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Abstract

Define a sequence of positive integers by the rule that a(n) = n for 1 ≤ n ≤ 3, and for n ≥ 4,
a(n) is the smallest number not already in the sequence which has a common factor with a(n− 2)

1To whom correspondence should be addressed.
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and is relatively prime to a(n−1). We show that this is a permutation of the positive integers. The
remarkable graph of this sequence consists of runs of alternating even and odd numbers, interrupted
by small downward spikes followed by large upward spikes, suggesting the eruption of geysers in
Yellowstone National Park. On a larger scale the points appear to lie on infinitely many distinct
curves. There are several unanswered questions concerning the locations of these spikes and the
equations for these curves.

1 Introduction

Let (a(n))n≥1 be defined as in the Abstract. This is sequence A0985502 in the On-Line Encyclopedia
of Integer Sequences [6], contributed by Zumkeller in 2004. Figures 1 and 2 show two different views
of its graph, and the first 300 terms are given in Table 1. Figure 1 shows terms a(101) = 47 through
a(200) = 279, with successive points joined by lines. The downward spikes occur when a(n) is a
prime, and the larger upward spikes (the “geysers”, which suggested our name for this sequence)
happen two steps later. In the intervals between spikes the sequence alternates between even and
odd values in a fairly smooth way.

Figure 2 shows the first 300,000 terms, without lines connecting the points. On this scale the
points appear to fall on or close to a number of quite distinct curves. The primes lie on the lowest
curve (labeled “p”), and the even terms on the next curve (“E”). The red line is the straight line
f(x) = x, included for reference (it is not part of the graph of the sequence). The heaviest curve
(labeled “C”), just above the red line, consists of almost all the odd composite numbers. The
higher curves are the relatively sparse “κp” points, to be discussed in Section 3 when we study the
growth of the sequence more closely. It seems very likely that there are infinitely many curves in
the graph, although this, like other properties to be mentioned in Section 3, is at present only a
conjecture. We are able to show that every number appears in the sequence, and so (a(n))n≥1 is a
permutation of the natural numbers.

The definition of this sequence resembles that of the EKG sequence (A064413, [5]), which is that
b(n) = n for n = 1 and 2, and for n ≥ 3, b(n) is the smallest number not already in the sequence
which has a common factor with b(n − 1). However, the present sequence seems considerably
more complex. (The points of the EKG sequence fall on or near just three curves.) Many other
permutations of the natural numbers are discussed in [1, 2, 3, 4].

2 Every number appears

Theorem 1. (a(n))n≥1 is a permutation of the natural numbers.

Proof. By definition, there are no repeated terms, so we need only show that every number appears.
There are several steps in the argument.

(i) The sequence is certainly infinite, because the term pa(n− 2) is always a candidate for a(n),
where p is a prime not dividing any of a(1), . . . , a(n − 1).

(ii) The set of primes that divide terms of the sequence is infinite. For if not, there is a prime p
such that every term is the product of primes < p. Using (i), let m be large enough that a(m) > p2,
and let q be a common prime factor of a(m − 2) and a(m). Since q < p, qp < p2 < a(m), and so
qp would have been a smaller choice for a(m), a contradiction.

2Throughout this article, six-digit numbers prefixed by A refer to entries in [6].
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Figure 1: Plot of terms a(101) through a(200) of the Yellowstone permutation. The downward
spikes occur when a(n) is a prime, and the larger upward spikes (the “geysers”) happen two steps
later.

(iii) For any prime p, there is a term divisible by p. For suppose not. Then no prime q > p can
divide any term, for if it did, let a(n) = tq be the first multiple of q to appear. But then we could
have used tp < tq instead. So every prime divisor is < p, contradicting (ii).

(iv) Any prime p divides infinitely many terms. For suppose not. Let N0 be such that p does
not divide a(n) for n ≥ N0. Choose i large enough that pi does not divide any term in the sequence,
and choose a prime q > pi which does not divide any of a(1), . . . , a(N0). By (iii), there is some
term divisible by q. Let a(m) = tq be the first such term. But now tpi < tq is a smaller candidate
for a(m), a contradiction.

(v) For any prime p there is a term with a(n) = p. Again suppose not. Using (i), choose N0

large enough that a(n) > p for all n ≥ N0. By (iv), we can find an n ≥ N0 such that a(n) = tp for
some t. Then a(n + 2) = p, a contradiction.

(vi) All numbers appear. For if not, let k be the smallest missing number, and choose N0 so
that all of 1, . . . , k − 1 have occurred in a(1), . . . , a(N0). Let p be a prime dividing k. Since, by
(iv), p divides infinitely many terms, there is a number N1 > N0 such that gcd(a(N1), k) > 1. This
forces

gcd(a(n), k) > 1 for all n ≥ N1. (1)

(If not, there would be some j ≥ N1 where gcd(a(j), k) > 1 and gcd(a(j + 1), k) = 1, which would
lead to a(j + 2) = k.) But (1) is impossible, because we know from (v) that infinitely many of the
a(n) are primes.

Remarks. The same argument, with appropriate modifications, can be applied to many other
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Figure 2: Scatterplot of the first 300,000 terms. The primes lie on the lowest line (labeled “p”), the
even numbers on the second line (“E”), the majority of the odd composite numbers on the third
line (“C”), and the “κp” points on all the higher lines. The lines are not actually straight, except
for the red line f(x) = x, which is included for reference.

sequences. Let Ω be a sufficiently large set of positive integers,3 and define a sequence (c(n))n≥1

by specifying that certain members of Ω must appear at the start of the sequence (including
1, if 1 ∈ Ω), and that thereafter c(n) ∈ Ω is the smallest number not yet used which satisfies
gcd(c(n), c(n− 2)) > 1, gcd(c(n− 1), c(n)) = 1. Then the resulting sequence will be a permutation
of Ω. We omit the details.

For example, if we take Ω to be the odd positive integers, and specify that the sequence begins
1, 3, 5, we obtain A251413.

Or, with Ω the positive integers again, we can generalize our main sequence by taking the first
three terms to be 1, x, y with x > 1 and y > 1 relatively prime. For example, starting with 1, 3, 2
gives A251555, and starting with 1, 2, 5 gives A251554, neither of which appears to merge with
the main sequence, whereas starting with 1, 4, 9 merges with A098550 after five steps. It would
be interesting to know more about which of these sequences eventually merge. It follows from
Theorem 1 that a necessary and sufficient condition for two sequences (c(n)), (d(n)) of this type
(that is, beginning 1, x, y) to merge is that for some m, terms 1 through m − 2 contain the same
set of numbers, and c(m − 1) = d(m − 1), c(m) = d(m).

3For instance, let P be an an infinite set of primes, and take Ω to consist of the positive numbers all of whose
prime factors belong to P. We could also exclude any finite subset of numbers from Ω. We obtain the Yellowstone
permutation by taking P to be all primes, Ω to be the positive integers, and requiring that the sequence begin with
1, 2, 3.
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3 Growth of the sequence

Table 1: The first 300 terms a(20i+j), 0 ≤ i ≤ 14, 1 ≤ j ≤ 20 of the Yellowstone permutation. The
primes (or downward spikes) are shown in red, the “κp” points (the upward spikes, or “geysers”)
in blue.

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22
1 39 11 13 33 26 45 28 51 32 17 18 85 24 55 34 65 36 91 30 49
2 38 63 19 42 95 44 57 40 69 50 23 48 115 52 75 46 81 56 87 62
3 29 31 58 93 64 99 68 77 54 119 60 133 66 161 72 175 74 105 37 70
4 111 76 117 80 123 86 41 43 82 129 88 135 92 125 78 145 84 155 94 165
5 47 90 329 96 203 100 147 104 141 98 153 106 171 53 102 265 108 185 112 195
6 116 143 114 121 118 187 59 110 177 122 159 61 120 427 124 183 128 189 130 201
7 136 67 126 335 132 205 134 215 138 235 142 225 71 140 213 146 207 73 144 365
8 148 219 152 231 158 209 79 154 237 160 243 164 249 170 83 150 581 156 217 162
9 245 166 255 172 221 168 169 174 247 176 273 178 259 89 182 267 184 261 188 279

10 190 291 196 97 180 679 186 287 192 301 194 315 202 275 101 198 505 204 295 206
11 285 103 200 309 208 297 212 253 210 299 214 325 107 220 321 218 303 109 216 545
12 222 305 224 345 226 327 113 228 565 232 339 230 333 236 351 238 363 244 319 234
13 341 240 403 242 377 246 455 248 343 250 357 254 289 127 272 381 256 369 260 387
14 262 375 131 252 655 258 355 264 395 266 405 268 385 274 371 137 280 411 278 393

From studying the first 100 million terms of the sequence (a(n)), we believe we have an accurate
model of how the sequence grows. However, at present we have no proofs for any of the following
statements. They are merely empirical observations.

The first 212 terms are exceptional (see Table 1). Starting at the 213th term, it appears that
the sequence is governed by what we shall call:

Hypothesis A. (“A” stands for “alternating”.) The sequence alternates between even and odd
composite terms, except that, when an even term is reached which is twice a prime, the alternation
of even and odd terms is disrupted, and we see five successive terms of the form

2p, 2i + 1, p, 2j, κp, (2)

where p is an odd prime, i and j are integers, and κ < p is the least odd prime that does not
divide j. The κp terms are the “geysers” (A251544).

For example, terms a(213) to a(217) are

202 = 2 · 101, 275, 101, 198 = 2 · 32 · 11, 505 = 5 · 101 .

Hypothesis A is only a conjecture, since we cannot rule out the possibility that this behavior breaks
down at some much later point in the sequence. It is theoretically possible, for example, that a
term that is twice a prime is not followed two steps later by the prime itself (as happens after
a(8) = 14, which is followed two steps later by a(10) = 6 rather than 7). However, as we shall
argue later in this section, this is unlikely to happen.

Under Hypothesis A, most of the time the sequence alternates between even and odd composite
terms, and the nth term a(n) is about n, to a first approximation. However, the primes appear
later than they should, because p cannot appear until the sequence first reaches 2p, which takes
about 2p steps, and so the primes are roughly on the line f(x) = x/2. On the other hand, the term
κp in (2) appears earlier than it should, and lies roughly on the line f(x) = κx/2.
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Continuing to assume that Hypothesis A holds for terms 213 onwards, we can give heuristic
arguments that lead to better asymptotic estimates, as follows. Guided by (2), we divide the terms
of the sequence into several types: type E terms, consisting of all the even terms; type p, all the
odd primes; types κp for κ = 3, 5, 7, 11, . . ., the terms that appear two steps after a prime; and type
C, all the odd composite terms that are not of type κp for any κ.

From term 213 onwards, even and odd terms (more precisely, types E and C) alternate, except
when the even term is twice a prime, when we see the five-term subsequence (2), containing two
E terms, one p term, one κp term for some odd prime κ, and one C term. Between terms 213
and n, we will see about λ of these five-term subsequences, where λ is the number of terms in that
range that are twice a prime. λ is therefore approximately4 π(a(n)/2), where π(x) is the number
of primes ≤ x.

There are n − 5λ terms not in the 5-term subsequences, so the total number of even terms out
of a(1), . . . , a(n) is roughly

n − 5λ

2
+ 2λ =

n − λ

2
∼=

n − π(a(n)
2 )

2
, (3)

where ∼= signifies “is approximately equal to”. Although the even terms do not increase monoton-
ically (compare Table 1), it appears to be a good approximation to assume that, on the average,
each even term contributes 2 to the growth of the even subsequence, and so, if a(n) is an even term,
we obtain

a(n) ∼= n − π

(
a(n)

2

)
. (4)

In other words, the even terms should lie on or close to the curve y = fE(x) defined by the functional
equation

y + π
(y

2

)
= x. (5)

The primes then lie on the curve fp(x) = 1
2fE(x), and the κp terms on the curve fκp(x) = κ

2fE(x)
for κ = 3, 5, 7, . . ..

Although the reasoning that led us to (5) was far from rigorous, it turns out that (5) is a
remarkably good fit to the graph of the even terms, at least for the first 108 terms. We solved (5)
numerically, and computed the residual errors a(n) − fE(n). The fit is very good indeed for the
“normal” even terms, those that do not belong to the 5-term subsequences. As can be seen from
Fig. 3, up to n = 107, the maximum error is less than 40, in numbers which are around 107.

The fit is still good for the even terms in the five-term subsequences, although not so remarkable,
as can be seen in Fig. 4. Up to n = 107 there are errors as large as 6000, which is on the order of√

n. The errors for the “normal” even terms are shown in this figure in green.
If we use π(x) ∼ x/ log x in (5), we obtain

fE(x) = x

(
1 − 1

2 log x
+ o

(
1

log x

))
. (6)

However, (5) is a much better fit than just using the first two terms on the right side of (6).
We can study the curve fC(x) containing the type C terms (the odd composite terms not of type

κp) in a similar manner. This is complicated by the fact that the values of κ are hard to predict.
We therefore use a probabilistic model, and let σ(κ) denote the probability that the multiplier in

4We assume n is very large, and ignore the fact that the first 212 terms are slightly exceptional—asymptotically
this makes no difference.
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Figure 3: The difference between the “normal” even terms and the approximation fE(n) given in
(5) is at most 40 for n ≤ 107.

Figure 4: The difference between the even terms that follow a prime and the approximation fE(n)
given in (5) is at most 6000 for n ≤ 107. The green points are the same errors shown in the previous
figure, plotted on this scale.

a κp term is κ. Empirically, σ(3) ∼= 0.334, σ(5) ∼= 0.451, σ(7) ∼= 0.174, . . .. The number of type C
terms in the first n terms is (compare (3))

n − 5λ

2
+ λ =

n − 3λ

2
∼=

n − 3π(fE(n)
2 )

2
. (7)

However, type C terms skip over the primes, and we expect to see π(fC(n)) primes ≤ fC(n). Type
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C terms also skip over the κp terms that have already appeared in the sequence. For a given value
of κ, terms of type κp will have been skipped over if κp ≤ fC(n), and if that value of κ was chosen,
so the number of κp terms we skip over is∑

odd primes κ

σ(κ) π

(
fC(n)

κ

)
,

where here and in the next two displayed equations the summation ranges over all odd primes
κ ≤

√
fC(n). Each of these events contributes 2, on the average, to the growth of the C terms, so

we obtain

fC(n) ∼= n − 3π

(
fE(n)

2

)
+ 2π(fC(n)) + 2

∑
odd primes κ

σ(κ) π

(
fC(n)

κ

)
. (8)

In other words, the type C terms should lie on or close to the curve y = fC(x) defined by the
functional equation

y − 2π(y) − 2
∑

odd primes κ

σ(κ) π
(y

κ

)
= x − 3π

(
fE(x)

2

)
. (9)

Equation (9) can be solved numerically, using the values of fE(x) computed from (5), and gives
a good fit to the graph of the type C terms. As can be seen from Fig. 5, the errors in the first 107

terms are on the order of 5
√

n. It is not surprising that the errors are larger for type C terms than
type E terms, since as can be seen in Fig. 2, the curve with the C points is much thicker than the
E curve.

Figure 5: The difference between the odd composite (or type C) terms and the approximation
fC(n) defined implicitly by (9) is on the order of 5

√
n for n ≤ 107.

If we use π(x) ∼ x/ log x in (9), we obtain

fC(x) = x

(
1 +

α

log x
+ o

(
1

log x

))
, (10)

8



where
α =

1
2

+ 2
∑

odd primes κ≥3

σ(κ)
κ

∼= 0.96, (11)

and now the summation is over all odd primes κ.
To summarize, our estimates for the curves fE(x) and fC(x) containing the terms of types E

and C are given by (5) and (9). Equations (6) and (10) have a simpler form but are less precise.
The primes lie on the curve fp(x) = 1

2fE(x), and the κp terms on the curves fκp(x) = κ
2fE(x)

for κ = 3, 5, 7, . . .. In Fig. 2, reading counterclockwise from the horizontal axis, we see the curves
fp(x), fE(x), the red line f(x) = x, then fC(x), f3p(x), f5p(x), f7p(x), f11p(x), and a few points
from fκp(x) for κ ≥ 13. At this scale, the curves look straight.

To see why Hypothesis A is unlikely to fail, note that when we add an even number to the
sequence, most of the time it belongs to the interval [mE ,ME ] (A251546, A251557), which we
call the even frontier, where mE is the smallest even number that is not yet in the sequence,
and ME is 2 more than the largest even number that has appeared. The odd composite frontier
[mC ,MC ] (A251558, A251559) is defined similarly for the type C points. For example, when
n = 106, a(106) = 1094537, the even frontier is [960004, . . . , 960234] and the odd composite frontier
is [1092467, . . . , 1097887]. In fact, at this point, no even number in the range 960004, . . . , 960230
is in the sequence. What we see here is typical of the general situation: the length of the even
frontier, ME − mE , is much less than the length of the odd composite frontier, MC − mc; most
of the terms in the even frontier are available; and the two frontiers are well separated. As long
as this continues, the even and odd frontiers will remain separated, and Hypothesis A will hold.
The much larger width of the odd composite frontier is reflected in the greater thickness of the“C”
curve in Figure 2.

We know from the proof of Theorem 1 that if p < q are primes, the first term divisible by p
occurs before the first term divisible by q. But we do not know that p itself occurs before q. This
would be a consequence of Hypothesis A, but perhaps it can be proved by arguments similar to
those used to prove Theorem 1. Sequences A252837 and A252838 contain additional information
related to Hypothesis A.

The OEIS contains a number of other sequences (e.g., A098548, A249167, A251604, A251756,
A252868) whose definition has a similar flavor to that of the Yellowstone permutation. Two se-
quences contributed by Adams-Watters are especially noteworthy: A252865 is an analog of A098550
for square-free numbers, and A252867 is a set-theoretic version.

4 Orbits under the permutation

Since the sequence is a permutation of the positive integers, it is natural to study its orbits. It
appears that the only fixed points are 1, 2, 3, 4, 12, 50, 86 (A251411). There are certainly no other
fixed points below 109, and Fig. 2 makes it very plausible that there are no further points on the
red line.

At present, 27 finite cycles are known besides the seven fixed points. For example, 6 is in the
cycle (6, 8, 14, 16, 10). The finite cycle with the largest minimum term known to date is the cycle
of length 45 containing 756023506.

We conjecture that, on the other hand, almost all positive numbers belong to infinite orbits.
See Fig. 6 for portions of the conjecturally infinite orbits whose smallest terms are respectively 11
(A251412), 29, 36, 66, and 98 (cf. A251556). The orbits have been displaced sideways so that the
conjectured minimal value is positioned at x = 0. For example, the blue curve to the right of x = 0
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Figure 6: Portions of the conjecturally infinite orbits whose smallest terms are 11 (blue), 29 (red),
36 (green), 66 (orange), 98 (cyan).

shows the initial portion of the trajectory of 11 under repeated applications of the Yellowstone
permutation, while the curve to the left shows the trajectory under repeated applications of the
inverse permutation. In other words, the blue curve, from upper left to upper right, is a section of
the orbit whose minimal value appears to be 11. The inverse trajectory of 11 has near-misses after
three steps, when it reaches 18, and after 70 steps, when it reaches 19, but once the numbers get
large it seems that there is little chance that the forward and inverse trajectories will ever meet,
implying that the orbit is infinite.

However, because of the erratic appearance of the trajectories in Fig. 6, there is perhaps a
greater possibility that these paths may eventually close, or merge, compared with the situation
for other well-known permutations. For example, in the case of the “amusical permutation” of the
nonnegative integers (A006368) studied by Conway and Guy [1, 2, 4], the empirical evidence that
most orbits are infinite is much stronger—compare Figs. 1 and 2 of [2] with our Fig. 6.
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