Figure 1: Putatively optimal clusters of N spheres, for N = 4 — 10 (figures (a)—(g)) and 13-20
(figures (h)—(0)). For greater clarity the spheres have been reduced in size, contacts between
adjacent spheres have been replaced by bonds, and for N > 3 the central sphere has been

omitted.
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center. Because in some cases the spheres on adjacent skewers are interlaced, some of the

circles overlap each other (although in fact these spheres just touch).

Figures 11 and 12 are at the end of the paper

The almost regular pentagonal arrangements of skewers in Fig. 12 is especially intriguing.
This cluster has the following structure. A polyhedron which is the same topologically may be
obtained by taking a double pentagonal prism (with three rings A, B, C of five vertices each),
constructing pyramids (with vertices N, 5) on the end faces and (with two rings D, F of five
vertices) on the 10 rectangular faces, and finally adjoining the centers O, O’ of the two prisms,
for a total of 29 points.

In the regular version of this polyhedron the contacts are as shown in Fig. 13, yielding a
29-sphere cluster with M = 15v/5 + 160 = 193.5410, G = 20. This is also a skewer packing,

the skewers being seen from the side in Fig. 13.

D) E()

A(5) C(5)

s() o(1) 0’ N(2)

Figure 13: Contact graph for regular version of capped double pentagonal prism, a slightly
suboptimal 29-sphere cluster.

A smaller second moment (of 193.4559) is obtained, however, if the skewers droop to one
side, producing the “weary” version found by our computer program and shown in Table 2 and
Fig. 12. The four points on the central skewer of Fig. 12 are the points S,0,0’, N of Fig. 13.
The group order has dropped to 4. Once again a less symmetrical configuration has a smaller

second moment.

Acknowledgements. We thank David Gay for assistance in using AMPL, and F. H. Still-

inger and the anonymous referees for some very helpful comments.
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Figure 10: 26-sphere cluster found inside hexagonal close packing. Points occur in 3 layers,
and may be partitioned into ten parallel “skewers”, one of which is indicated by dashed line.
The center of the cluster is indicated by X.

indicate a skewer with n spheres centered at points with

¢ 2 m
Tz = —, = —,
Vaor: Y7 57

and whose z coordinates are consecutive integers of the same parity centered at 0 (respectively
at 1). The 26- and 29-sphere clusters are then described in Table 2. For N = 27, adjoin
[12,12,1] to N = 26; for N = 28, adjoin [12,12,2] to N = 26; for N = 30, adjoin [0,0,1'] to
N =29; for N = 31, adjoin [0,0,2] to N = 29; for N = 32, adjoin [12,12,1] to N = 31.}

Table 2: Values of £, m,n for skewer clusters at N = 26, 29.

N =26 N =29

0 0 2 0 9 3

0 9 3 0 18 4

0 18 4 0 32 2

0 27 3 +4 25 3
6 6 2 6 6 2
+6 15 3 +6 15 3
+6 24 2 +10 22 2

The 26- and 29-sphere clusters are also shown in Figs. 11 and 12, in which the skewers
are indicated by circles (the skewers are perpendicular to the page), and skewer [{, m,n] being

indicated by a circle of radius 1 centered at z = (1/2/27, y = m/+/27 with n written at the

{To find these skewer packings, we established certain obvious rules that specify which combinations of
skewers [£,m,n] and [£,m,n'] are permissible, and then searched through all legal combinations and picked the
best.

18



10, 3 9

6

Figure 9: N = 19. Contact graph for 1-18. Point 0 (not shown) is joined to 4, 6-8, 11, 12, 17,
18.

For N = 25-21, successively omit points 26-22 from Fig. 10.

There is an alternative way to describe this cluster, which leads to an interesting general-
ization. We may regard the spheres in Ilig. 10 as arranged on ten parallel “skewers”, one of
which is indicated by the dashed line. Formally, we say that a cluster is a skewer packing if
there is a coordinate system with the property that the z coordinates of all centers with the
same z,y coordinates form a sequence of consecutive integers with the same parity. In this
case we call the set of points with the same z,y coordinates a skewer. (The cluster could then
be physically constructed using oranges impaled on skewers.)

After noticing that the best clusters we had found in the range N > 21 were skewer
packings, we undertook a systematic search for such clusters. This produced new records for
N = 29,30, with the final result that in the range 4 < N < 32 the best clusters are skewer
packings for N =5 and 21 < N < 32.

In order to specify these clusters we use the notation [¢,m,n] (respectively [{,m,n']) to

17
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Figure 8: Cardboard model (distorted) for N = 18.

N=19. The contact graph is shown in Fig. 9. Coordinates:

0 (0.0000,  0.0000, 0.0000)

1 (0.0000, —2.1976, 0.7759)

2 (0.0000, —1.3253, —2.4305)

3 (0.0000, 1.9804, —1.6102)

4 (0.0000, 1.9617,  0.3897)

5 (0.0000, 1.4605,  2.3259)

6 (0.0000, —0.5011,  1.9362)
7,8 (+£1.0806, —1.5030, —0.7570)
9,10 (+£1.6920, —1.1887, 1.1211)
11,12 (£1.0000, 0.2514, —1.7137)
13,14 (+£2.4433, —0.0906, —0.3721)
15,16 (+£1.7189,  1.7581, —0.6123)
17,18 (£1.4519, 0.7968, 1.1211)

C =(0,.0751,—.0547), M = 95.1284, G = 2 (negate z).

N=20. There is a central sphere that touches 11 others, but the cluster has no symmetry,
and we do not give it here. In spite of its lack of symmetry, this cluster was found repeatedly
by several different methods, and we believe that it (and indeed all the clusters described in

this section) is (probably) optimal.

N=21-32. For N = 26 the putatively optimal arrangement consists of a cluster of points
from the hexagonal close packing, the center of the cluster being taken at the midpoint of a
triangle lying between adjacent tetrahedra — see Fig. 10. (The theta series with respect to

this point is given in [ST85], Table 19.) C' is at the center of layer (b), M = 484/3, G = 12.
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Figure 7: Cardboard model for N = 17.

0 (0.1188,  0.1188, —1.5191)
1 (0.0000,  0.0000, 1.4142)
2,3 :  (0,0000, 1.4142,  0.0000)
4,5 . (—1.4142,  0.0000,  0.0000)
6 :  (1.8215, 1.8215, —0.7186)
7 : (18178, —1.8178, —0.7300)
8,9 : (—1.6040, 1.6040, —1.1794)
10,11 :  (0.2093, 2.0852, —1.8724)
12,13 : (—1.8030, —0.2316, —1.9481)
14,15 : (—1.1445, 1.2676, —3.0966)
16 :  (0.7885, 0.7885, —3.2806)
17 : (-0.6163, —0.6163, —3.5113)

(The second point of each pair is obtained by interchanging the 2 and y coordinates.) C =

(.0376,.0376,—1.3633), M = 86.3012, G = 2 (interchange = and y).
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Figure 6: Cardboard model for N = 16. Solid lines have length 2, dashed lines length 2.0572.

(a), 8 should be pushed up out of the page and 3,5,16,17 pushed down into the page;in (b), 9
should be pushed down and 16, 17 up; and corresponding nodes in (a), (b) should be identified.

Joining 0 to 2, 3, 10-13, 16 then establishes the positions of all the points. Coordinates:

14



13 10

12

14 11

9 14

Figure 5: N = 15. Contact graph for points 1-14. (Note that 13,14 appear twice.) Point 0
(not shown) is joined to 1-12.

(The coordinates are shown for point 1, while 2, 3 are obtained by cycling the coordinates to the
left, etc.). C' = (.0114,.0114,.0114), M = 69.7926, G = 3. Again there are two enantiomorphic

versions, the other being obtained by exchanging z and y.

N=17. Point 0 is central, with 1-16 forming a polyhedron described in Fig. 7. Figure 7 shows
all contacts among 1-16, while 0 (not shown) is joined to 5-8, 11-14. The convex hull of 1-16

is a polyhedron with 22 faces that are equilateral triangles (shown in Fig. 7), one square face

(11-12-14-13), and four faces that are obtuse isosceles triangles (1-5-15, 1-7-15, 2-6-16, 2-8-16).

Coordinates:
0 (0.0000, 0.0000,  0.0000)
1,2 : (2.0248, +1.0000, 0.0000)
3,4 (1.6958, 0.0000, +1.7005)
5,6,7,8 (0.5062, +1.5249, +1.1910)
9,10 : (—0.2247, 0.0000, +2.2590)
11,12,13,14 : (—-1.4142, +1.0000, =+1.0000)
15,16 : (—=0.7052, +£2.5803, 0.0000)

C =(.1147,0,0), M = 78.1282, G = 4 (negate y; negate z).

N=18. Point 0is roughly central, and 1,2, 3,4, 5 form a square pyramid (with 1 at the apex)
which we use to define the coordinate axes. All contacts among 1-17 are shown in Fig. 8, while
0 (not shown) should be joined to 2, 3, 10-13, 16. The convex hull of 1-17 is a polyhedron
with 30 triangular faces. 26 of the faces are equilateral and are shown in Fig. 8, the other four
being the obtuse isosceles triangles 6-10-16, 6-11-16, 7-12-17, 7-13-17. Figure 8 thus serves as a

cardboard model for this polyhedron. All the triangles should be made equilateral of side 2; in

13



1 1 1 1
13 “ 13
2 2 2 2
Figure 4: Cardboard model for N = 14.

shown in Fig. 5, and the full contact graph is obtained by joining 0 to 1-12. Coordinates:

0 : (0.0000, 0.0000, 0.0000)
1,2 :  (0.0022, +1.4459, +1.3818)
3,4 : (1.3825, 0.0000, +1.4452)
5,6 :  (1.4466, £1.3810,  0.0000)
7,8 : (—0.5235, F0.4171, +1.8847)
9,10 (—0.4166, +1.8846, F0.5240)
11,12 : (=1.7301, +0.6859, F0.7324)
13,14 : (—2.1985, F1.2156, +1.1384)

C =(-.2716,0,0), M = 62.1071, G = 2 (negate y, z). The North pole, P in Fig. 5, not one of
the 15 points, is (2,0,0).
This configuration exists in two enantiomorphic versions (the other being obtained by

negation of the y coordinate).

N=16. This cluster has a group of order 3, corresponding to cyclic shifts of the three coor-
dinates. Point 0 is central, with points 1-15 arranged in rings of three about the North-South
axis through 0 (the line P-Q in Fig. 6). A cardboard model for the polyhedron defined by
1-15 is shown in Fig. 6. As usual the edges have length 2, while the dotted edges have length
2.0572. All contacts among 1-15 are shown in the figure, while 0 (not shown) is joined to 1-3,

7-12. Coordinates:

0 (0.0000,  0.0000,  0.0000)
1,2,3  : (—1.4142, —1.4142,  0.0000)
4,56 :  (0.2739,  0.2739, —2.4512)
7,8,9 : (-1.1076, —0.3067, 1.6368)
10,11,12 : (—0.9967, 1.5547, 0.7678)
13,14,15 :  (2.0207, 0.4263,  0.9180)

12
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Figure 3: N = 13. 1-skeleton of convex hull (the “weary icosahedron”).

faces (9-10-12-11) has been opened slightly and point 13 placed above that face. The final
polyhedron has 10 equilateral triangular faces, four squares faces, and two faces (1-11-13-9 and
2-12-13-10) that are planar rhombi.

This 14-sphere cluster was discovered by Boerdijk [Bo52|, and appears as Figure 45/2 in
[FT64].

N=15. Whereas N = 14 was obtained by distorting a square face of a pentakis pentagonal
prism, N = 15 is obtained by distorting two adjacent square faces of the same polyhedron.
Point 0 is at the center, 1 and 2 are the apex vertices of the pentagonal pyramids, 3-12 are
the vertices of the distorted pentagonal prism, and 13, 14 lie above the two adjacent faces. In
the final figure, however, these two faces (7-11-10-12 and 8-12-11-9) have become nonplanar
quadrilaterals. Also 1 and 2 are no longer antipodal, and it is best to take the North pole above

the center (marked P in Fig. 5) of the rhombus 3-5-4-6. The contact graph for points 1-14 is



2 1 (v3,0,-1), 3,4 : (%i 8 —1) 5,6 : (—\/Lz_7,i 3—2,—1), 7.8 : ( 83 42046 %)
9,101 (5 4/2,2), 11 (—4195,0,};) 121 (54,0,3). € = (233V/3/6669,0,103/741),

M = 54398420/1140399 = 47.7012, G = 2 (negate y).

12

Figure 2: N = 13. Contact graph for points 1-12. Point 0 (not shown) is joined to all twelve.

The convex hull of points 1-12 (which still lie on the circumscribing sphere) has the 1-
skeleton shown in Fig. 3, so this is also an icosahedron. There are 30 edges, 21 of which (those
shown in Fig. 2) now have length 2, the others being longer.

For N = 12, omit point 12; for N = 11, omit 11 and 12.

Incidentally the 13-sphere cluster described by Wefelmeier [We37] as the “energetisch
giinstigsten Packung” appears to be simply the center and vertices of a regular icosahedron,

rather than our arrangement.

N=14. Construct the figure shown in Fig. 4 from cardboard, with all edges having length 2,
and fold it so the points marked 1 all coincide, the points marked 2 coincide, and the points
marked 13 coincide. Then adjoin a center point (0). Figure 4 is also the contact graph of 1-13,
the full contact graph being obtained by joining 0 to 1-12 (but not to 13).

Coordinates: 0:(0,0,0),1,2:(0,0,£2),3,4:(v/3,0,£1),5 -8 : (%i %,il), 9—-12:
(\;—%,i %,il), 13 (%,0,0). C = (-2/7V/3,0,0), M = 10372/189 = 54.8783, G = 4
(negate y; negate z).

The convex polyhedron formed by 1-13 is a pentakis prism, in which one of the square

10



4 : tetrahedron
5 : triangular bipyramid
6 : octahedron (= square bipyramid)

7 : pentagonal bipyramid

N=8. Vertices of dodecadeltahedron (a polyhedron with 12 triangular faces). Other names
are Siamese dodecadeltahedron or snub disphenoid ([FW47]; [Jo66]; [Wa88], Fig. 2-A16 #5).
It is also the “3-into-2” mutated icosahedron, because it can be obtained from a regular icosa-

hedron by converting a triad axis into a dyad one. Coordinates:

(ifaeao)a (il,—g,O), (0,—€,if), (Oagail)a

where e = .4111 is the unique positive real oot of 2X¢+ 11 X*4+4X%2 -1, g=/(e72 -1)/2 =
1.5679, f = 2eg = 1.2892. C' = (0,0,0), M = (24 10e* — 4e*)/e? = 21.1567. G = 8: negate z;

negate z; swap x, z and negate y.

N=9. Vertices of tetrakis triangular prism. This is the deltahedron with 14 triangular faces

(the tetrakaidecadeltahedron). Coordinates:

<0,%,i1), <j:1,—%,j:1), (0,—\/5—%,()), <i1+2\/6712+\/\§/670) .

C =(0,0,0), M =21 + 26 = 25.8990, G = 12.

N=10. \Vertices of tetrakis square antiprism. This is the deltahedron with 16 triangular
faces (the hexakaidecadeltahedron). Coordinates: (£1,41,¢), (£v/2,0,—e), (0,+v2, —¢),
(0,0,4+f), where e = 2= 4, f = e + /2. C = (0,0,0), M = 20 + 5v2 + 4.2'/4 = 31.8279,
G = 16.

N=11-13. The 13-point cluster consists of the center (labeled 0) and 12 vertices (labeled
1-12) of a “weary icosahedron”, defined as follows. Take a regular icosahedron whose cir-
cumsphere has rtadius 2, and so the edge lengths are 4/\/(r +2) = 2.1029, where 7 =
(1+ \/5) /2. Imagine the vertices are replaced by heavy particles, which then roll down the
circumsphere towards the South pole (labeled 1) until the graph that shows adjacencies be-

tween points at distance v/2 is as shown in Fig. 2. Coordinates: 0 : (0,0,0), 1 : (0,0, —2),



Figure 5, so that these spheres overlap if necessary, a solution may be constructed by inserting
one sphere after another. In fact, a continuous one-dimensional family of (symmetric) solutions
exists and is parametrized by the distance ¢ between the spheres 5 and 6. The distance d(?)
between spheres 12 and 13 is continuous in ¢. We find d(2.76) = 1.99428 and d(2.77) = 2.0224.
Some intermediate value #y then gives d(#p) = 2. By symmetry, the distance between spheres
11 and 14 must also be 2. The arguments for N = 16,17, and 19 are similar. For N = 18, the

existence argument involves a two-dimensional family of clusters.”

Asymptotic results. As the radius R of the clusters increases, N will grow like R>, M like

R, and the normalized second moment zw/NS/?’ should approach

3 1

5 A2/3°
where A is the density of the packing. (This limiting expression is valid if the spheres form a
roughly spherical subset of a lattice, as follows from Theorem 4 of [CS87], and it is plausible
that the same limit holds for arbitrary clusters.) Therefore, if Kepler’s conjecture that no

sphere packing can be denser than the face-centered cubic lattice is correct (cf. [Ha94], [Hs93]),

9. 35 1/3

as N — oo. Our results neither confirm nor contradict this: at N = 99, M /N5/ 3 has very

M/N>/3 should approach

slowly risen to around .72. It certainly is true, as we have already discussed, that for N < 99
(with the exceptions N < 5, N = 26), extracting clusters of spheres from the face-centered

cubic lattice or hexagonal close-packing does not yield minimal energy arrangements.

Notation. In Section 2 the N points are labeled 0,1,..., N — 1, decimal expansions have

been rounded to four places, the coordinates are labeled z, v, z, and GG denotes the group order.

2. The putatively minimal-energy clusters
N=1-7. The vertices of the following figures, in which all edges have length 2.

1 : point
2 : line segment

3 : triangle



(viii) Various iterative constructions, such as adding a random sphere to a good packing of

N — 1 spheres and optimizing the result.

We are reasonably confident that the results in Table 1 are optimal, or at least very close to
optimal. On the other hand we have no proofs of optimality for any NV greater than 4. It would
be possible, although laborious, to construct such proofs using the methods of [PWM91], by
considering all possible contact graphs with N nodes, and for each graph, using MAPLE or
MACSYMA to determine the optimal arrangement of points with that contact graph.

We would be interested in hearing of any improvements to Table 1, or of optimality proofs.
They should be sent to N. J. A. Sloane at the address at the beginning of the paper, or by

electronic mail to njas@research.att.com.

Existence questions. Once the contact graph is specified, the coordinates of the points are
determined by the solution to a system of quadratic equations, and so are algebraic numbers.
The computer output gives only an approximate solution to these equations, correct to about
10712, Formally, therefore, it is necessary to verify that there is a true solution to this system
of equations in the neighborhood of the computer’s approximate solution. For N < 14 we
carried out this verification using MACSYMA, and in Section 2 give exact coordinates for
the points. However, for 15 < N < 20 we did not do this, since already at N = 15 the
algebraic numbers involved are of quite large degree. Our experience (both in this problem
and in related problems discussed in [HS92], [HS94]) strongly suggests that for N < 20 the
computer solutions are sufficiently precise and the equations are sufficiently well-behaved that
there always is a true solution nearby. For 21 < N < 32 the skewer construction directly leads
to explicit coordinates.

If it were felt necessary to establish the formal existence of these arrangements for 15 <
N < 20, this could most easily be carried out by the interval arithmetic package INTBIS
[KN90].

Note that there is no question about the validity of the numbers in Table 1, only about the
existence of the contact graphs. Even if some of the distances in the cluster are 2 4+ € rather
than 2, the values in Table 1 will not change.

One of the referees has kindly pointed out that it is easy to give existence proofs for the cases
N = 15,16,17 and 19. With the editors’ permission, we quote from the report. “Here is the
argument for N = 15. If we delete the two edges (12,13) and (11, 14) from the contact graph in



(v) A modification of the “pattern search” used in [HS92], [HS93], [HS94]. (Successful for
all N < 32 except 29 and 30.) In this algorithm we approximated the minimal moment
criterion of (1) by a sequence of potential functions

@k_zuamzw 3)
i<j
for k= 0,1,..., where ay and §; (respectively specifying the hardness and repulsion of

the spheres) are given by ag =0, fy = 1, and

1 )
ap = ap_q+ 2 {mm | P — P;| — ak—l} ;
2 i<y
1
ﬁk = 56]6—17 k Z 1. (4)

A given starting configuration is minimized under ®g, the result then minimized under
®,, and so on, until no further improvement is obtained to the tolerance of the machine.

At each stage the spheres get harder and less repellent.

This procedure has the drawback that since initially the spheres are soft and can squish
by each other, only a small number of different final configurations were reached. To
obtain further possibilities, even if only to reject them, we therefore removed a random
sphere from the final cluster, placed it outside the cluster, softened the spheres slightly
(by setting ag = 0.9 12121]11 | P;— P;|, and choosing a random (), and again minimizing under
the sequence of potential functions. (The value 0.9 was determined by experimentation
to produce good results.) After termination the cluster must be rescaled to have minimal

separation 2.

The computer output from these algorithms was then “beautified” to produce the arrangements
shown in Section 2. This process consisted in finding the contact graph, the full symmetry
group, and coordinates for the points that reveal as much of the symmetry as possible. Some

of the symmetry groups were found using MAGMA [CP93].

(vi) Study of the beautified results from (v) for N = 21-26 revealed that these had a common
construction, the “skewer” construction described in Section 2. A special search was

therefore made for clusters of this type, which produced new records for N = 29 and 30.

(vii) After applying our pattern search algorithm to the Lennard-Jones problem, we used the
putatively optimal configurations for that problem as input to the program described in

(v). This was successful only for N < 9.



be further from the truth. The numbers of regular tetrahedra in the best arrangements for
N = 4-20 are respectively 1,2,0,0,0,3,0,8,8,8,0,8,1,0,0,0, 3.

The results are also in complete contrast to those obtained in [GS90] for the analogous
two-dimensional problem, in that (a) the best arrangements are not those found in the densest
lattice packing, and (b) whereas in the two-dimensional case the greedy algorithm produces
the best arrangements for N < 21, in three dimensions the greedy algorithm gives the best
arrangements only for N <5 and N = 11, 12, 13 (and, we conjecture, never again).

Finally, we give a brief comparison with the putatively optimal Lennard-Jones clusters given
by Hoare and Pal [HP71]. For N < 7 these clusters are essentially the same as ours, except
for having spheres of slightly different sizes. For N > 8 the clusters are quite different. For
N = 8,...,12 the optimal Lennard-Jones clusters are essentially the vertices of a pentagonal
bipyramid with N — 7 tetrahedra erected on consecutive faces of one of the two pentagonal

pyramids, and for N = 13 the answer consists of the center and vertices of a regular icosahedron

([HPT71], p. 176).

How the results were obtained. Bearing in mind the epigraph to this paper, we tried a

number of different techniques:

(i) The greedy algorithm, at each step adding a sphere in the optimal way. (The results

from this method have already been mentioned.)

(ii) Extracting clusters of spheres from the face-centered cubic lattice, hexagonal close pack-
ing, etc., as in [GS90], [ST85]. (This was successful — i.e. produced what we believe are

the optimal configurations — only for N < 5 and N = 26.)

(iii) Simulated annealing applied to clusters from (i) and (ii). (Successful for N = 21, 23-25,
27, 28.)

(iv) Quadratic programming, to minimize (1) subject to the constraints |P;— P;|> > 4 (i # j).
(Successful for N < 20, not for larger N.) The programming language AMPL [FGK93]
made it particularly easy to apply quadratic programming to this problem. For each
value of N we took several thousand random starting configurations and then optimized
them (via AMPL) using both the MINOS [MS87] and CONOPT [Dr93] optimization

programs.



Table 1: Conjectured minimal second moment M for any cluster of N unit spheres.

N M N M N M
1 0 12 42.8163 23 131.7681
2 2 13 47.7012 24 141.2778
3 4. 14 54.8783 25 151.6267
4 6 15 62.1071 26 161.3333
5  9.3333 16 69.7926 27 172.8889
6 12. 17 78.1282 28 183.7619
7 16.6833 18 86.3012 29 193.4559
8 21.1567 19 95.1284 30 205.7136
9 25.8990 20 105.0434 31 217.3094

10 31.8279 21 114.2222 32 229.3750

11 37.8346 22 122.4848

displacing the centroid away from the center, at the same time rolling the vertices in the
direction of the centroid until their separation is equal to the circumradius. The equilibrium
position is reached at the “weary icosahedron”.

The best arrangements for N = 11 and 12 are obtained by omitting points from the N = 13
solution.

For N = 14-20 the best arrangements we have found consist of a (roughly) central point
together with the vertices of a convex polyhedron containing the central point. The central
sphere often touches only a few of the other spheres (only 7 when N = 18, for example). The
polyhedra for N = 14,15,...,20 are all quite different from each other. We believe that these
polyhedra have not appeared in the literature before.

Our understanding of these polyhedra was greatly enhanced by making cardboard models
of them, and the figures in Section 2 can be used as a guide for making such models.

For N = 21-32 the best arrangements can be built in a uniform manner (to be described
in Section 2) from parallel one-dimensional strings (or “skewers”) of spheres. All of N = 21-32
can be obtained as subsets or supersets of the clusters for N = 26 and 29.

Before beginning this investigation, we anticipated that many of the optimal arrangements

for small N would consist of regular tetrahedra glued together. For N > 6, nothing could



techniques we were able to reproduce all the published optima for Leonard-Jones clusters of
up to 75 spheres. To use a sporting metaphor which is also technically correct, their problem
is softball, ours hardball.?

Other criteria for minimal clusters of spheres, also different from ours, and with different

solutions, have been used in [We37], [Bo52], [GWO1].

Summary. The main results of this paper are summarized in Table 1, which gives what we
conjecture are the minimal second moments of arrangements of N spheres for N < 32. The
arrangements themselves are illustrated in Fig. 1 and described in more detail in Section 2.
We have in fact searched for optimal packings with up to 99 spheres, although since we are
less confident of the optimality of the configurations with more than 32 spheres they will
not be described here. Numerical coordinates for all these packings have been placed in the
Netlib archive, and can be accessed via electronic mail, ftp or Mosaic. The packings are in
the directory att/math/sloane/cluster. Instructions for obtaining them can be obtained by

sending the message send getting.stuff from att/math to netlib@research.att.com.

Figure 1 appears at the end of the paper

Discussion of results. The character of the putatively optimal arrangements changes in an
interesting way as N increases. For 4 < N < 10 these arrangements (see Section 2) consist
of the vertices of reasonably well-known polyhedra, the so-called deltahedra, whose faces are
equilateral triangles [Jo66].

For N = 11-13 the best arrangements consist of a central point together with N — 1 points
at distance 2 from it. The 13-point answer is at first glance surprising, since it consists neither
of the center and vertices of a regular icosahedron (which is the 12-vertex deltahedron), nor
the center and vertices of a cuboctahedron (the arrangement found in the face-centered cubic
lattice). Instead, the answer is the center and vertices of the “weary icosahedron”, obtained
from a regular icosahedron by allowing the vertices to roll down the circumsphere towards
the South pole until the contact graph of distance-2 neighbors is as shown in Fig. 3. This
is understandable, however, when we recall that in a regular icosahedron the edge length is

slightly greater than the circumradius, and therefore the second moment can be reduced by

T As one reader of this paper has pointed out, softball is intrinsically underhanded.



to minimize the second moment

N
M=3|P-CF, (1)

i=1
where C' = N~} JZV: P; is the centroid, subject to the constraints |P;— P;| > 2 for ¢ # j. Placing
spheres of radiuls:i at the P; then gives a packing or cluster of hard spheres. Apart from a
factor of N, M is the sum of the squared distances between all pair of points.

Such clusters are also of interest in the investigation of Kepler’s problem of determining the
densest sphere-packing in three dimensions, since the attacks on this problem involve (among
other things) detailed analysis of small clusters of spheres [Bo52], [Mu93], [Hs93], [Ha94].
Although there is a standard way to define the density of a packing of infinitely many spheres,
there is no single definition of the density of a finite cluster that is totally satisfactory. Our
minimal-moment criterion offers another way to evaluate the “tightness” of a cluster.

The interpretation of |P; — C'|? as the energy in P; is a standard one in communications,
where Py, ..., Py would represent a constellation of N signals with total energy M [CG62],
[FGWT4].

The analogous two-dimensional question of minimal-energy penny packings was studied in

[GS90], [Cho4].

Lennard-Jones clusters. In the physics literature there have been a large number of papers
that deal with the problem of finding arrangements of N points that minimize the Lennard-

Jones potential

1<i<i<N \ %
where d;; = |P; — P;| — see [CSW92], [CSW93], [FFRS&3], [HM76], [HMS83], [HP71], [HP75],
[MF'92], [No87], [RFF89], [Sh92], [Wi87]. Reasonable candidates for minimal-potential ar-
rangements have been found for up to several hundred points, although optimality has been
rigorously established in only a few cases. However, in such arrangements the distances between
pairs of neighboring points is not constant (for example in the case N = 5 it varies between
0.996 and 1.002), so such clusters are packings of soft rather than hard spheres. Furthermore,
even if we ignore this variation in minimal distance, the putatively optimal Lennard-Jones
clusters are in general completely different from those found in the present paper, so this is a
strictly different problem. The Lennard-Jones problem also seems considerably easier than the

minimal moment problem, essentially because (2) is differentiable but (1) is not. Using our
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ABSTRACT

What is the tightest packing of N equal nonoverlapping spheres, in the sense of having
minimal energy, i.e. smallest second moment about the centroid? The putatively optimal

arrangements are described for N < 32. A number of new and interesting polyhedra arise.

1. Introduction

hardball. 2. Informal. The use of any means,
however ruthless, to attain an objective.

American Heritage Dictionary,
Third Edition, Houghton-Mifflin,
New York, 1992.

A number of papers have appeared in recent years in the mathematical literature dealing with
questions of finding the best packings of N points (or equivalently congruent circles or spheres)
in two and three dimensions from various points of view: see the surveys in [CFG91], [GWO1].
For example, [MP90], [PWM91], [Me93] study the problems of finding the densest packings of

N equal circles in a square or equilateral triangle.

Statement of problem. However, the problem considered in the present paper, which is to
find minimal-energy clusters of N equal and nonoverlapping spheres, seems to our surprise not

to have been considered. Stated formally, we wish to determine points P, ..., Py in R so as

*This paper has appeared: Discrete and Computational Geometry, 14 (1995), 237-259.



