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ABSTRACT This note gives an explicit proof that the scalar subgroup of the Clifford
WEeil group remains unchanged when passing to the quotient representation filling a gap
in [3].

1 Introduction

All notations in this paper are introduced in detail in [3] and we refer to this book for
their definitions. One main goal of the book is to introduce a unified language to describe
the Type of self-dual codes combining the different notions of self-duality and Types,
that are well established in coding theory. The Type of a code is a finite representation
p = (V,pur, pa,B) of a finite form ring R = (R, M, 1, ®). The finite alphabet V is a left
module for the ring R and the biadditive form 3 : V x V' — Q/Z defines the notion of
duality. A code C of length N is then an R-submodule of V¥ and the dual code is

N
Cr={weVV|> Bv,ca)=0VvceC}.
i=1
Additional properties of codes of a given Type are encoded in the R-qmodule pg(®) which

is a certain subgroup of the group of quadratic mappings V — Q/Z. A code C < V¥ is
isotropic, if C' < C+ and

N
> pa($)(ci) =0 V¢ € ® and for all ¢ € C.
=1
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Given a finite representation p, one associates a finite subgroup C(p) of GL(C[V]),
called the associated Clifford-Weil group (see Section 2). For certain finite form rings (in-
cluding direct products of matrix rings over finite Galois rings) it is shown in [3, Theorem
5.5.7] that the ring of polynomial invariants of C(p) is spanned by the complete weight-
enumerators of self-dual isotropic codes of Type p. We conjecture that this theorem holds
for arbitrary finite form rings. It is shown in [3, Theorem 5.4.13, 5.5.3] that in general the
order of the scalar subgroup

S(C(p)) =C(p) NC idcpy;

is exactly the least common multiple of the lengths of self-dual isotropic codes of Type p.
The proof of this theorem uses the fact that the scalar subgroup of C(p) remains unchanged
when passing to the quotient representation. The aim of the present note is to give a full
proof of this statement, Theorem 1.

Throughout the note we fix an isotropic code C < C+<Vin p. Then the quotient
representation p/C is defined by

p/C = (CL/Ca pM/C7 /0<I>/C7 5/0)7

where (pr/C(m))(v + C,w + C) = py(m)(v,w), (pa/C(¢))(v + C) = pa(¢)(v), and
B/C(v+ C,w+ C) = B(v,w) for all v,w € C+,m & M, $ € ®.

Theorem 1. Let R = (R, M,1, ®) be a finite form-ring and let p = (V, par, pa, ) be a
finite representation of R. Let C' be an isotropic self-orthogonal code in p. Then

S(C(p)) = S(C(p/C))-

2 Clifford-Weil groups and hyperbolic counitary groups

The Clifford-Weil group C(p) associated to the finite representation p acts linearly on the
space C[V] with basis [b, : v € V]. It is generated by

My : by — by for r € R*
dg @ by — exp(2mipa (@) (v))by for p € @
he . ve © by — W > weev EXP2TIB(W, Vev)) by (1—e) e? = e € R symmetric.

Recall that the form-ring structure defines an involution “ on R. Then an idempotent

e € R is called symmetric, if eR and e’ R are isomorphic as right R-modules, which means
that there are u. € eRe”, v, € e’/ Re such that e = u.ve and e’ = voue.

The Clifford-Weil group C(p) is a projective representation of the hyperbolic counitary
group
0 0

U(R,@)zU(( -

) , Mata(R), ®2).



The elements of U (R, ®) are of the form

X:<<: §>,<¢1 Z;))eMatg(R)xq)g (1)

va A8 L po! Alg1)  m
sla—1 678 2 T(m) Mg2) )
A more detailed definition of U(R, ®) can be found in [3, Chapter 5.2].
It is shown in the book that U (R, ®) is generated by the elements

a((r, 8)) = (( T ) )( 0 0 ))

with r € R*, ¢ € ® and

B 1—¢/ 0 (—ece)
(22 =)0 5

where e = u.ve runs through the symmetric idempotents of R.
Then the projective representation p : U(R,®) — C(p) is defined on these generators
by

such that

p: U(R, (ID) - C(p); d((?”, ¢)) = mrd¢7 L[e,ue,v8 = he,ue,ve (2)

and is clearly surjective since generators are mapped to generators.

It is shown in [3, Theorem 5.3.2] that this yields a projective representation. However
the calculations there were omitted so we take the opportunity to give them here for
completeness (also since there are a few typos in the proof there). As in Theorem 5.3.2
we define the associated Heisenberg group £(V) :=V x V x Q/Z with multiplication

((27‘7:)7 Q) : ((Z/, :EI)? q/) = ((z + Z/,l’ + xl)7q + ql =+ /B(xla Z))
Then (V) acts linearly on C[V] by
((z,2),q) - by = exp(2mi(q + B(v, 2)))botas ((2,7),9) €E(V), vEV.

This yields an absolutely irreducible faithful representation A : £(V) — G L}y |(C). The
hyperbolic counitary group U (R, ®) acts as group automorphisms on (V') via

(< i Z)( o Z; >) ((2,2),q)

— (a2 + ba, ez + da), g + pa(61) () + pa(d2) (@) + par(m) (2, 2))

Also the associated Clifford Weil group C(p) < GL(C[V]) acts on A(E(V)) = (V) by
conjugation.



Lemma 2. Forr € R*,¢ € ® and (z,z,q) € E(V) we have

A(d(r, §)(z,2,q)) = (mrdy) A((2,7,9)) (mrdy) ™

Proof. The proof is an easy calculation.

d(r, ) (z,2,q) = (r~ 72 + 177 A@))z, ra, g + pa(¢) ()

maps the basis element b, (v € V') to

exp(2mi(q + po(6)(@) + B0, 1=z + 1 6 A(6)2)) by
On the other hand

(mrdg) A((2, 2, 9)) (mydy)” Hby) = mydg exp(2mi(g — pa(9)(r™ ') + B(r 1, 2)) (b-1y40) =
exp(2mi(q = pa()(r ')+ B(r~t, )+p<1>(d>)( ' +2))) (botra) =
exp(2mi(q + B(r~1v, 2) + pu(M(@)) (110, 2))) (bv+r)

which is the same as the above, since 3(r~'v, z) = B(v, 7=’ 2) by definition of the involution
J and

pu(N9))(r~ 1o, @) = B(r~ v, w7 (M(9))z) = Blu, 17T (A(¢)2).

Lemma 3. For e = ucv. a symmetric idempotent in R and (z,z,q) € E(V)
A(He,ue,ve (2,7,q) = he,ue,veA((Za r,q))h,, 1118 Ve*

Proof. The group £(V) is generated by (2,0, 0), (0, ,0), (0,0, q) where z € e/ VU(1—e’)V,
xe€eVU(l—e)V, g€ Q/Z and it is enough to check the lemma for these 5 types of
generators. For (0,0, q) this is clear. Similarly, if z € (1 —e’)V and € (1 — e)V, then
both sides yield A((z,z,q)) as one easily checks. For z € !V, z € eV, g € Q/Z

Heny v (2,7,q) = (ver, — w2, q + B(z, —ex)).
To calculate the right hand side, we note that according to the decomposition
V=eVa(l-e)V
the space C[V] = CleV] ® C[(1 — e)V] is a tensor product and
heuewe = (he7ue,ve)<C[eV] ® idC[(l—e)V} .

Moreover the permutation matrix A((0,x,0)) : b, — byt for x € €V is a tensor product
p.®id and similarly the diagonal matrix A((z,0,0)) for z € e’V is a tensor product d, ®id.



It therefore is enough to calculate the action on elements of CleV]. For z = e’z € e’V
r=-ecx €V and v =ev € eV we get

he,ue,ve © A((e”2,0,0)) o he; 11L6 vebv =

een.(|€V]Y2 Y eev exp(2mi(B(—e ] ev,w) + B(w, e’ 2)))by,) =

VI Y weer Cweer expmi(B(—e vl ev,w) + B(w, e’ 2) + Bw', vew)))bu.

Now B(—e 1v/ev w)+ﬁ(w,e‘]z)+ﬁ(w’,vew) = fB(—€t Jev+e_1z+e Lvlew’, w). Hence
the sum over all w is non-zero, only if —v/ev + z + v/ew’ = 0 which implies that w' =
v — e 'z Hence hey, v, © A((e72,0,0)) 0 hgl by = by—e—1y7.- A similar calculation
yields

hevueyve o A((Ov ex, 0)) © he ie,veb =

he,ue,veﬂev‘_lﬂ D weev €XP(2mi(B(—€ “rolev, w)))buter) =

he e (1€V] 72 3 eoy exp2mi(B(—e vl ev,w — ex)))by) =

Peueve © Moy, (exD(2mi(B(e 0] ev, ex)))by) = exp(2mi(B(v, vex)))by

For the calculations in Section 5 we need the following lemma.

Lemma 4. Let X € U(R,®) be as in (1). If 6 = & then ¢ := 1 — § is a symmetric
idempotent of R.

Proof. We define u, = —y’t”/, v, = /B¢ and calculate
uv, = —(1-38ety/(1-8")p01—0)
= —(1-0)c!' 3 1-6)+ (1 —8e ) §7
(1=08) 7B (1-0)+(1—10)e &8 (1-9)
=aled—e —Bjeé

= (I-8ele(l-6)=1-56=1

and
vu, = —(1—0")p0—0)ety(1-67)
= —(1=0N) ey (1-67) + (1 - 8)Bde v/ (1 - 67)
=ad’/—1 =67

— (=)D =18 =



3 S(C(p) <S(Clp/C))

The Clifford-Weil-group C(p/C) can be derived from C(p) by restricting the operation of
C(p) to a submodule of C[V].

Lemma 5. The group C(p) acts on a submodule of C[V] isomorphic to C[C*/C]. This
yields a representation

res : C(p) — GL(C[C*/CY))
with the properties

(i) res(C(p)) < C(p/C),
(ii) if p : U(R,P) — C(p) and p/C : U(R,P) — C(p/C) denote the projective representa-
tions of U(R, ®) associated with p respectively p/C" as defined (2), then

res(p(He,ue,ve)) = p/C(He,ue,ve)

and

res(p(d((r,®)))) = p/C(d((r, ¢)))
for all He gy 0, ,d((1,¢)) € U(R, P).

Proof. Let Rep denote a set of coset representatives of C/C. We define a subspace

U={> Y abyi|a, €C}<C[V].

vERep ceC

This subspace is isomorphic to C[C+/C] via

f:clct/c] - U, Z aybytc — Z Zaybqﬂrc.

vERep vERep ceC

So we have

res(z) = foxo f1 € GL(U)

for z € C(p). Particularly, if 2 = s - idcy) then res(z) = s - idgjor /. Consequently we
will show that
fo p(He,ue,ve) 0 f_l = p/C(He,ue,ve)
and
fop(d((r,¢))) o f~ =p/Cd((r, 9))).
So we have Im(res) < C(p/C) and thus S(C(p)) is isomorphic to a subgroup of S(C(p/C)).



Now let v + C € C+/C and let T denote a set of coset representatives of eCt/eC =2
eC+/C. Then

fil Op(He,ue,vp) flovrc) = f~ To op(He,u, ve)(zcec bute) =
f_l(zcecJ@V\ 2 > weey €XP(2miB(w, ve(v + C)))bw+ 1—e)(v+c) ) =
_1(|6V’_§ ZwEeV exp(2mﬁ(w VeV )) Zc 'e(1—e) Z exp 277 ﬁ( ,UeC)) bw+(1—e)(v+c’)) =
ceeC

:{ leC|, w € eCt,

0 else.

fﬁl( <0 Eweecl Zc’e(l—e)C eXp(Qmﬂ(w, USU))bw—l—(l—e)(v—i-c’)) =

T
leV]|2

_ eC' )
f ' ( |lV|‘% weT 20/6(176)0 ZcGeC exp(2mﬁ(w, UeU))bw+c+(1—e)(v+c’)) -

f (||i/7‘ wer €XP(2TiIB(w, vev)) Do e buwt(1-epw +€) =

‘eCJ‘/C] 2 Zweecl/c exp(2mif3/C(w, ve(v + C)))bw+(lfe)(v+0) =p/C(Heuew,)(boro)-
Noting that pg(¢)(c) = 0 for all ¢ € C and for all d((r, ¢)) € U(R, ), we get

Fop(d((r, ) o fburc) = f~H o p(d((r, §)))(Xeec bote) =
I 1( (d((r,0))) Xeec exp2mipa(d)(v + €))bore) = 1 ceo exP(27ip0 () (V))brusre) =
F (P cec exP(2mipe(9) (1)) brote) = exp(2mipe /C(6)(v + C))br o)) = p/C(d((r, 9))) (bo+c)-

O
Since scalars acts as the same scalars on submodules, this shows the inclusion in the
headline.

Corollary 6. ker(res) N S(C(p)) = {1} and S(C(p)) is isomorphic to a subgroup of
S(C(p/C)).

4 The strategy.

Without loss of generality we now assume that p is faithful, that is,

ker(p) = (Anng(V), ker(ps)) = (0,0)
and let (I,T') = ker(p/C). We then define es : U(R, ®) — U(R/I,®/T) b

Yy
(3 0)(* 2 (350 3 (0 )
vy 8 ) b2 B Ny+I 641 ) ¢o2+T :
and the epimorphism

v:C(p) — U(R,®) by v(m,dg) = d((r,9)), V(heu,v.) = Heup, e
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for r € R*, ¢ € ® and symmetric idempotents e = u.v, € R. Similarly 7 : C(p/C) —
U(R/I,®/T"). Then vop = idy(g,p)- The projective representation p comes from the
action of U (R, ®) on the absolutely irreducible subgroup £(V) < GL(C[V]) (see the proof
of [3, Theorem 5.3.2]). This action coincides with the conjugation action of C(p) on (V).
Therefore the kernel of v respectively U are precisely the scalars in the respective Clifford-
Weil groups ker(v) = S(C(p)) and ker(v) = S(C(p/C)).

We then have the following commutative diagram with exact rows and columns

1 1
! !
1 —  ker(res) Vhkergrs ker(Tes) |
1 ! !
L — SCp) — Clp) = UR,®) — 1
1 | res B | Tes
1 — S(C(p/C) — C(p/C) =  UR/LET) — 1
! ! !
Yy 1 1
!
1

To see that all sequences are exact, we note that vy (res) is injective, since ker(res) N
S(C(p)) = 1. The homomorphisms Tes and res are surjective, since idempotents and units
of R/I lift to idempotents and units of R. Moreover Teso v = U ores as one checks on the
generators.

The claim of Theorem 1 is that ) is trivial. But this is fulfilled if and only if )’ is
trivial, that is, if V|ker(res) is an isomorphism since

[SClp/CNI _ 1C(p/C)| - UR, )| _ |ker(Tes)|
[SC)I UR/LE/T)]-[C(p)|  [ker(res)]

V| = =Y.

5 The surjectivity of v|ye(res)

During the proof of Theorem 1 some results on lifting symmetric idempotents are needed,
which are stated in the next two lemmata.

Lemma 7. Let R be an Artinian ring and I an ideal of R. If e € [ +rad R C R such that
e? = e mod rad R then there exists an idempotent €’ € I such that ¢ = e mod rad R.

Proof. We choose ¢ € rad R such that eg := e+ 29 € I. Then ey + rad R is an
idempotent in R/rad R. Since rad R is a nilpotent ideal of R [2, Theorem 4.9] constructs



an idempotent €/ = f(eg) € I for some polynomial f € Z[X] with f(0) = 0 such that
e +rad R = eg +rad R. O

By [2, Theorem 4.5] applied to an idempotent e € R, the right-modules eR and e’ R
are isomorphic, if and only if their quotients modulo rad R are isomorphic. Hence we find

Lemma 8. Let e + rad R € R/rad R be a symmetric idempotent such that
e+ rad R = ueve + rad R, e/ +rad R = Velle +rad R,

u. +rad R € (eRe’) +rad R, v, € (e’Re) +rad R. If e € R is an idempotent then e is
symmetric as well. More precisely, there exist 1, € eRe”’, v, € e/ Re such that

€ = Uple, € = Uty
and U, = v. mod rad R.

For the rest of this note, let

(D) p e

and let (I,T") := ker(p/C). In particular, a,d € 1 + I, B,y € I, ¢1,¢2 € ' and m € ¢(I).
We have to find some z € ker(res) such that v(z) = X.

Lemma 9. We have d(P(R, ®)) Nker(tes) C Im(v|ker(res))-

Proof. Let r € R*,¢ € ® such that d((r,¢)) = v(m,dg) € ker(tes). Then r € 1+ 1
and ¢ € T'. In particular 7 acts as the identity on C+/C and ps/C(¢) = 0. This implies
that both m, and dy € ker(res). O

Lemma 10. Let § be a unit. Then there exists x € ker(res) such that v(z) = X.

Proof. Since ker(res) is a normal subgroup of C(p) it suffices to show that X is
contained in the normal subgroup of U(R,®) generated by the elements d(P(R,®)) N
ker(res). We show that there is ¢ € I' such that

X =d((6, ¢2))Hi,1,1d(1,¢))Hy .

IRE]

We have d(0, ¢2) = <( 5;] g > ) < 0 (22 )) and hence

acon = (5 50 (0 )



We therefore find

e = (M) (e )

for some m € M. Since the upper right entry in the first matrix of this element of U (R, ®)
is 0 we obtain /m = 0 and similarly 6’a — §736 1y = 1 and we get

_ -1
d((6,¢2)) " X = (( 5_1% (1) ) ( 261 + 8 >>
Furthermore,

man= (2 0)(* 7)) b= (3 5) (0 57)),

Then we have
5L ,
(d((8, d2)) ' X) 11t = << é 61 ! ) ) ( : Tg )) :

with some m’ € M and

¢ ={v(—e 1)} — g0 9] + 61 €T,

since —ed~'y € I and ¢1,¢2 € . Again m’ = 0 since the lower left entry in the first
matrix is 0. Hence

Hl_,ll,ld((57 $2)) ' X Hy11 =d((1,6)) € ker(tes)

as claimed. m
We now conclude the proof of Theorem 1 by showing

Lemma 11. The map V|er(res) 15 surjective, that is, Im(v|ier(res)) = ker(Tes).
Proof. We show that there exists a symmetric idempotent ¢+ € I such that

B a/ /8/ ¢/1 ,U/
(5 2) ()

Ve
—. X/

and &' € R*. Since 1 € I = ker(p/C) the set t(C*+/C) = {0} and hence h, ,, ,, € ker(res).
By Lemma 10 X’ € Im(v|ker(res)), 50 the same holds for X.

Now let us construct ¢. The ring R/rad R is a direct sum of matrix rings over skew
fields. Thus there exist u1,us € R* such that uidus is an idempotent modulo rad R. After
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conjugating with ug we obtain an idempotent @y 4+ rad R € R/rad R with @ € R*. Since
ud+ (I +rad R) € R/(I +rad R) is an idempotent as well and 6 € 1+ [ is a unit modulo
I +rad R, it follows that @ € 1+ (I +rad R). We can even assume that o € 1+ 1. If
w=1+i+r withi € I and r € radR then (1 4+ ¢)d = (& — r)d is an idempotent
mod rad R. Additionally, from @ € R* we get 1 +1i € R*, so we can assume @ = 1 + 4.
Now d((@,0)) € ker(tes), thus

X €ker(tes) < d((@,0))X € ker(Tes)

/o a7/ b1 _
& (( iy as ),( ! o >)€ker(res)

Thus we can assume that J + rad R € R/rad R is an idempotent.
In the hyperbolic counitary group U(R/rad R, ®/I") there is

s a+radR pB+4radR ¢1+T  p+(rad R)
y+radR d+radR )’ ¢s+T

Lemma 4 says that e := (1 — 0) + rad R is a symmetric idempotent of R/rad R; more
precisely, we may write e = uv, with

ue = —ee 'y’e’ +rad R,
ve = e’/ Be’ +rad R.

By Lemma 7 we obtain a symmetric idempotent
t=e+zx=1—-60+x€l

with € rad RN I. We calculate the projection on the first component

4y [a p § =zt —vle\ (o B
7r(‘XI{L,uL,vL) - < v A ) ( uz] S—x - ,y/ 5
with & = —yv/e + § — 6x. It remains to show that 6/ € R*. Lemma 8 gives v, =
(1—-67)B(1 —8) mod rad R. Also éx € rad(R), so it remains to show that
8 = —y(1—67)87e(1 — 6) + 6 € R*.
We observe that /6 = —v(1 — 67)3”€ (1 — §)§ +62 = § and
———

=0

(1=6)8 = —(1-8)y(1—-68)87e(1-06)=
~(1=0)yB7e(1=0) + (1= 00" Ble(1 = 9) = —(1=0)y8 e+ (1-9)78ed =
=0, since v67 =3¢’ v/ =57
—(1-0) 87 +Q-6)y7'3 = 1-06.
somieer S0

11



Particularly, (1 — §)(2 — &) = 1 — 6. Now we see that &' is a unit since

F(2—0)=0(+(1—8)2-0)=06—60+5=1—0+65=1.
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