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Nim

Forms of Nim have been played since antiquity and a complete theory was published as early as
1902 (see [3]). Martin Gardner described the game in one of his earliest columns [7] and returned
to it many times over the years ([8]–[16]).

Central to the analysis of Nim is Nim-addition. The Nim-sum is calculated by writing the terms
in base 2 and adding the columns mod 2, with no carries. A Nim position is a winning position if
and only if the Nim-sum of the sizes of the heaps is zero [2], [7].

Is there is a generalization of Nim in which the analysis uses the base-b representations of the
sizes of the heaps, for b > 2, in which a position is a win if and only if the mod-b sums of the columns
is identically zero? One such game, Rimb (an abbreviation of Restricted-Nim) exists, although it
is complicated and not well known. It was introduced in an unpublished paper [6] in 1980 and is
hinted at in [5]. Despite his interest in Nim, Martin Gardner never mentions Rimb, nor does it
appear in Winning Ways [2], which extensively analyzes Nim variants.

In the present paper we focus on b = 10, and consider, not Rim10 itself, but the arithmetic that
arises if calculations, addition and multiplication, are performed mod 10, with no carries. Along
the way we encounter several new and interesting number sequences, which would have appealed
to Martin Gardner, always a fan of integer sequences.

The Carryless Islands

The fabled carefree residents of the Carryless Islands in the remote South Pacific have very few
possessions, which is just as well, since their arithmetic is ill-suited to accurate bookkeeping. When
they add or multiply numbers, they follow rules similar to ours, except that there are no carries into
other digit positions. Sociologists explain this by noting that the Carryless Islands were originally
penal colonies, and, as penal institutions are generally known to have excellent dental care, the
islanders were, happily, generally free of carries. We will use and for their operations,1 and
+ and × for the standard operations used by the rest of the world. Addition and multiplication
of single-digit numbers are performed by “reduction mod 10.” Carry digits are simply ignored, so
9 4 = 3, 5 5 = 0, 9 4 = 6, 5 4 = 0, and so on. Adding or multiplying larger numbers also
follows the familiar procedures, but again with the proviso that there are no carries. For example,
adding 785 and 376 produces 51, and the product of 643 and 59 is 417 (see Figure 1).

1We prefer not to use outlandish symbols such as ♣ and ♠, since and are perfectly reasonable operations,
although to our eyes they have rather strange properties. As Marcia Ascher remarks, writing about mathematics in
indigenous cultures, “in many cases these cultures and their ideas were unknown beyond their own boundaries, or
misunderstood when first encountered by outsiders” [1].
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7 8 5
3 7 6
0 5 1

Fig. 1(a) Carryless addition.

6 4 3
5 9

4 6 7
0 0 5
0 4 1 7

Fig. 1(b) Carryless multiplication.

What does elementary number theory look like on these islands? Let’s start with the carryless
squares n n. For n = 0, 1, 2, 3 we get 0, 1, 4, 9, Then for n > 3 we have 4 4 = 6, 5 5 = 5,
6 6 = 6, 7 7 = 9, 8 8 = 4, 9 9 = 1, 10 10 = 100, . . ., giving the sequence

0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 100, 121, 144, 169, 186, 105, 126, 149, 164, . . . .

It turns out that this is entry A059729 in the OEIS [17], contributed by Henry Bottomley on
February 20, 2001, although without any reference to earlier work on these numbers. Bottomley
also contributed sequence A059692, giving the carryless multiplication table, and several other
sequences related to carryless products. Likewise the sequence of values of n n,

0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 20, 22, 24, 26, 28, 40, 42, . . . ,

is entry A004520, submitted to the OEIS by one of the present authors around 1996, again without
references. (If these numbers are sorted and duplicates removed, we get the carryless “evenish”
numbers, that is, numbers all of whose digits are even, A014263.) Carryless arithmetic must surely
have been studied before now, but the absence of references in [17] suggests that it is not mentioned
in any of the standard texts on number theory.

The carryless primes

If we require that a prime π is a number whose only factorization is 1 times itself, we are out of
luck, since every carryless number is divisible by 9, and there would be no primes at all. (For
9 1 = 9, 9 2 = 8, 9 3 = 7, . . ., 9 9 = 1. So if we construct a number ρ by replacing all the
1’s in π by 9’s, all the 2’s by 8’s, . . . then π = 9 ρ, and π would not be a prime.)

There are primes, when defined in the right way. Since 1 1 = 1, 3 7 = 1 and 9 9 = 1,
all of 1, 3, 7 and 9 divide 1 and so divide any number. We call 1, 3, 7 and 9 units, the usual name
for integers that divide 1. Units should not be counted as factors when considering if a number is
prime (just as factors of −1 are ignored in ordinary arithmetic: 7 = (−1)× (−7) doesn’t count as
a factorization when considering if 7 is a prime).

So we define a carryless prime to be a non-unit π whose only factorizations are of the form
π = u ρ where u is a unit. Computer experiments suggest that the first few primes are

21, 23, 25, 27, 29, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, . . . , (1)

but there are surprising omissions in this list, resulting from some strange factorizations: 2 = 2 51,
10 = 56 65, 11 = 51 61. It is hard to be sure at this stage that the above list is correct, since
there exist factorizations where one of the numbers is much larger than the number being factored,
such as 2 = 4 5005505553. One property that makes carryless arithmetic interesting is the
presence of zero-divisors: the product of two numbers can be zero without either of them being
zero: 2 5 = 0, 628 55 = 0. Perhaps 21 is the product of two really huge numbers? Nonetheless,
the list is correct, as we will see (it is now sequence A169887 in [17]).
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Algebra to the rescue

The secret to understanding carryless arithmetic is to introduce a little algebra. Let R10 denote the
ring of integers mod 10, and R10[X] the ring of polynomials in X with coefficients in R10. Then we
can represent carryless numbers by elements of R10[X]: 21 corresponds to 2X + 1, 109 to X2 + 9,
and so on. Carryless addition and multiplication are simply addition and multiplication in R10[X]:
our first example,

785 376 = 51 .

corresponds to
(7X2 + 8X + 5) + (3X2 + 7X + 6) = 5X + 1 ,

where the polynomials are added or multiplied in the usual way, and the coefficients then reduced
mod 10. Conversely, any element of R10[X] represents a unique carryless number (just set X = 10
in the polynomial). In fact arithmetic in R10[X] is clearly exactly the same as the arithmetic of
carryless numbers. This could be used as a formal definition of carryless arithmetic mod 10. It also
shows that this arithmetic is commutative, associative and distributive.

Since R10[X] is a ring, we can not only add and multiply, we can also subtract, something the
Carryless Islanders never considered. The negatives of the elements of R10 are −1 = 9, −2 = 8, . . . ,
−9 = 1, and similarly for the elements of R10[X]. So the negative of a carryless number is its “10’s
complement,” obtained by replacing each nonzero digit d by 10− d, for example 702 = 308. To
subtract A from B, we add A to B: 650 702 = 650 308 = 958. This is equivalent to doing
elementary school subtraction where we can “borrow” but don’t have to pay back!

The units in R10[X], that is, the elements that divide 1, are the constants 1, 3, 7, 9, and the
carryless primes that we defined are the irreducible elements in R10[X], that is, non-units f10(X) ∈
R10[X] whose only factorizations are of the form f10(X) = u g10(X), where u is a unit and g10(X) ∈
R10[X]. The units can also be written as 1, 1, 3 and 3, which more closely relates them to the
units 1 and −1 in ordinary arithmetic (3 and 3 act in some ways like the imaginary units i and
−i, squaring to −1, for example).

The key to further progress is to notice that R10 is the direct sum of the ring R2 of integers
mod 2 and the ring R5 of integers mod 5. Given r10 ∈ R10, we read it mod 2 and mod 5 to obtain
a pair [r2, r5] with r2 ∈ R2, r5 ∈ R5. The elements 0, 1, . . . , 9 ∈ R10 (or equivalently the carryless
digits 0, 1, . . . , 9) and their corresponding pairs [r2, r5] are given by the following table. The Chinese
Remainder Theorem guarantees that this is a one-to-one correspondence.

0 1 2 3 4 5 6 7 8 9
[0,0] [1,1] [0,2] [1,3] [0,4] [1,0] [0,1] [1,2] [0,3] [1,4]

(2)

As a check, we note that {1} is the (singleton) set of units in R2, while {1, 2, 3, 4} is the set of units
in R5, so the pairs [1, 1], [1, 2], [1, 3] and [1, 4] correspondingly produce the units 1, 7, 3 and 9 of
R10.

Similarly, polynomials f10(X) ∈ R10[X] correspond to pairs of polynomials [f2(X), f5(X)],
obtained by reading f10(X) respectively mod 2 and mod 5. Conversely, given any such pair of
polynomials [f2(X), f5(X)], there is a unique f10(X) ∈ R10[X] that corresponds to them, which
can be found using (2). We indicate this by writing f10(X) ↔ [f2(X), f5(X)]. If also g10(X) ↔
[g2(X), g5(X)], then f10(X) + g10(X) ↔ [f2(X) + g2(X), f5(X) + g5(X)] and f10(X)g10(X) ↔
[f2(X)g2(X), f5(X)g5(X)].

We are now in a position to answer many questions about carryless arithmetic.
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The carryless primes, again

What are the irreducible elements f10(X) ∈ R10[X]? If f10(X) ↔ [f2(X), f5(X)] is irreducible
then certainly f2 and f5 must be either units or irreducible, for if f2 = g2h2 then we have the
factorization [f2, f5] = [g2, f5][h2, 1]. Also [f2, f5] = [f2, 1][1, f5], so one of f2, f5 must be irreducible
and the other must be a unit. So the irreducible elements in R10[X] are of the form [f2(X), u],
where f2(X) is an irreducible polynomial mod 2 of degree ≥ 1 and u ∈ {1, 2, 3, 4}, together with
elements of the form [1, f5(X)], where f5(X) is an irreducible polynomial mod 5 of degree ≥ 1.

The irreducible polynomials mod 2 are X, X+1, X2+X+1, . . ., and the irreducible polynomials
mod 5 are uX, uX +v, . . ., where u, v ∈ {1, 2, 3, 4} (see entries A058943, A058945 in [17]). The first
few irreducible elements in R10[X] are therefore [X, 1], [X, 2], [X, 3], [X, 4], [X +1, 1], [X +1, 2], . . .,
and [1, X], [1, 2X], [1, 3X], [1, 4X], [1, X + 1], [1, 2X + 1], . . .. The corresponding carryless primes,
according to (2), are 56, 52, 58, 54, 51, 57, . . . , and 65, 25, 85, 45, 61, 21, . . .. And so we can verify
that the list in (1) is correct.

We will call a number with at least two digits in which all digits except the rightmost are even
but the rightmost is odd an e-type number (A143712), and a number with at least two digits in
which all digits except the rightmost are 0 or 5 and the rightmost is neither 0 nor 5 an f-type number
(A144162). Similarly, we call the primes corresponding to the irreducible elements [1, f5(X)] e-type
primes, and the primes corresponding to the irreducible elements [f2(X), u] f-type primes.

We also see that our earlier concern about the primality of 21 was groundless. It is impossible
for the length (in decimal digits) of a nonzero carryless product to be less than the length of both
of the factors. This follows from the fact that if `(n) is the number of decimal digits in the number
n > 0 corresponding to a pair [f2(X), f5(X)], then `(n) = 1 + max{deg f2,deg f5}. So if mn > 0,
`(mn) ≥ min{`(m), `(n)}.

Also, since we know how many irreducible polynomials mod 2 and mod 5 there are of given
degree (see A001037, A001692 in [17]), we can write down a formula for the number of k-digit
carryless primes, something that we cannot do for ordinary primes, namely

4
k − 1

∑
d divides k−1

µ

(
k − 1

d

)
(2d + 5d) ,

for k ≥ 2, where µ is the Möbius function (A008683). There are 28 primes with two digits (the
twenty listed in (1), together with 65, 67, 69, 81, 83, 85, 87, 89), 44 with three digits, . . . (A169962).
For large k the number is about 4 · 5k−1/(k − 1), whereas the number of ordinary primes with
exactly k digits is much larger, about 9 · 10k−1/(k log 10), so carryless primes are much rarer than
ordinary primes.

Incidentally, the prime ideals in R10[X], as distinct from the irreducible elements, all have
a single generator, which is one of [0, 1], [1, 0], [1, 1], [f2(X), 1], [1, f5(X)], where f2(X), f5(X) are
irreducible (cf. [18, Chap. III, Thm. 30]).

The carryless squares, again

Squaring a mod 2 polynomial is easy: f2(X)2 = f2(X2). So if n corresponds to the pair [f2(X), f5(X)],
n2 corresponds to [f2(X2), f5(X)2] = [f2(X2), 0] + [0, f5(X)2]. This gives a two-step recipe for
producing all carryless squares. First find (using (2)) the carryless number m corresponding to
[0, f5(X)2], where f5(X) is any polynomial mod 5. The effect of adding a nonzero [f2(X2), 0]
changes some subset of the digits in positions 0, 2, 4, . . . of m by the addition of 5 mod 10.

For example, if f5(X) = X +2, f5(X)2 = X2 +4X +4, and by (2) [0, f5(X)2] corresponds to the
carryless square m = 644. We now add 5 mod 10 to any subset of the digits in positions 0, 2, 4, 6, . . .
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of m (considering m extended by prefixing it with any number of zeros), obtaining infinitely many
squares 644, 649, 144, 149, . . . , 50644, 5050649, . . ..

This also leads to a formula for the number of k-digit carryless squares. For even k the number
is 0, and for odd k it is

1
2

9 · 10(k−1)/2 + 2(k−3)/2

(zero is excluded from the count). There are five squares of length 1 (namely 1, 4, 5, 6 and 9), 46
of length 3, . . . (see A059729, A169889, A169963). For large odd k there are about twice as many
k-digit carryless squares as ordinary squares.

Divisors and factorizations

What about the factorization of numbers into the product of carryless primes? Unfortunately, the
existence of zero-divisors complicates matters, and it turns out that there is no natural way to
define, for example, an analog of the usual sum-of-divisors function σ(n). In our analysis we define
several classes of carryless numbers:

U := {1, 3, 7, 9}, the units,

E = {0, 2, 4, 6, 8, 20, 22, . . .}, the “evenish” numbers, in which all digits are even (A014263),

F = {0, 5, 50, 55, . . .}, the “fiveish” numbers, in which all digits are 0 or 5 (A169964),

Z := E ∪ F = {0, 2, 4, 5, 6, 8, 20, 22, . . .}, the zero-divisors (A169884),

N = {1, 3, 7, 9, 10, 11, 12, 13, . . .}, the positive numbers not in Z (A169968).

Suppose d is a carryless divisor of n, that is, there is a number q such that d q = n. What can
be said about the possible choices for q? One can show—we omit the straightforward proofs—that

• if d ∈ N then there is a unique q,

• if d ∈ E then d q′ = n if and only if q′ = q v for some v ∈ F ,

• if d ∈ F then d q′ = n if and only if q′ = q e for some e ∈ E .

The same distinctions are needed to describe factorizations into primes.

• If n ∈ N then n has a unique factorization as a carryless product of primes, up to mul-
tiplication by units. For example, we already saw 10 = 56 65. But we also have 10 =
(3 56) (7 65) = 58 25 = (9 56) (9 65) = 54 45 = 9 52 25, etc., illustrating
the nonuniqueness. Also 11 = 51 61; 101 = 21 29 51, 1234 = 23 23 23 51 51 52.
It follows that any non-unit in N can be written both as e f and e′ f ′, where e and e′ are
e-type numbers and f and f ′ are f-type numbers. For example, 12 = 81 52 = 61 51.

• If n ∈ E then n has a unique factorization as 2 times a product of e-type primes, up to
multiplication by units (in this case, every f-type prime divides n). For example, 20 = 2 65,
22 = 2 61, 2468 = 2 69 69 69.

• If n ∈ F then n has a unique factorization as 5 times a product of f-type primes, up to
multiplication by units (in this case, every e-type prime divides n). For example, 50 = 5 52,
505 = 5 51 51.

Here are the analogous statements about divisors:

5



• if n ∈ N , n has only finitely many divisors. If d divides n and u ∈ U , then d u divides n.
The divisors may be grouped into equivalence classes d U . Since the sum of the elements
of U is zero, so is the sum of the divisors of n.

• if n ∈ E , d divides n, u ∈ U and v ∈ F , then d u v divides n. So n has infinitely many
divisors, belonging to equivalence classes d U F .

• if n ∈ F , d divides n, u ∈ U and e ∈ E , then d u e divides n. So n has infinitely many
divisors, belonging to equivalence classes d U E .

Any attempt to define a sum-of-divisors function must specify how to choose representatives
from the equivalence classes. There seems to be no natural way to do this. One possibility would be
to choose the smallest decimal number in each class, but this seems unsatisfactory (since it depends
on the ordering of decimal numbers, another concept the islanders seem not to be familiar with).

Further number theory

In summary, we can help the Carryless Islanders by defining subtraction, prime numbers, and
factorization into primes. But further concepts such as the number of divisors, the sum of divisors
and perfect numbers seem to lie beyond these Islands.

However, many other carryless analogs are well-defined, including including triangular numbers
(A169890), cubes (A169885), partitions (A169973), greatest common divisors and least common
multiples, and so on. Some seem exotic, while other familiar sequences simply become periodic. For
example, the analog of the Fibonacci numbers coincides with the sequence of Fibonacci numbers
read mod 10, A003893, which becomes periodic with period 60 (the periodicity of the Fibonacci
numbers to any modulus being a well-studied subject, see sequence A001175). Similarly, the ana-
logue of the powers of 2 (A000689) becomes periodic with period 4. We might also generalize
beyond simple squares, cubes, etc. and investigate the properties of polynomials or power series
based on carryless operations–How do these factor? What are their fixed points?–and so on.

Taking a different tack, carryless mod 10 partitions are enumerated in A169973, which may
be derived as the coefficients of zn in the formal expansion of the analog of the classic partition
generating function

∏∞
k=1(1 + zk), wherein powers of z are multiplied together by combining their

exponents with carryless mod 10 addition instead of the ordinary sum.

Afterword

There’s a great deal yet to be explored in these Carryless Islands! Watch for our next paper on
another carryless arithmetic, in which operations on single digits are defined by a⊕ b = max{a, b},
a⊗ b = min{a, b}. We call this “dismal arithmetic.”

When the Handbook of Integer Sequences was published 39 years ago, Martin Gardner was
kind enough to write in his Mathematical Games column of July 1974 that “every recreational
mathematician should buy a copy forthwith.” That book contained 2372 sequences: today its
successor, the On-Line Encyclopedia of Integer Sequences (or OEIS) [17], contains nearly 200,000
sequences. We were about to write to Martin about carryless arithmetic when we heard the sad
news of his death. This article, the first of a series on various kinds of carryless arithmetic, is
offered in his honor.

Summary What might arithmetic look like on an island that eschews carry digits? How would primes,
squares and other number theoretical concepts play out on such an island?
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