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ABSTRACT

Computer-generated designs in the cube are described which have the minimal (or larger)
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are included with 6 to 20 runs, 3-factor designs with 10 to 20 runs, 4-factor designs with

15 to 20 runs, 5-factor designs with 21 to 25 runs, 6-factor designs with 28 to 31 runs,

and 7-factor designs with 36 and 39 runs. The designs were constructed by minimizing the

average prediction variance, and without imposing any prior constraints – such as a central

composite structure – on the locations of the points.
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1 Introduction

In Part I (Hardin and Sloane, 1991) we constructed designs for a quadratic response-

surface model in which the runs are made at points in or on a sphere. The present paper

uses the same techniques to construct designs in which the runs are at points (x1, . . . , xk)

in or on the cube defined by

− 1 ≤ xi ≤ 1 (1 ≤ i ≤ k) . (1)

The reader is referred to Part I for details of the method, discussion of earlier work, and

applications. There are k factors,

p =
(k + 2)(k + 1)

2

unknown parameters in the quadratic response-surface model (Eq. (1) of Part I), and the

design contains n runs, with n ≥ p.

The designs are constructed by minimizing the integrated prediction variance (Box and

Draper 1959, 1963), which in the case of a cube is given by

IV = trace{M(X ′X)−1} , (2)

where X is the n× p design matrix and
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is now a matrix of moments of the cube (compare Eqs. (7), (8) of Part I). Again IV is

scale-invariant.

Designs were constructed with the following parameters:

no. of factors (k) no. of runs (n)

2 6− 20
3 10− 20
4 15− 22
5 21− 31
6 28− 42
7 36− 54
8 45− 67

and in some cases with larger numbers of runs. (We have also constructed other types

of designs, for example 3-factor designs for a third-order response surface, and 9-factor

quadratic designs in which six factors are continuous and three are two-level factors. These

will be described elsewhere.) As in Part I, numerical evidence strongly suggests that the

designs obtained have values of IV that are minimal (or very close to minimal).
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We initially considered two types of designs: (type B) those in which at least one run is

made at the center of the cube, and (type C) those where all runs can be anywhere in the

cube. As discussed in Part I, for the sphere there is essentially no difference between the

types. For the cube, in contrast, the best designs of type C often do not include runs at

the center. This is especially true of designs with the minimal number of runs, as can be

seen from Table 1. Since our main goal is to construct designs with small numbers of runs,

we have therefore concentrated on type C (or unrestricted) designs, and it is these that are

described in Section 2. (It is also easy to modify our program to find minimal variance

designs with a pre-specified number of runs at the center of the cube.)

Table 1 contains a summary of our designs, and gives the smallest integrated prediction

variance (IV) found for each number of factors (k) and runs (n), as well as the number of

runs (c) made at or close to the center of the cube and the number of runs (b) near the

boundary of the cube. (Points neither near the center nor near the boundary never occur

– either all the coordinates of a point are small, or at least one coordinate is close to 1.)

The program itself determines the best number of runs to make at or near the center

(discovering on its own the notion of replicated runs!). Note that for k ≥ 3 factors and the

minimal number of runs (as well as for 3 factors and 20 runs), all the runs are made at

points on the boundary of the cube.

We have found no simple formula for IV for the cube, analogous to that for the sphere

given in Eq. (11) of Part I.

As we mentioned in Part I, of the innumerable earlier papers on the construction of

designs, the closest in spirit to ours seem to those of Box and Wilson (1971, 1974). These

two papers contain several examples of designs in the k-dimensional cube, obtained by

maximizing D-efficiency. As we shall see in the next section, however, there are significant

differences between their designs and ours.

Other designs with small numbers of points in the k-dimensional cube have been con-

structed by Atkinson (1973), Draper and Lin (1990), Hartley (1959), Hoke (1974), Pe-

sotchinsky (1975), Rechtschaffner (1967), Westlake (1965), and others, but these have al-

most always been found by optimizing over a restricted family of designs (central composite

designs, or subsets of factorial designs or Plackett-Burman-Rao designs). Surveys of these

designs can be found in Box and Draper (1987, §15.5), Lucas (1976).

In contrast, we impose no constraints on the locations of the points and let the computer

find the optimal arrangement.
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Table 1. Minimal integrated variance (IV) as a function of number of factors (k) and number
of runs (n); c is the number of points near center of cube, b is number near boundary.

k = 2 k = 3 k = 4

n c b IV n c b IV n c b IV

6 1 5 0.7657 10 0 10 0.6856 15 0 15 0.6471
7 2 5 0.5736 11 1 10 0.5500 16 2 14 0.5451
8 2 6 0.4888 12 2 10 0.4897 17 2 15 0.4766
9 2 7 0.4265 13 2 11 0.4488 18 3 15 0.4388
10 2 8 0.3659 14 3 11 0.4065 19 3 16 0.4173
11 3 8 0.3260 15 1 14 0.3676 20 3 17 0.3894
12 4 8 0.3028 16 2 14 0.3405
13 4 9 0.2840 17 2 15 0.3220
14 4 10 0.2651 18 1 17 0.3005
15 4 11 0.2468 19 2 17 0.2839
16 4 12 0.2318 20 0 20 0.2667

k = 5 k = 6 k = 7

n c b IV n c b IV n c b IV

21 0 21 0.6094 28 0 28 0.5824 36 0 36 0.5496
22 2 20 0.5361 29 1 28 0.5114 37 1 36 0.5060
23 3 20 0.4832 30 3 27 0.4661 38 3 35 0.4644
24 3 21 0.4499 31 3 28 0.4331 39 3 36 0.4232
25 2 23 0.4196 32 4 28 0.4129 40 4 36 0.3959
26 4 22 0.3979 33 4 29 0.3985 41 5 36 0.3791

k = 8

n c b IV

45 0 45 0.5413
46 1 45 0.5090
47 3 44 0.4779
48 4 44 0.4504
49 4 45 0.4359
50 4 46 0.3956
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2 The designs

Tables 2-6 give examples of our designs. The others mentioned in Section 1 can be ob-

tained from the authors – please write to N. J. A. Sloane, Room 2C-376, AT&T Bell Lab-

oratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974; electronic mail address

njas@research.att.com .

The format of the tables is the same as in Part I. Parentheses are used to indicate that

the permutation defined by the parentheses is to be applied repeatedly. For example (abcd)

is an abbreviation for the four vectors abcd, bcda, cdab, dabc; while (ab)(cd) abbreviates

abcd, badc. Square brackets have no special meaning and are used to group components;

thus ±[a b] abbreviates the two vectors +a + b and −a − b.

The coordinates given in the tables are essentially those found by the computer, except

that some reordering and sign-changing has been carried out to reveal hidden symmetries.

(Permuting the coordinates and changing their signs does not affect the value of IV. On the

other hand the signs of the rows may not be changed.)

Since these designs are constrained to lie in the cube, a less symmetrical region than

the sphere, they are generally less symmetrical than those found in Part I, and with some

exceptions are of less geometrical interest.

The 2-factor designs are described in Table 2 and Figure 1. In the figure the box

specifies the region −1 ≤ x1, x2 ≤ 1, and when necessary points are labeled by the number

of replications. We have not given coordinates for the larger 2-factor designs since they can

be found from the figure.
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Table 2. 2-factor designs

(a) k = 2, n = 6,
c = 1, b = 5,
IV = 0.7657

1.0000 1.0000
(1.0000 -0.7075)
0.1449 0.1449
(-1.0000 -0.2764)

(b) k = 2, n = 7,
c = 2, b = 5,
IV = 0.5736

1.0000 1.0000
(1.0000 -0.7969)
0.1479 0.1479 twice
(-1.0000 -0.3105)

(c) k = 2, n = 8,
c = 2, b = 6,
IV = 0.4888

±[1.0000 1.0000]
(1.0000 -0.7683)
0.0949 0.0949 twice
(-1.0000 0.0039)

(d) k = 2, n = 9,
c = 2, b = 7,
IV = 0.4265

1.0000 ±1.0000
1.0000 0.0000
-0.0442 ±1.0000
-0.0447 0.0000 twice
-1.0000 ±0.8367

(e) k = 2, n = 10,
c = 2, b = 8,
IV = 0.3659

±1.0000 ±1.0000
(±1.0000 0.0000)
0.0000 0.0000 twice

(f) k = 2, n = 13,
c = 4, b = 9,
IV = 0.2840

±1.0000 ±1.0000
1.0000 0.0000
0.0567 0.0000 4 times
-0.0437 ±1.0000
-1.0000 ±0.1941
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Figure 1: Minimal variance 2-factor designs for 6 through 20 runs. Points are labeled with
their multiplicities when these exceed one.
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As can be seen from the figure, there is no uniform geometrical description of these

2-factor designs. Even the symmetry group changes with the number of runs. There is also

no general rule for obtaining the best design with n+1 runs from the best with n runs. The

best 10-run design is a central composite with 2 runs at the center, and the 11- and 12-run

designs just add more center points; but the best 9- and 13-run designs are not of this type.

The less symmetrical designs (e.g. the 13- and 16-run designs) are especially striking.

It is interesting to compare our designs with the D-optimal designs constructed by Box

and Draper (1971). Their designs with two factors and from 6 to 13 runs are shown in

Figure 2; the corresponding IV values (which are considerably larger than ours) are

no. of runs IV

6 0.817
7 0.660
8 0.553
9 0.450
10 0.433
11 0.416
12 0.399
13 0.381

The chief difference between their designs and ours is that theirs have multiple runs at

boundary points, whereas ours have multiple runs of the central point. Our program seems

to produce designs which are more intuitively appealing (although our 3-factor 20-run design

mentioned below is a surprise).

Figure 2: D-optimal 2-factor designs for 6 through 13 runs found by Box and Draper (1971).
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Some of our 3-factor designs are shown in Table 3. Again, sometimes only a small

change occurs when the number of runs increases by 1, sometimes not. For example, one

can see that the 12-run design is close to the 11-run design with an extra central point. The

15-run design is a central composite, the 16-run design (omitted from the table) simply adds

a central point, while the 17-run design (which is shown) has a quite different structure.

The best 20-run design, a central composite consisting of the vertices of the cube and two

replications of each of the midpoints of its faces, but with no interior point, is particularly

interesting.

The groups of the best 3-factor designs range from cyclic groups of order 3 (for n =

10, 11, etc.) to the octahedral group of order 48 (for n = 15, 16).

Table 3. 3-factor designs

(a) k = 3, n = 10,
c = 0, b = 10, IV= 0.6856

1.0000 1.0000 1.0000
(0.9605 -0.1025 -0.1025)
(0.2553 -1.0000 -1.0000)
(-1.0000 1.0000 1.0000)

(b) k = 3, n = 11,
c = 1, b = 10, IV= 0.5500

1.0000 1.0000 1.0000
(1.0000 -0.1905 -0.1905)
(0.2349 -1.0000 -1.0000)
0.0589 0.0589 0.0589
(-1.0000 1.0000 1.0000)

(c) k = 3, n = 12,
c = 2, b = 10, IV= 0.4897

1.0000 1.0000 1.0000
(1.0000 -0.3119 -0.3119)
(0.1685 -1.0000 -1.0000)
0.0925 0.0925 0.0925 twice
(-1.0000 1.0000 1.0000)

(d) k = 3, n = 14,
c = 3, b = 11, IV= 0.4065

±[1.0000 1.0000] -0.6585
±(1.0000 0.1423) 1.0000
(1.0000 -1.0000) 0.3261
(1.0000 -1.0000) -1.0000
0.0000 0.0000 -0.0516 3 times
0.0000 0.0000 -1.0000

(e) k = 3, n = 15,
c = 1, b = 14, IV= 0.3676

±1.0000 ±1.0000 ±1.0000
(±1.0000 0.0000 0.0000)
0.0000 0.0000 0.0000

(f) k = 3, n = 17,
c = 2, b = 15, IV= 0.3220

±1.0000 ±1.0000 ±1.0000
(±1.0000 0.0000) 0.0030
0.0000 0.0000 1.0000 twice
0.0000 0.0000 -0.0512 twice
0.0000 0.0000 -1.0000

(g) k = 3, n = 20,
c = 0, b = 20, IV= 0.2667

±1.0000 ±1.0000 ±1.0000
(±1.0000 0.0000 0.0000) twice

Box and Draper (1971) give a D-optimal 10-run design which is very similar to the
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design in Table 3a, and has integrated variance IV = 0.708. They terminated their search for

optimal designs at this point, finding that the computing problem was becoming prohibitive.

For larger numbers of runs only restricted classes of designs have been studied up to now,

and it is perhaps unfair to compare their IV values with ours. We give just one example.

For 3 factors and 11 runs, the best design found by Lucas (1974) consists of the vertices

of the cube plus three face-center (or star) points. This has IV = 0.775, considerably

worse than our value of 0.550. It is worth remarking that Lucas’ design does not make any

measurements at the center of the cube.

Some of our 4-factor designs are shown in Table 4. The 18-run design (not shown) is

close to the 17-run design with an extra central point. The groups of these designs are

usually cyclic of orders 2 or 3 (although the 19-run design, not shown, has no group).

Tables 5-7 give further examples. The 6-factor 32-run design (not shown) is close to the

31-design with an extra central point. The 7-factor 36-run design in Table 7b is noteworthy

for its large symmetry group, of order 21.

Finally, we mention an even more remarkable 7-factor 36-run design with just three levels

that was found by one of our programs (Table 8). It was designed for fitting a quadratic

response surface, but has IV = 0.672 and is inferior from that point of view to the design

shown in Table 7a. The design in Table 8 has the property that every pair of columns

of the design matrix X are orthogonal, although it is not an orthogonal array. Of course

designs with this number of factors, runs and levels can be obtained from the orthogonal

array OA(36, 13, 3, 2) of Seiden (1954) (see also Taguchi, 1987, Vol. 2, p. 1175), but these

would not be suitable for fitting a quadratic response surface. It turns out that our new

design is based on the binary Hamming code of length 7 (MacWilliams and Sloane, 1977,

p. 24), although of course it was not constructed that way. The code consists of the eight

vectors 0000000, (0010111), and the design can be seen to be a union of vectors of this form.

It has a symmetry group of order 1344, generated by the permutations of PSL2 (7) and

sign-changes on Hamming codevectors. We find it remarkable that the computer discovered

this design.
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Table 4. 4-factor designs

(a) k = 4, n = 15,
c = 0, b = 15, IV= 0.6471

1.0000 1.0000 1.0000 0.5819
(1.0000 -0.4734 -0.4734) 1.0000
(1.0000 -1.0000 -1.0000) -1.0000
(-0.4082 1.0000 1.0000) -0.9018
(-1.0000 0.2037 0.2037) 0.0635
-0.2871 -0.2871 -0.2871 -1.0000
-1.0000 -1.0000 -1.0000 1.0000

(b) k = 4, n = 16,
c = 2, b = 14, IV= 0.5451

1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 -0.2354 -0.8294
(1.0000 -0.0237) -1.0000 0.5572
(1.0000 -1.0000) 1.0000 -0.1593
0.2917 0.2917 1.0000 -1.0000
-0.0227 -0.0227 0.0624 -0.0265 twice
-0.7380 -0.7380 1.0000 1.0000
(-1.0000 0.5482) -1.0000 -1.0000
(-1.0000 0.5042) -0.2399 1.0000
-1.0000 -1.0000 0.4300 -1.0000
-1.0000 -1.0000 -1.0000 0.2821

(c) k = 4, n = 17,
c = 2, b = 15, IV= 0.4766

±[1.0000 1.0000 1.0000] 0.7289
(1.0000 0.0000 -1.0000) 1.0000
(1.0000 -1.0000 0.0000) 0.2254
(0.4383 -1.0000 -1.0000) -1.0000
0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 -0.1218 twice
(-0.4383 1.0000 1.0000) -1.0000

(d) k = 4, n = 20,
c = 3, b = 17, IV= 0.3894

1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 (-1.0000 0.0840)
(1.0000 -0.0908) 0.0118 0.0119
(1.0000 -1.0000) (1.0000 -0.4076)
(1.0000 -1.0000) (-0.4076 1.0000)
0.2251 0.2251 (1.0000 -1.0000)
-0.0850 -0.0850 -0.0111 -0.0111 3 times
(-1.0000 0.5736) -1.0000 -1.0000
(-1.0000 -0.0762) 1.0000 1.0000
-1.0000 -1.0000 (-1.0000 0.4354)
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Table 5. 5-factor designs

(a) k = 5, n = 21,
c = 0, b = 21, IV= 0.6094

1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 (-1.0000 0.2224) 1.0000
1.0000 1.0000 -0.0441 -0.0441 -0.9697
(1.0000 -0.3400) (1.0000 -0.4203) 0.0553
(1.0000 -0.3400) (-0.4203 1.0000) 0.0553
(1.0000 -1.0000) -1.0000 -1.0000 -1.0000
-0.1419 -0.1419 (-1.0000 0.4578) -1.0000
-0.2436 -0.2436 -1.0000 -1.0000 0.4224
-0.5413 -0.5413 1.0000 1.0000 0.5313
(-1.0000 0.7758) 1.0000 1.0000 -1.0000
(-1.0000 0.3741) -0.0117 -0.0117 1.0000
-1.0000 -1.0000 (1.0000 -1.0000) 1.0000
-1.0000 -1.0000 -0.0891 -0.0891 -0.4292

(b) k = 5, n = 22,
c = 2, b = 20, IV= 0.5361

1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000 1.0000 -0.2440 -1.0000) 0.4046
(1.0000 1.0000 -0.9647 0.1933) -1.0000
(1.0000 -0.5251) (1.0000 -0.5251) -0.3460
0.0040 0.0040 0.0040 0.0040 -0.2369 twice
(-1.0000 -0.1190 -0.0687 0.9478) 1.0000
(-1.0000 -1.0000 -1.0000 0.6248) -1.0000
-1.0000 -1.0000 -1.0000 -1.0000 0.5378

(c) k = 5, n = 25,
c = 2, b = 23, IV= 0.4196

1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000 1.0000 -1.0000 0.1776) -0.6060
(1.0000 0.1907 -0.0009 -1.0000) 0.0812
(1.0000 0.0041) (1.0000 0.0041) -1.0000
(1.0000 -1.0000) (1.0000 -1.0000) 1.0000
(1.0000 -1.0000 -1.0000 0.3900) 1.0000
-0.0034 -0.0034 -0.0034 -0.0034 1.0000
-0.0525 -0.0525 -0.0525 -0.0525 0.0973 twice
(-1.0000 -1.0000 -1.0000 0.6157) -1.0000
-1.0000 -1.0000 -1.0000 -1.0000 0.5263
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Table 6. 6-factor designs

(a) k = 6, n = 28,
c = 0, b = 28, IV= 0.5824

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 -1.0000 -1.0000 0.0637 -1.0000
(1.0000 -0.2928) (0.2928 -1.0000) 0.0050 1.0000
(1.0000 -1.0000) (1.0000 0.4438) -0.0056 0.1090
(1.0000 -1.0000) (1.0000 -1.0000) ±1.0000 -1.0000
(1.0000 -1.0000) (-1.0000 1.0000) -1.0000 1.0000
0.9507 0.9507 0.0712 0.0712 -1.0000 0.1869
(0.9240 -0.0902) (-0.9433 0.0888) 1.0000 0.1919
(0.0975 0.8211) (1.0000 -0.1040) -0.0054 -1.0000
0.0346 0.0346 1.0000 1.0000 -1.0000 0.9093
-0.0577 -0.0577 -0.9782 -0.9782 -1.0000 0.1773
-0.9387 -0.9387 -0.0235 -0.0235 -1.0000 0.8732
(-1.0000 0.1009) (-0.1047 -0.8306) 0.0018 -1.0000
(-1.0000 0.0089) (1.0000 -0.0022) 1.0000 0.9181
(-1.0000 -0.4427) (-1.0000 1.0000) 0.0067 0.1099
-1.0000 -1.0000 1.0000 1.0000 -0.0583 -1.0000
-1.0000 -1.0000 -1.0000 -1.0000 1.0000 1.0000

(b) k = 6, n = 29,
c = 1, b = 28, IV= 0.5114

(1.0000 1.0000 -0.0063) (-1.0000 1.0000 -1.0000)
(1.0000 1.0000 -0.0909) (0.0243 -1.0000 0.0243)
(1.0000 1.0000 -1.0000) (1.0000 0.1631 -1.0000)
(1.0000 1.0000 -1.0000) (-1.0000 0.1631 1.0000)
0.8313 0.8313 0.8313 1.0000 1.0000 1.0000
-0.0561 -0.0561 -0.0561 -0.0243 -0.0243 -0.0243
(-0.9326 -0.9326 0.9618) -1.0000 -1.0000 -1.0000
(-1.0000 0.1451 0.1451) (-0.0880 -0.0880 1.0000)
(-1.0000 0.1414 0.1414) (1.0000 1.0000 -1.0000)
(-1.0000 -1.0000 1.0000) 1.0000 1.0000 1.0000
(-1.0000 -1.0000 -1.0000) (-1.0000 -1.0000 0.7178)
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Table 6. 6-factor designs cont.

(c) k = 6, n = 30, c = 3, b = 27, IV= 0.4661

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000 1.0000 1.0000 1.0000 -0.6747) -1.0000
(1.0000 -0.0100 -1.0000 -1.0000 -0.0100) -1.0000
0.0414 0.0414 0.0414 0.0414 0.0414 0.2441 3 times
(-1.0000 1.0000 1.0000 -1.0000 0.0064) 0.2178
(-1.0000 1.0000 -1.0000 -0.0115 -0.0115) -1.0000
(-1.0000 -1.0000 0.9719 -0.0484 0.9719) 1.0000
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 0.7262

(d) k = 6, n = 31, c = 3, b = 28, IV= 0.4331

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000 1.0000 1.0000 1.0000 -0.7208) -1.0000
(1.0000 -1.0000 -1.0000 1.0000 -0.0525) 1.0000
0.0921 0.0921 0.0921 0.0921 0.0921 0.0139 3 times
-0.0976 -0.0976 -0.0976 -0.0976 -0.0976 1.0000
(-1.0000 1.0000 1.0000 -1.0000 0.0087) 0.2936
(-1.0000 1.0000 -1.0000 -0.0109 -0.0109) -1.0000
(-1.0000 -1.0000 -0.0093 1.0000 -0.0093) -1.0000
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 0.5946

14



Table 7. 7-factor designs

(a) k = 7, n = 36, c = 0, b = 36, IV= 0.5496

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 -1.0000 -1.0000 -1.0000
1.0000 1.0000 0.0502 0.0502 -0.7799 -1.0000 1.0000
1.0000 1.0000 -1.0000 -1.0000 1.0000 -1.0000 0.5606
1.0000 1.0000 -1.0000 -1.0000 -0.1029 1.0000 -1.0000
(1.0000 0.3223) (1.0000 -0.9006) 0.1793 -0.2102 -0.1615
(1.0000 -0.0367) (-0.4081 0.7365) -1.0000 0.7890 -0.1520
(1.0000 -0.8780) (0.3849 1.0000) 0.2512 -1.0000 0.1160
(1.0000 -1.0000) (1.0000 -1.0000) -1.0000 1.0000 1.0000
(1.0000 -1.0000) (-0.4103 -1.0000) -1.0000 -0.4971 -1.0000
(1.0000 -1.0000) (-1.0000 1.0000) 1.0000 1.0000 -1.0000
(0.8976 -0.5034) (-1.0000 -0.1168) 0.2900 0.1209 1.0000
(0.4868 -0.6186) (0.0523 -1.0000) 1.0000 0.9624 -0.0262
(0.3987 -0.9650) (1.0000 0.0607) -0.1557 0.8604 -1.0000
0.1784 0.1784 0.1006 0.1006 1.0000 -0.7590 -1.0000
0.0082 0.0082 1.0000 1.0000 -1.0000 -0.1433 1.0000
-0.0607 -0.0607 -1.0000 -1.0000 -1.0000 -1.0000 0.6340
-0.9379 -0.9379 -1.0000 -1.0000 -1.0000 1.0000 -0.9818
(-1.0000 0.0536) (-0.8773 1.0000) 1.0000 -1.0000 1.0000
(-1.0000 -0.1711) (1.0000 -0.3517) 0.1572 1.0000 0.8744
(-1.0000 -0.3850) (1.0000 -1.0000) -1.0000 -1.0000 -1.0000
-1.0000 -1.0000 1.0000 1.0000 1.0000 -0.0018 -0.5782
-1.0000 -1.0000 -0.0644 -0.0644 -0.9996 -0.3290 0.5602
-1.0000 -1.0000 -1.0000 -1.0000 0.5721 -0.9967 -0.7783

(b) k = 7, n = 39, c = 3, b = 36, IV= 0.4232

(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -0.8742)
(1.0000 1.0000 -1.0000 1.0000 -1.0000 -1.0000 -0.1950)
(1.0000 -1.0000 0.1911 -1.0000 1.0000 -1.0000 -0.1819)
(-1.0000 -1.0000 -1.0000 1.0000 0.1911 1.0000 -0.1819)
(-1.0000 1.0000 1.0000 -1.0000 -1.0000 0.1911 -0.1819)
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 3 times

Table 8. A 7-factor 36-run design
with 3 levels; IV= 0.6719

1 1 1 1 1 1 1
(1 1 -1 1 -1 -1 -1)
(1 1 0 -1 0 0 0)
(1 -1 0 1 0 0 0)
(-1 1 0 1 0 0 0)
(-1 -1 0 -1 0 0 0)
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