorphism f such that
f U(x)=(f(x))"'. Our methods also yield the answer to the analogous problem for a finite
dimensional vector space over a field. Since the existence of an automorphism of the desired type
will require the group to be abelian, we shall adopt additive notation for groups. Our formula then
becomes f~1(x)= —f(x).

Let (G, +) be a finite group. A function f: G— G is called naturally invertible provided f is
one-to-one (hence onto) and f~'(x) = —f(x) for each x € G. We use the terminology ni-function
to mean a naturally invertible function. Note that if f: G— G is a ni-function, then for each
X E€QG,

) =x==f(f(x))= —f*(x), 1)
hence (replacing x by —x in (1))

x=f*(—x). )
Immediate consequences of (1) and (2) are the properties
@) f*(x)= —=x, for each x € G,
(i) f~'(x)=f(—x), for each x € G and
(iii) f*=ig, the identity function on G.
If f is an automorphism of G, it is one-to-one, and f(—x)= —f(x) for all x€ G, so fis a
ni-function if and only if (i) holds. In this case, we call f a ni-automorphism. From (i) and the fact

that f? is an automorphism, we conclude that a group having a ni-automorphism must be abelian.
Our first theorem characterizes cyclic groups which have a ni-automorphism.
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