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ABSTRACT

Computer-generated designs in the sphere are described which have the minimal (or larger)

number of runs for a full quadratic response-surface design. In the case of 3 factors, the

designs have 10 through 33 runs; for 4 factors, 15 through 28 runs; for 5 factors, 21 through

33 runs; etc. Some of these designs are listed here in full; the others can be obtained from

the authors. The designs were constructed by minimizing the average prediction variance.

No prior constraints — such as a central composite structure – are imposed on the locations

of the points. The program itself determines the optimal number of runs to make at the

center. The best designs found have repeated runs at the center and the remaining runs at

points well spread out over the surface of the sphere. There is a simple lower bound on the

average prediction variance; this bound is attained by many of the designs.
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1 Introduction

A statistician in Seattle, David H. Doehlert (personal communication, Oct. 5, 1990)

asked one of us if we could construct designs for a full quadratic response surface depending

on k factors, for k between 3 and 14, in which the number of runs n is minimal or close to

minimal.

The present paper (dealing with points in a sphere) and its sequel (dealing with points

in a cube) describe the designs we found and the method used.

The chief merit of our designs when compared with classical ones such as fractional

factorial designs, central composite designs (Box and Wilson, 1951), or uniform shell designs

(Doehlert, 1970), lies in the fact that the number of runs is minimized, an important

consideration when runs are expensive.

Designs with a small number of runs have been constructed in recent years by many

authors (see for example Atkinson, 1973; Box and Behnken, 1960a, 1960b; Box and Draper,

1971, 1974; Draper and Lin, 1990; Hartley, 1959; Hartley and Rudd, 1969; Hoke, 1974;

Pesotchinsky, 1975; Rechtschaffner, 1967; Roquemore, 1976; Westlake, 1990; and especially

the surveys by Box and Draper, 1987, §15.5; Lucas, 1977; and Myers, Khuri and Carter,
1989). However, these have mostly been restricted to central composite designs, or to

subsets of factorial designs or Plackett-Burman-Rao designs.

Although computers have of course been extensively used to construct designs (besides

the references mentioned above, see Kennard and Stone, 1969; Galil and Kiefer, 1977a,

1977b; and the survey by Steinberg and Hunter, 1984), including the use of conjugate

gradient methods to obtain D-optimal designs (see for example Cook and Nachtsheim,

1980; Johnson and Nachtsheim, 1983), the approach taken in the present paper appears to

be new.

Out of all these earlier papers, the closest in spirit to ours seem to be those of Box

and Draper (1971, 1974), who give several examples of designs in the k-dimensional cube

obtained by maximizing the D-efficiency. (There appears to have been no comparable work

for the sphere.) In Part II we compare the Box-Draper designs to ours. Besides having

larger values of integrated variance, the arrangement of points in their designs seems to be

less satisfactory than ours.

The reader may wonder (as we have frequently done in the past year) why our approach

was not followed before. The most plausible explanation is that investigators were deterred

by the thought of minimizing (e.g. in the case of a 5-factor 24-run design) a complicated

function of 120 variables over a region defined by 36 inequalities in 120-dimensional space.

We quote from Box and Draper (1971, p. 738): “The determination of the optimal design of

10 runs in 3 factors involves the selection of 30 coordinate values by computer search. With

more runs and/or factors, the computing problem rapidly becomes prohibitive.” Indeed, if
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it had not been for our successful application of similar techniques in constructing spherical

codes (see Hardin, Sloane and Smith, 1991), we would probably not have tackled this

problem ourselves. Our computations so far have been carried out on various very high

speed computers, including a Cray X-MP and a MIPS R2000A/R3000 machine, but we are

preparing a portable version of the program to run on work stations. This will be described

elsewhere.

A second feature of our technique is that it can be used to produce minimal designs

for other response surface models and in other convex regions, and so can be applied for

example to mixture experiments on a simplex or mixtures with constraints.

Following Box and Draper (1959), Galil and Kiefer (1977a,b), and others, we have

initially focused our attention on the sphere and the cube. The chief reasons for studying

the sphere are that the design points then enclose the largest region of space (we discuss this

aspect further in Section 5), and that in a high-dimensional cube some boundary points —

when compared with a sphere of the same volume — are a long way from the center and may

call for unacceptable operating conditions. Another reason is that good spherical designs

tend to have larger symmetry groups than good cubical designs. Symmetry groups may be

irrelevant to the person using these designs — although they may lead to designs which are

easier to implement — but they are important when it comes to trying to understand what

makes a good design.

We have recently used these methods to construct minimal variance designs for other

situations, for example 3-factor third-order designs in the cube, 9-factor quadratic designs

in which six factors belong to a six-dimensional cube and three are two-level variables, and

a ten-factor design in which three variables form a mixture with a constraint, five other

variables are continuous, one variable is 3-level and the last is 2-level. These are briefly

described in Section 6, which mentions some applications.

2 The method of construction

We make three assumptions (all of which can however be varied).

(i) The quadratic response-surface model is of the form

y = β0 +

k
∑

i=1

βixi +

k
∑

i=1

βiix
2
i +

k−1
∑

i=1

k
∑

j=i+1

βijxixj + ε . (1)

Then the minimal number of runs needed is equal to the number of unknown parameters,

which is

p =
(k + 2)(k + 1)

2
. (2)

(ii) The design consists of n points

(xj1, . . . , xjk), for 1 ≤ j ≤ n ,
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where n ≥ p, chosen from (in this paper) the unit ball defined by

x21 + · · · + x2k ≤ 1 . (3)

In Part II we describe designs in which (3) is replaced by the cube

− 1 ≤ xi ≤ 1 (1 ≤ i ≤ k) . (4)

(iii) We assume that a design with the smallest integrated prediction variance (de-

fined below) is likely to be generally acceptable. However, in view of the dangers in using

any single number as a design criterion, we have also plotted variance dispersion graphs

(Giovannitti-Jensen and Myers, 1989; Vining, 1990) for our designs; some examples are

given in Figure 2 below.

Let X be the n× p design matrix, containing one row

f(x) = (1, x1, . . . , xk, x
2
1, . . . , x

2
k, x1x2, . . . , xk−1xk)

for each design point x = (x1, . . . , xk). The prediction variance at an arbitrary point x in

the unit ball is

var ŷ(x) = σ2f(x)(X ′X)−1f(x)′ , (5)

if the errors ε in (1) are independent with mean 0 and variance σ2.

As a figure of merit we use the integrated prediction variance (Box and Draper 1959,

1963), which is

IV =

∫

ball

1

σ2
var ŷ(x)dµ(x) ,

where µ is uniform measure on the unit ball (3),

=

∫

ball

f(x)(X ′X)−1f(x)′dµ(x) . (6)

This integral simplifies (cf. Box and Draper 1963, p. 341) to give

IV = trace {M(X ′X)−1} , (7)

where

M =









1 0 αu 0
0 αI 0 0
αu′ 0 β(2I + J) 0
0 0 0 βI









(8)

is a matrix of moments of the ball. The blocks in (8) have sizes 1, k, k and k(k − 1)/2,
u = (1, 1, . . . , 1), I is an identity matrix, J is an all 1’s matrix, α = 1/(k + 2), and

β = 1/((k + 2)(k + 4)). It is easy to see that IV is scale-invariant; in fact IV is unchanged

even if each variable xi is separately rescaled.

To summarize, we wish to choose n points (with n ≥ p) from the unit ball so as to
minimize the integrated prediction variance given by (7).
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This formulation of the problem, which asks for the minimum of a smooth function of

kn variables over a convex region (3), is well suited to computer solution. We make use

of the pattern search optimization strategy of Hooke and Jeeves (1961), as described by

Beightler et al. (1979) (although the conjugate gradient methods described for example in

Press et al. (1986) might perform equally well).

A subroutine is used to evaluate IV for each trial design, and the region of interest

(the ball) is defined in the calling program. Both the function to be minimized and the

optimizing region can therefore easily be changed. Our only constraint is that the function

to be minimized should be differentiable (so the technique could be used to find A- or D-

optimal, but not E- or G-optimal designs). The partial derivatives of IV are obtained from

the formula

∂ IV

∂x
= − trace

{

M(X ′X)−1
∂ X ′X

∂x
(X ′X)−1

}

= − trace
{

B
∂ X ′X

∂x

}

,

where B = (X ′X)−1M(X ′X)−1. In the present situation M is given by (8), but in more

complicated problems (such as that described in Section 6) we use Monte Carlo methods

to estimate M .

It is also necessary to specify starting points to initiate the search, and for this we use

both random starts, as well as spherical codes that we have constructed while studying the

packing problem on the k-dimensional sphere (Hardin, Sloane and Smith, 1991).

Our final designs are then obtained by taking the smallest IV that occurs over a number

of tries. Designs have been constructed with the following parameters (the 2-factor case

being trivial):

no. of factors (k) no. of runs (n) no. of factors (k) no. of runs (n)

3 10− 33 9 55− 62
4 15− 28 10 65− 74
5 21− 33 11 78− 86
6 28− 39 12 91− 99
7 36− 43 13 104 − 111
8 45− 52 14 120 − 128

For the designs with up to 9 factors we have made over a thousand tries for each value

of n. Numerical evidence, together with the fact that the integrated variance of many of

our designs coincides with the conjectured lower bound of Eq. (11), strongly suggests that

our designs have values of IV that are minimal (or very close to minimal).

Table 1, described in the next section, summarizes our designs. Note in particular the

second column, which specifies the best number of replicates to run at the center of the

sphere for a given total number of runs.
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Table 1. For k factors and n runs, the table gives the best choices for c (runs at center) and
b (runs at surface of sphere), and, if appropriate, the table where the design can be found,
together with the corresponding value of the integrated prediction variance (IV).

k = 2 k = 3

n c b Table IV n c b Table IV

6 1 5 see text 0.7333 10 1 9 3a 0.7369
7 2 5 ”” 0.5667 11 2 9 3a 0.6226
8 2 6 ”” 0.5000 12 2 10 3b 0.5537
9 3 6 ”” 0.4444 13 2 11 3c 0.5154
10 3 7 ”” 0.3968 14 3 11 3c 0.4773
11 3 8 ”” 0.3611 15 3 12 see text 0.4405
12 4 8 ”” 0.3333 16 3 13 3d 0.4135
13 4 9 ”” 0.3056 17 3 14 3e 0.3884
14 4 10 ”” 0.2833 18 3 15 0.3679
15 4 11 ”” 0.2652 19 4 15 0.3488
16 5 11 ”” 0.2485 20 4 16 0.3304

k = 4 k = 5

n c b Table IV n c b Table IV

15 1 14 4a 0.7524 21 1 20 see text 0.7577
16 2 14 4a 0.6691 22 2 20 see text 0.6942
17 2 15 see text 0.5976 23 2 21 see text 0.6329
18 2 16 4b 0.5641 24 2 22 5a 0.6084
19 2 17 4c 0.5348 25 2 23 5b 0.5843
20 3 17 4c 0.5070 26 2 24 0.5615
21 3 18 4d 0.4820 27 2 25 0.5399
22 3 19 0.4591 28 3 25 0.5187
23 3 20 0.4389 29 3 26 0.5002
24 3 21 0.4206 30 3 27 0.4833
25 3 22 0.4040 31 3 28 0.4675

k = 6 k = 7

n c b Table IV n c b Table IV

28 1 27 see text 0.7333 36 1 35 see text 0.7616
29 2 27 see text 0.6833 37 2 35 0.7212
30 2 28 6a 0.6661 38 2 36 0.7042
31 2 29 6b 0.6479 39 2 37 0.6860
32 2 30 0.6285 40 2 38 0.6680
33 2 31 0.6073 41 2 39 0.6438
34 2 32 0.5855 42 2 40 0.6274
35 3 32 0.5688 43 2 41 0.6131
36 3 33 0.5523
37 3 34 0.5365
38 3 35 0.5220
39 3 36 6c 0.5083
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Table 1 (cont.)

k = 8 k = 9 k = 10
n c b IV n c b IV n c b IV
45 1 44 0.7892 55 1 54 0.8144 66 1 65 0.8472
46 2 44 0.7559 56 2 54 0.7865 67 2 65 0.8234
47 2 45 0.7384 57 2 55 0.7707 68 2 66 0.8043
48 2 46 0.7230 58 2 56 0.7513 69 2 67 0.7867
49 2 47 0.7033 59 2 57 0.7381 70 2 68 0.7699
50 2 48 0.6886 60 2 58 0.7212 71 2 69 0.7523
51 2 49 0.6701 61 2 59 0.7023 72 2 70 0.7380
52 2 50 0.6550 62 2 60 0.6906 73 2 71 0.7225

Remarks

(i) The running time of our program grows roughly as k6, where k is the number of

factors, and so for k ≥ 10 we were not able to produce as many examples and there
is less chance that we have found the best designs. A 9-factor design takes about 4

minutes on one processor of a MIPS R2000A/R3000 computer.

Of course for practical applications a design that is reasonably close to the best will

serve almost as well. Such designs can be obtained by stopping the program before it

runs to completion, and this will be an option in the portable version of the program.

Nevertheless, for publication purposes we have attempted to find the best possible

designs and to present them in as attractive a manner as possible (rather than simply

listing the computer-generated coordinates). We were also interested to discover what

geometrical structure these designs would have. The results can be seen in Section 4.

The value of IV for any of these spherical designs is unchanged when an orthogonal

transformation is applied. In particular, the columns in Tables 3-6 may be freely

permuted and their signs changed. (On the other hand the signs of the rows may

not be changed.) Such transformations rotate (and possibly reflect) the underlying

sphere. The coordinates may also be rescaled (replacing x1 by α1x1, x2 by α2x2, etc.),

transforming the sphere into an ellipsoid, without changing the value of IV.

(ii) With a few exceptions (such as that shown in Table 8 of Part II), our designs generally

have large numbers of levels, and are intended for use in situations where a small

number of runs is more important than a small number of levels. This has certainly

been the case in all the applications so far where we have supplied designs – these

include detergent manufacture, the construction of diamond film, catalytic converters,

protein crystals, and laser welding (see Section 6). Our program can also be used in

situations where some (but not all) of the variables are constrained to have two or

three (or more) levels, as mentioned at the end of Section 1.
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(iii) Lucas (1977) has investigated the best number of measurements to make at the center

of the sphere for a 4-factor central composite design, given that the other points are

held fixed. In contrast our program simultaneously optimizes the location of the points

and their multiplicities.

(iv) The analysis of a computer-generated design is facilitated by computation of its sym-

metry group: this is the largest subgroup of the full k-dimensional real orthogonal

group that fixes the design. We used several programs to compute symmetry groups.

The graph automorphism program “Nauty” of McKay (1987) was invaluable for han-

dling large groups.

(v) Box and Draper (1959, 1963) observe that effects from inadequacy of the response sur-

face model (“bias error”) can be greater than the effects from sampling error (“variance

error”). In this paper we have concentrated on minimizing the variance error, assum-

ing that a quadratic model is correct. In fact for a design with a minimal number of

runs it is difficult to see how else to proceed. Consider a 4-factor 15-run design, where

there are 15 parameters in the quadratic model but 35 in the cubic model. It is hard

to see how else to take account of the 20 unknown (and hopefully small) cubic terms

other than by regarding them as causing random perturbations of the measurements.

(vi) Concerning the choice of optimality criterion: minimizing the maximal value of var ŷ(x)

(G-optimality) and minimizing the average value of var ŷ(x) appear to be the two best

single measures of performance, and good arguments exist in support of each. We have

chosen to use the average variance, mostly because it is differentiable. The variance

dispersion graphs mentioned above provide a important check on the distribution of

var ŷ(x) over the region.

We believe that our optimality criterion, minimizing IV = trace{M(X ′X)−1}, is def-
initely superior to A-optimality (minimizing trace (X ′X)−1) and D-optimality (mini-

mizing det (X ′X)−1), since these ignore the moment matrixM . This matrix measures

the effects caused by the fact that the columns of the design matrix X for a quadratic

model are dependent.

(vii) “Why don’t you just choose the design points at random?”, we are sometimes asked.

The answer is that random designs with a small number of runs behave very poorly.

A sample of 120 eight-factor 46-run designs, for example, each one obtained by taking

the center and 45 randomly chosen points on the sphere, had a mean IV value of 299

and variance of 1.6 × 106, the smallest value found being 7.44. In contrast, the best
design that we have constructed with these parameters has IV = 0.7559 (see Table 1).
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3 Three types of designs

We consider three types of designs.

A. One run at center, n− 1 runs on surface of sphere.
B. c (≥ 1) runs at center, n− c runs on surface of sphere.
C. n runs at points anywhere in or on the sphere.

Type C designs. To our surprise, the computer found that the best type C designs

coincide (for all practical purposes) with the best type B designs.

For example, the best 3-factor design with 14 runs has three runs at a point distance

0.003622 from the center and 11 runs on the surface of the sphere, and has IV=0.4773060.

This is essentially the same as the best 14-run type B design, which has three runs exactly

at the center and 11 runs on the surface, and has IV=0.4773084. In cases where the

configuration of surface points is sufficiently regular the computer places the repeated points

in the type C design exactly at the center.

Even after decades of using computers we were impressed: the computer starts from a

random arrangement of points, and unerringly converges to a configuration with repeated

points close to the center (agreeing with each other to five or more decimal places) with the

other points well spread out over the surface. The program discovers for itself the notion

of replicated runs! Noncentral interior points never occur.

We conclude that nothing is lost by restricting attention to designs of type A and B

only. (In the case of the cube, however, as we shall see in Part II, the situation is reversed

and type C designs dominate.)

Type B designs. There are two questions in choosing a type B design: what is the best

value of c (the number of runs at the center), and what is the best placement of the other

b = n − c points ξ1, . . . , ξb (say) on the surface of the sphere? In the Appendix we show
that these two questions are independent. In fact

IV =
8

c(k + 2)(k + 4)
+ Φ(ξ1, . . . , ξb) , (9)

where Φ is independent of c. Thus the best type B design is obtained from some type A

design by increasing the number of runs at the center.

It follows from (9) that increasing the number of runs at the center from c (≥ 1) to c+1
reduces IV by

8

c(c+ 1)(k + 2)(k + 4)
. (10)

Table 1, obtained by applying (10) to the IV values for the best type A designs (see

Table 2), shows the optimal choices for c and b for various values of k and n.
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An example will illustrate the use of Table 1. Suppose a 3-factor design with 14 runs is

required. The k = 3, n = 14 entry in Table 1 specifies that c = 3 runs should be made at

the center, and b = 11 runs at points on the sphere, these points being specified in Table 3c.

(This is somewhat surprising, since one might have expected that it would be better to

make two runs at the center and 12 runs at the vertices of the icosahedron. Not so!)

We also see from Table 1 that in the range of this table every optimal type A design is

also an optimal type B design for some value of c. (When n is increased by 1, either c or b

increases by 1.) None of them are wasted!

Remark. If a large number (b) of runs are made at points distributed uniformly over the

surface of the sphere, and c runs are made at the center, then one can show that

IV =
1

(k + 2)(k + 4)

{

8

c
+
k2(k2 + 5k + 10)

2b

}

. (11)

We conjecture that the right-hand side of (11) is a lower bound to IV for any design.

The integrated variance of our designs is already within 0.001 of this value for all 2-factor

designs, for 3-factor designs with b ≥ 12, 4-factor designs with b ≥ 17, 5-factor designs
with b ≥ 25, and 6-factor designs with b = 27 and b ≥ 33. We call a design perfect if
its integrated variance is given by (11). The following designs are perfect: the center of

the sphere together with the vertices of any regular polygon with at least five sides, the

icosahedron, the 24-cell, and the Schläfli polytope (see below). It is remarkable that (11)

gives the exact value of IV for all these designs.

In the range when (11) applies, the optimal values of c and b are

c = λn, b = (1− λ)n , (12)

where

λ =
4k
√
k2 + 5k + 10− 16

(k − 1)(k + 2)(k2 + 4k + 8) , (13)

and then

IV =
α

n
, (14)

where

α =
(k − 1)2(k + 2)(k2 + 4k + 8)2
2(k + 4){k

√
k2 + 5k + 10− 4}2

. (15)

To summarize this section, we have shown that the problem of finding the best designs

in or on the sphere reduces to the problem of finding the best type A designs. These are

described in Section 4.

4 Type A designs

Tables 3-6 and the following paragraphs give examples of our type A designs with 3

to 7 factors. Others can be obtained from the authors – please write to N. J. A. Sloane,
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Room 2C-376, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey

07974; electronic mail address njas@research.att.com .

Of course a 2-factor type A design is trivial: measurements are made at equally spaced

points around the circle. For a type B 2-factor design, c = 0.29n runs should be made at

the center of the circle (from Eqs. (12), (13)).

Table 2 gives an overview, showing the variation in the minimal IV found for a type A

design, as a function of the number of factors and number of runs.

Table 2. Smallest integrated prediction variance (IV) for type A designs, as a function of
number of factors (k) and number of runs (n).

k = 2 k = 3 k = 4 k = 5 k = 6

n IV n IV n IV n IV n IV

6 0.7333 10 0.7369 15 0.7524 21 0.7577 28 0.7333
7 0.6667 11 0.6680 16 0.6809 22 0.6964 29 0.7161
8 0.6190 12 0.6297 17 0.6475 23 0.6719 30 0.6979
9 0.5833 13 0.5929 18 0.6181 24 0.6478 31 0.6785
10 0.5556 14 0.5659 19 0.5931 25 0.6250 32 0.6573
11 0.5333 15 0.5408 20 0.5702 26 0.6034 33 0.6355
12 0.5152 16 0.5202 21 0.5500 27 0.5849 34 0.6189
13 0.5000 17 0.5018 22 0.5317 28 0.5679 35 0.6032
14 0.4872 18 0.4857 23 0.5152 29 0.5522 36 0.5887
15 0.4762 19 0.4714 24 0.5000 30 0.5375 37 0.5750
16 0.4667 20 0.4586 25 0.4861 31 0.5238 38 0.5622
17 0.4583 21 0.4471 26 0.4733 32 0.5110 39 0.5500
18 0.4510 22 0.4367 27 0.4615 33 0.4990
19 0.4444 23 0.4273 28 0.4506

k = 7 k = 8 k = 9 k = 10 k = 11

n IV n IV n IV n IV n IV

36 0.7616 45 0.7892 55 0.8144 66 0.8472 78 0.8796
37 0.7446 46 0.7718 56 0.7987 67 0.8281 79 0.8582
38 0.7264 47 0.7564 57 0.7792 68 0.8105 80 0.8394
39 0.7084 48 0.7367 58 0.7661 69 0.7937
40 0.6842 49 0.7219 59 0.7491 70 0.7761
41 0.6679 50 0.7034 60 0.7303 71 0.7619
42 0.6535 51 0.6883 61 0.7186 72 0.7463
43 0.6378 52 0.6680 62 0.7070 73 0.7380

k = 12 k = 13 k = 14

n IV n IV n IV

91 0.9090 105 0.9385 120 0.9685
92 0.8926 106 0.9220 121 0.9340
93 0.8709 107 0.9020 122 0.9368
94 0.8555 108 0.8878 123 0.9172
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The coordinates given here have been rounded to four decimal places (although our

computations were usually accurate to at least six decimal places).

To conserve space, parentheses are used in the tables to indicate that all cyclic shifts of

the enclosed coordinates are to be included. For example (abc) is an abbreviation for the

three vectors abc, bca, cab. In the 6a-factor 29-point design in Table 6a, (a2b3) is an

abbreviation for the ten vectors aabbb, . . . , bbbaa. Square brackets have no special meaning

and are used to group components; thus ±[a b] abbreviates the two vectors +a + b and
−a − b.
In many cases, analysis of the computer-generated coordinates (especially computation

of the symmetry group of the design) reveals that the design has an elegant geometrical

structure. The larger the group, the more structure, and the easier it is to specify the

design. A few especially interesting examples are described below, while others can be seen

in the tables.

To save space and display as much of the symmetry as possible, the 4-factor 19-run

design in Table 4d is described using five coordinates x1x2x3x4x5 satisfying x1+x2+x3 = 0;

the 5-factor 23-run design in Table 5a uses coordinates x1 · · · x7 satisfying x1 + x2 + x3 =
x4 + x5 + x6 = 0; and the 6-factor 29-run design in Table 6a uses coordinates x1 · · · x7
satisfying x1 + · · · + x5 = 0. (To obtain standard (r − 1)-dimensional coordinates for a
vector v = (v1, . . . , vr) with r components adding to 0, postmultiply v by the r × (r − 1)
matrix A = (aij), where aij = 1/

√

j(j + 1), 1 ≤ i ≤ j ≤ r − 1; aj+1,j = −
√

j/(j + 1);

aij = 0 otherwise. This transformation preserves lengths.)

In the worst case, when the design has no symmetry (as in the 3-factor 15-run design

in Table 3e) there is no shorter description than a listing of the individual points.

Examples of 3-factor designs with 10 through 15 runs are shown in Table 3 and Figure 1.

The 13-run design is omitted from the table, since it may be taken to consist of the twelve

vertices

5−1/4τ−1/2(±τ, ±1, 0)

(τ = (1 +
√
5)/2) of a regular icosahedron together with its center (cf. Bose and Draper,

1959, p. 1101). The figures show the convex hulls of the points.

The 10-run design (Fig. 1a) consists of the origin, an equilateral triangle on the equator

and inverted equilateral triangles above and below, and has a symmetry group of order

12. The 11- and 12-run designs (Figs. 1b,1c) are much less symmetric. There are unique

minimal-IV designs for n ≤ 12 and for n = 14, but for n = 13 and n ≥ 15 there many equally
good designs. For 13 runs infinitely many designs with the same IV as the icosahedral design

can be obtained by taking an icosahedron with vertices at the North and South poles and

rotating the northern hemisphere by an arbitrary amount. It is worth mentioning that for

15 runs a central composite design for k = 3, which is the union of a cube and an octahedron

projected onto the sphere, is not optimal, since it has IV = 0.5413, compared with 0.5408
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Figure 1: (a)–(f) Minimal-IV type A designs for 3 factors and 10 through 15 runs.

for the design given in Table 3e and Fig. 1f.

The best 4-factor 16-run design has a simple description by pairs of complex numbers.

The design consists of the points (0, 0), (ωr, 0), (0, ωr), 2−1/2(−ωr,−ωs), where ω = e2πi/3,
0 ≤ r, s ≤ 2, and has a symmetry group of order 72. The best 4-factor 15-run design is also
constructed from equilateral triangles, but is less symmetric – see Table 4a.

The designs with k = 5, 6 and 7 factors and the minimal number of runs (respectively

21, 28 and 36 runs) have a uniform construction, which we describe using k+1 coordinates,

the first k of which add to zero. There is the origin, together with three layers of points, the

heights of the layers being specified by the final coordinate. On the equatorial hyperplane

there are k(k − 1)/2 points of the form

c1[(2− k, 2− k, 2, . . . , 2); 0] ,

and above and below there are 2k points

c2[(k − 1,−1,−1, . . . ,−1); ±h] ,

where h = 3.5600 (if k = 5), h = 4.2426 (if k = 6), h = 4.8469 (if k = 7), and c1, c2 are then

determined by the condition that the sum of the squares of the coordinates is 1. In each case
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all permutations of the first k coordinates are included. In geometrical terms this design

consists of the origin, the vertices of two regular (k − 1)-simplices at heights ±h, and on
the equator the negatives of the midpoints of the edges of another regular (k − 1)-simplex.
(The 6-dimensional example is also known as the Schläfli polytope 221 – see Coxeter, 1973;

Conway and Sloane, 1991). Unfortunately, except in 5, 6 and 7 dimensions, this design is

inferior (from the point of view of IV) to others we have found.

Figure 2: Variance dispersion graphs for 4-factor type A designs with (a) 15, (b) 16, (c) 18
runs, compared with that for (d) the classical 25-run central composite design projected
onto the sphere.

The 5-factor, 22-run design consists of the 6 vertices of a regular five-dimensional sim-

plex, the negatives of the 15 midpoints of the edges, and the center. The same construction
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yields p+ 1 points in any dimension, but except in five dimensions this is inferior to other

designs.

The 6-factor 37-run design in Table 6c has been included because of its relatively large

symmetry group, of order 36.

As mentioned in the previous section, we have also computed variance dispersion graphs

(Giovannitti-Hensen and Myers, 1989; Vining, 1990) for many of these designs, using a

program kindly supplied by Geoffrey Vining. These graphs show the lower limit, mean, and

upper limit of 1
σ2
var ŷ(x) (see (5)) over a spherical shell of radius r, for 0 ≤ r ≤ 1.

Figures 2a,b,c show these graphs for our 4-factor designs with 15, 16 and 18 runs (see

Table 4), and for comparison Figure 2d gives the corresponding graph for the classical 25

run design obtained by projecting the central composite design onto the sphere. As can

be seen, although for the 15-run design there is wide fluctuation in the variance near the

boundary of the sphere, the graphs for the designs with n ≥ 16 runs are not too dissimilar
from the classical design and are close to being rotatable.

5 Maximal volume designs on the sphere

David Doehlert also suggested to us that sets of points on the sphere enclosing as large

a volume as possible would be useful designs for certain statistical applications. Similar

design criteria have been recommended by Scheffé, 1963 and Kennard and Stone, 1969.

The maximal volume problem arises in geometry, as a way of approximating a sphere by

a polyhedron, and the optimal solutions were found for up to 8 points in three dimensions

by Berman and Hanes (1970). We have used our methods to extend this work, obtaining

what appear from numerical evidence to be maximal volume designs for up to 130 points

in three dimensions and up to 24 points in four dimensions. With a few exceptions (such as

the icosahedron) these maximal volume designs are different from the minimal integrated

prediction variance designs described in Section 3. These results will be published elsewhere

(Hardin, Sloane and Smith, 1991).

One additional result is worth mentioning here: the classical 24-run 4-dimensional cen-

tral composite design, when projected onto a sphere, or in other words the vertices of the

regular polytope called the 24-cell (Coxeter, 1973; Conway and Sloane, 1988) is not a max-

imal volume design. It has volume 2, whereas we have discovered a much less symmetrical

design with volume 2.188188.

6 Applications

We shall describe (with the permission of the experimenters) three applications, only

one of which has been completed.
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(i) Keith Hovda at Chemithon Corporation in Seattle was faced with determining settings

for sulfonation that would produce acceptable product (a detergent) from a particular

feed stock of alkyl benzene. In a training course conducted in January 1991 by The

Experiment Strategies Foundation, Hovda received one of our first designs, a 4-factor

19-run design. Without this design he would have had to use a central composite with

25 runs or a uniform shell design with 21 runs, both of which would have involved

unacceptable expense. Another alternative would have been to use intuition and

experience to select a smaller number of points. The designs with 15, 16, ... runs

described in Table 1 would have been even less expensive than the 19-run design, but

were not available at the time.

The 19-run design used was a forerunner of those given in Table 4. It was in fact

formed from the best packing of 16 spherical caps on the four-dimensional sphere

(Hardin, Sloane and Smith 1991) together with three runs at the center. We now

know – see Table 1 – that for 19 runs it is better to take c = 2, b = 17 and use the

design in Table 4c. Since the design that was used has been superseded and is not

included in this paper, we do not give full details of the experimental results.

The process fed SO3 in air and alkyl benzene into a continuous reactor held at a con-

trolled temperature (X1). After the reaction was complete the batch was drained into

a digestor and sampled four times during digestion, at 0, 10, 35 and 120 minutes. All

four times were needed to support certain reaction rate computations not of interest

here.

The experimental variables are X1, the reactor temperature (degrees Celsius); X2,

the percentage of SO3 in the SO3-air mixture; X3, the digestion temperature (de-

grees Celsius); and X4, the SO3 to alkyl-benzene mole ratio. The primary response

measured was Y1, the percentage of active ingredient in the detergent, although three

other responses (the percentage of H2SO4 and oils, and the Klett color) were also

recorded.

Quadratic models were fitted to each of the responses and contour plots drawn. These

showed that this feed stock would not make acceptable product at a setting within

the factor limits studied. No catalyst had been used. Chemithon’s client had hoped

that no catalyst would be needed. This study showed that if this feed stock was to

be used then a catalyst would be required. A new design has been planned to aid in

selecting a catalyst.

Had Hovda used his 19 runs for a 24 factorial plus three runs at the center he would

have been unable to compute the pure quadratic effects.

(ii) Linda S. Plano at Chrystallume Corporation in Menlo Park CA is using one of our

designs to attempt to maximize the thermal conductivity of heat-spreading diamond
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film for AT&T. The thermal conductivity of this film is at least three times that of

copper and is the highest presently known. The diamond film is made from methane

and carbon monoxide using a plasma of atomic hydrogen (cf. Guyer and Koshland,

1990). There are six continuous and three discrete factors: X1, flow rate of the

reactant gases; X2, percentage of methane; X3, percentage of carbon monoxide; X4,

microwave power; X5, gas pressure; X6, spacing between substrate and plate; X7,

position of plasma ball relative to substrate; X8, gas injection method; and X9, low or

high temperature. HereX1 throughX6 range (after scaling) between −1 and +1, while
X7, X8, X9 are two-level factors. The primary response is thermal conductivity, as

measured by Ramon spectroscopy; a secondary response Y2 is growth rate. The model

expresses Y1 as a quadratic function of the Xi’s, with 52 parameters to be determined.

The design points lie in a space which is a disjoint union of eight 6-dimensional cubes.

We used a more general version of the cube design program described in Part II of

the paper to construct a minimal variance design for this situation. We placed seven

points in each of the eight cubes, for a total of 56 runs. This experiment, like the

following, has not yet been completed.

(iii) Kimberly Coombs at Corning Inc. in Corning NY is using another of our designs to

study the flow behavior of a cellular ceramic substrate used in catalytic converters.

There are 10 variables. Three variables, A, F and K, are different binders forming a

mixture constrained by

A+ F +K = 1 ,

with the additional requirement that

5A+ 9F + 11K ≥ 8 .

The binder level BL, lubricant level LL, mix timeMT , water levelW and temperature

T all range (after scaling) between −1 and +1. Finally, the molecular weight of A,
MWA, takes three values and the lubricant type LT takes two values. There are 54

parameters in the quadratic model.

We used this problem (involving a constrained mixture and a combination of contin-

uous and discrete factors) as a test case for our general purpose program, which uses

Monte Carlo methods to estimate the moment matrix M (see Eq. (7)). We produced

designs with between 54 and 60 runs (taking the best of 40 tries for each number of
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runs). The smallest integrated variance found was as follows:

no. of runs (n) IV

54 0.936
55 0.890
56 0.848
57 0.813
58 0.778
59 0.753
60 0.721

As can be seen, the 60-run design is appreciably better than the others, and is the

one now being used.

We plan to discuss the designs in examples (ii) and (iii) in a later paper when the

experiments are completed.
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Appendix: Number of replications of center

In this Appendix we establish the expression (9) for the integrated variance of a type B

design with c runs at the center and b runs at points ξ1, . . . , ξb on the surface of the sphere.

Let P be the matrix

P =









1 0 0 0
0 I 0 0
−u′ 0 I 0
0 0 0 I









,

where the blocks have the same shape as in (8). Then P ′X ′XP has the form








c 0 0 0
0 Y11 Y12 Y13
0 Y ′12 Y22 Y23
0 Y ′13 Y

′

23 Y33









= Q (say) ,

where the Yij are independent of c. Then

IV = trace{M(X ′X)−1} = trace{MPQ−1P ′}
= trace{P ′MP.Q−1} = trace{NQ−1} ,
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where

N = P ′MP =









8β 0 2βu 0
0 αI 0 0
2βu′ 0 β(2I + J) 0
0 0 0 βI









,

and Eq. (9) follows.
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Table 3. 3-factor type A designs (for n = 13 see text)

(a) k = 3, n = 10,
c = 1, b = 9,
IV = 0.7369

0.0000 0.0000 0.0000
1.0000 0.0000 0.0000
-0.5000 ±0.8660 0.0000
-0.7018 0.0000 ±0.7123
0.3509 ±0.6080 ±0.7123

(b) k = 3, n = 11,
c = 1, b = 10,
IV = 0.6680

0.0000 0.0000 0.0000
±[0.0616 -0.5312] 0.8450
±[0.8707 0.3746] 0.3186
±[0.7624 -0.6382] 0.1065
±[0.1673 0.9191] -0.3566
±[0.5779 -0.0525] -0.8144

(c) k = 3, n = 12,
c = 1, b = 11,
IV = 0.6297

0.0000 0.0000 0.0000
0.1079 0.4923 ±0.8637
0.4481 -0.3268 ±0.8321
-0.5166 -0.6771 ±0.5240
-0.8250 0.2847 ±0.4882
0.9517 0.3071 0.0000
0.0000 1.0000 0.0000
0.5255 -0.8508 0.0000

(d) k = 3, n = 14,
c = 1, b = 13,
IV = 0.5659

0.0000 0.0000 0.0000
±[0.0710 -0.5154] 0.8540
±[0.8468 -0.0891] 0.5245
±[0.6249 0.7463] 0.2293
±[0.5336 -0.8449] -0.0379
±[0.8527 -0.0223] -0.5219
±[0.1505 0.8133] -0.5620
0.0000 0.0000 -1.0000

(e) k = 3, n = 15,
c = 1, b = 14,
IV = 0.5408

0.0000 0.0000 0.0000
-0.6518 0.5417 0.5308
-0.4608 0.3549 -0.8134
0.6562 -0.6539 0.3766
-0.2742 -0.4984 0.8224
-0.6426 -0.7458 0.1757
0.4094 -0.2267 -0.8837
0.2324 0.9141 0.3324
-0.0229 0.9004 -0.4344
-0.9805 0.1967 -0.0003
0.9243 0.1869 0.3328
0.8165 0.2972 -0.4950
0.3313 -0.9113 -0.2445
-0.5148 -0.5397 -0.6661
0.1773 0.1840 0.9668
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Table 4. 4-factor type A designs (for n = 16 see text)

(a) k = 4, n = 15,
c = 1, b = 14, IV= 0.7524

0.0000 0.0000 0.0000 0.0000
0.6812 0.0000 0.7321 0.0000
-0.3406 ±0.5900 0.7321 0.0000
0.9098 0.0000 -0.4151 0.0000
-0.4549 ±0.7879 -0.4151 0.0000
-0.7249 0.0000 0.1044 ±0.6809
0.3625 ±0.6278 0.1044 ±0.6809
0.0000 0.0000 -0.7853 ±0.6191

(b) k = 4, n = 17,
c = 1, b = 16, IV= 0.6475

0.0000 0.0000 0.0000 0.0000
-0.3136 -0.2307 ±[0.9117 -0.1314]
0.2734 -0.1764 ±[0.5783 0.7481]
-0.3304 0.7766 ±[0.5008 0.1920]
0.6876 0.5408 ±[0.4719 0.1102]
0.7051 -0.4549 ±[0.4304 -0.3327]
0.0809 0.3808 ±[0.3569 -0.8492]
-0.8438 -0.0191 ±[0.0596 0.5330]
-0.2093 -0.8494 ±[0.0123 -0.4844]

(c) k = 4, n = 18,
c = 1, b = 17, IV= 0.6181

0.0000 0.0000 0.0000 0.0000
0.2185 -0.3304 ±[0.8219 0.4093]
0.3049 0.2504 ±[0.8122 -0.4298]
-0.7582 -0.3478 ±[0.5283 0.1582]
-0.6046 0.6134 ±[0.4873 -0.1438]
0.0305 0.5928 ±[0.3736 0.7128]
0.0746 -0.8624 ±[0.3012 -0.3999]
-0.3873 -0.1316 ±[0.1480 -0.9004]
0.8393 -0.1840 ±[0.0309 0.5106]
0.5719 0.8203 0.0000 0.0000

(d) k = 4, n = 19, c = 1, b = 18,
IV= 0.5931, x1 + x2 + x3 = 0

0.0000 0.0000 0.0000 0.0000 0.0000
(0.7517 -0.3759 -0.3759) 0.3324 -0.2043
(-0.7496 0.3251 0.4245) 0.3324 0.2043
(0.5224 -0.1282 -0.3942) -0.2993 0.6824
(-0.5326 0.3644 0.1682) -0.2993 -0.6824
(0.4599 -0.4400 -0.0198) -0.7711 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.5648 ±0.8253
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Table 5. 5-factor type A designs (for n = 21, 22 see text)

(a) k = 5, n = 23, c = 1, b = 22, IV= 0.6719
x1 + x2 + x3 = x4 + x5 + x6 = 0

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(-0.5773 0.2886 0.2886) (-0.5773 0.2886 0.2886) 0.0157
(-0.5773 0.2886 0.2886) (0.2886 -0.5773 0.2886) 0.0157
(-0.5773 0.2886 0.2886) (0.2886 0.2886 -0.5773) 0.0157
( 0.7163 -0.3581 -0.3581) 0.0000 0.0000 0.0000 0.4800
( 0.6370 -0.3185 -0.3185) 0.0000 0.0000 0.0000 -0.6256
0.0000 0.0000 0.0000 (0.7163 -0.3581 -0.3581) 0.4800
0.0000 0.0000 0.0000 (0.6370 -0.3185 -0.3185) -0.6256
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

(b) k = 5, n = 24,
c = 1, b = 23, IV= 0.6478

0.0000 0.0000 0.0000 0.0000 0.0000
0.0273 0.4823 0.3434 ±[0.8054 0.0066]
-0.5072 -0.2455 -0.1183 ±[0.7052 0.4137]
0.4006 -0.0361 -0.3423 ±[0.6724 -0.5186]
0.0836 -0.5160 0.6511 ±[0.5330 -0.1370]
0.6339 -0.4897 -0.0552 ±[0.3739 0.4642]
-0.6896 0.2393 -0.3604 ±[0.3596 -0.4560]
0.1142 0.3957 -0.6583 ±[0.3589 0.5179]
-0.3456 -0.7344 -0.0274 ±[0.2060 -0.5460]
0.0205 0.2377 0.4172 ±[0.0367 0.8762]
0.8437 0.5117 -0.1622 0.0000 0.0000
0.6375 0.2242 0.7371 0.0000 0.0000
0.0113 -0.4868 -0.8734 0.0000 0.0000
-0.2106 0.9768 0.0379 0.0000 0.0000
-0.7296 0.0938 0.6774 0.0000 0.0000
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Table 6. 6-factor type A designs (for n = 28 see text)

(a) k = 6, n = 29, c = 1, b = 28,
IV= 0.7161, x1 + x2 + x3 + x4 + x5 = 0

0.0000 0.00004 0.0000 0.0000
(0.52002 -0.34683) -0.3140 0.0000
(0.6988 -0.17474) 0.6242 0.0000
(-0.7008 0.17524) 0.1792 ±0.5950
0.0000 0.00004 -0.6091 ±0.7931
0.0000 0.00004 -1.0000 0.0000

(b) k = 6, n = 30, c = 1, b = 29, IV= 0.6979

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(±0.8569 0.0000 0.0000) -0.5127 0.0000 -0.0527
0.4554 0.4554 0.4554 0.2079 ±0.5786 0.0000
(0.4554 -0.4554 -0.4554) 0.2079 ±0.5786 0.0000
-0.4318 -0.4318 -0.4318 0.2044 0.0000 0.6316
(-0.4318 0.4318 0.4318) 0.2044 0.0000 0.6316
-0.4360 -0.4360 -0.4360 0.3100 0.0000 -0.5775
(-0.4360 0.4360 0.4360) 0.3100 0.0000 -0.5775
0.0000 0.0000 0.0000 0.8990 ±0.4291 0.0875
0.0000 0.0000 0.0000 -0.3609 ±0.8187 0.4466
0.0000 0.0000 0.0000 -0.4068 ±0.5901 -0.6973
0.0000 0.0000 0.0000 -0.7090 0.0000 0.7052

(c) k = 6, n = 37, c = 1, b = 36, IV= 0.5750,
x1 + x2 + x3 = x4 + x5 + x6 = x7 + x8 + x9 = 0

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.8165 -0.4082 -0.4082) (0.0000 0.0000 0.0000) (0.0000 0.0000 0.0000)
(0.3764 -0.0132 -0.3631) (0.1397 0.0762 -0.2159) (-0.3302 0.6605 -0.3302)
(0.3764 -0.3631 -0.0132) (-0.5841 0.0236 0.5605) (0.1685 0.0336 -0.2021)
(0.2722 -0.1361 -0.1361) (0.4386 -0.6173 0.1787) (0.4315 -0.1699 -0.2616)
(0.2080 -0.0319 -0.1762) (0.2517 0.2599 -0.5116) (0.5871 -0.2072 -0.3800)
(0.2080 -0.1762 -0.0319) (0.5098 -0.1798 -0.3300) (-0.5585 0.1123 0.4462)
(0.0840 0.3815 -0.4654) (0.6485 -0.3242 -0.3242) (0.0000 0.0000 0.0000)
(-0.4285 0.2706 0.1579) (0.2684 0.0621 -0.3304) (0.4462 -0.5655 0.1193)
(-0.4285 0.1579 0.2706) (0.4473 0.0489 -0.4961) (0.0386 0.3464 -0.3850)
(-0.4654 0.3815 0.0840) (0.0365 -0.2282 0.1917) (0.4635 0.0986 -0.5622)
(-0.5425 0.2712 0.2712) (-0.4692 0.5178 -0.0486) (0.1522 -0.2048 0.0527)
(-0.5462 0.2731 0.2731) (0.0306 0.0995 -0.1301) (-0.5837 0.3748 0.2089)
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