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Preface to Third Edition

Interest in the subject matter of the book continues to grow. The Supplementary
Bibliography has been enlarged to cover the period 1988 to 1998 and now contains
over 800 items. Other changes from the second edition include a handful of small
corrections and improvements to the main text, and this preface (an expanded
version of the preface to the Second Edition) which contains a brief report on some
of the developments since the appearance of the first edition.

We are grateful to a number of correspondents who have supplied corrections and
comments on the first two editions, or who have sent us copies of manuscripts.! We
thank in particular R. Bacher, R. E. Borcherds, P. Boyvalenkov, H. S. M. Coxeter,
Y. Edel, N. D. Elkies, L. J. Gerstein, M. Harada, J. Leech, J. H. Lindsey, II, J.
Martinet, J. McKay, G. Nebe, E. Pervin, E. M. Rains, R. Scharlau, F. Sigrist, H.
M. Switkay, T. Urabe, A. Vardy, Z.-X. Wan and J. Wills. The new material was
expertly typed by Susan K. Pope.

We are planning a sequel, tentatively entitled The Geometry of Low-Dimensional
Groups and Lattices, which will include two earlier papers [Con36] and [Con37] not
included in this book, as well as several recent papers dealing with groups and

lattices in low dimensions ([CSLDL1]-[CSLDLSE], [CoSI91a], [CoSI95a], etc.).

A Russian version of the first edition, translated by S. N. Litsyn, M. A. Tsfasman
and G. B. Shabat, was published by Mir (Moscow) in 1990.

Recent developments, comments, and additional corrections. The follow-
ing pages attempt to describe recent developments in some of the topics treated in
the book. The arrangement roughly follows that of the chapters. Our coverage
is necessarily highly selective, and we apologize if we have failed to mention some
important results. In a few places we have also included additional comments on
or corrections to the text.

Three books dealing with lattices have recently appeared: in order of publica-
tion, these are Ebeling, Lattices and Codes [Ebe94], Martinet, Les Réseauz Parfaits
des Fspaces FEuclidiens [Mar96] and Conway and Fung, The Sensual (Quadratic)
Form [CoFu97].

An extensive survey by Lagarias [Laga96] discusses lattices from many points
of view not dealt with in our book, as does the Erd8s-Gruber-Hammer [ErGH89]
collection of unsolved problems concerning lattices. The encyclopedic work
on distance-regular graphs by Brouwer, Cohen and Neumaier [BrCN89] dis-
cusses many mathematical structures that are related to topics in our book (see
also Tonchev [Ton88]). See also the works by Aschbacher [Asch94] on sporadic
groups, Engel [Eng86], [Eng93] on geometric crystallography [Eng93], Fejes
Té6th and Kuperberg [FeK93], and Fejes Téth [Fej97] on packing and covering,
Gritzmann and Wills [GriW93b] on finite packings and coverings, and Pach
and Agarwal [PacA95] on combinatorial geometry.

An electronic data-base of lattices is now available [NeSl]. This contains in-
formation about some 160,000 lattices in dimensions up to 64. The theta-series of

1We also thank the correspondent who reported hearing the first edition described during a
talk as “the bible of the subject, and, like the bible, [it] contains no proofs”. This is of course only
half true.
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the most important lattices can be found in [SIoEIS]. The computer languages
PARI [BatB91], KANT [Schm90], [Schm91] and especially MAGMA [BosC97],
[BosCM94], [BosCP97] have extensive facilities for performing lattice calculations
(among many other things).

Notes on Chapter 1: Sphere Packings and Kissing Numbers

Hales [Hal92], [Hal97], [Hal97a], [Hal97b] (see also Ferguson [Ferg97] and Fergu-
son and Hales [FeHa97]) has described a series of steps that may well succeed in
proving the long-standing conjecture (the so-called “Kepler conjecture”) that no
packing of three-dimensional spheres can have a greater density than that of the
face-centered cubic lattice. In fact, on August 9, 1998, just as the third editionn
was going to press, Hales announced [Hal98] that the final step in the proof has
been completed: the Kepler conjecture is now a theorem.

The previous best upper bound known on the density of a three-dimensional
packing was due to Muder [Mude93], who showed that the density cannot exceed
0.773055... (compared with 7/4/18 = 0.74048 ... for the f.c.c. lattice).

A paper by W.-Y. Hsiang [Hsi93] (see also [Hsi93a], [Hsi93b]) claiming to prove
the Kepler conjecture contains serious flaws. G. Fejes Téth, reviewing the paper
for Math. Reviews [Fej95], states: “If I am asked whether the paper fulfills what
it promises in its title, namely a proof of Kepler’s conjecture, my answer is: no. |
hope that Hsiang will fill in the details, but I feel that the greater part of the work
has yet to be done.” Hsiang [Hsi93b] also claims to have a proof that no more than
24 spheres can touch an equal sphere in four dimensions. For further discussion see

[CoHMS], [Hal94], [Hsi95).

S. McLaughlin and T. C. Hales [McHa98] have announced a proof of the dodec-
ahedral conjecture. This conjecture, weaker than the Kepler conjecture, states
that the volume of any Voronoi cell in a packing of unit spheres in R3 is at least
as large as the volume of a regular dodecahedron of inradius 1. See also K. Bezdek

[Bez97] and Muder [Mude93].

A. Bezdek, W. Kuperberg and Makai [BezKM91] had established the Kepler con-
jecture for packings composed of parallel strings of spheres. See also Knill [Knill96].

There was no reason to doubt the truth of the Kepler conjecture. However, A.
Bezdek and W. Kuperberg [BezKu91] show that there are packings of congruent
ellipsoids with density 0.7533 . . ., exceeding 7/+/18 , and in [Wills91] this is improved
to 0.7585 . ...

Using spheres of two radii 0 < 71 < 73, one obviously obtains packings in 3-space
with density > 0.74048 ..., provided 71 /ry is sufficiently small. In [VaWi94] it is
shown that that this is so even when r1/ry = 0.623....

There are infinitely many three-dimensional nonlattice packings (the Barlow
packings, see below) with the same density as the f.c.c. lattice packing. In [Schn98]
it is shown that large finite subsets of the f.c.c. lattice are denser (in the sense of
parametric density, see below) than subsets of any other Barlow packing.

What are all the best sphere packings in low dimensions? In [CoSI95a]
we describe what may be all the best packings of nonoverlapping equal spheres
in dimensions n < 10, where “best” means both having the highest density and
not permitting any local improvement. For example, it appears that the best
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five-dimensional sphere packings are parameterized by the 4-colorings of the one-
dimensional integer lattice. We also find what we believe to be the exact numbers of
“uniform” packings among these, that is, those in which the automorphism group
acts transitively. These assertions depend on certain plausible but as yet unproved
postulates.

There are some surprises. We show that the Korkine-Zolotarev lattice Ag (which
continues to hold the density record it established in 1873) has the following aston-
ishing property. Half the spheres can be moved bodily through arbitrarily large
distances without overlapping the other half, only touching them at isolated in-
stants, and yet the density of the packing remains the same at all times. A typical
packing in this family consists of the points of

10\° 1
Dg+:D9UD9+<<§> ,59),

for any real number 8. We call this a “fluid diamond packing,” since Dg"' = Ag
and Dyt = D (cf. Sect. 7.3 of Chap. 4). All these packings have the same
density, the highest known in 9 dimensions. Agrell and Eriksson [AgEr98] show
D; is a better 9-dimensional quantizer than any previously known. In [CoS195a]
we also discuss some new higher-dimensional packings, showing for example that
there are extraordinarily many 16-dimensional packings that are just as dense as
the Barnes-Wall lattice Aqs.

Mordell-Weil Lattices. One of the most exciting developments has been Elkies’
([Elki], [Elki94], [Elki97]) and Shioda’s [Shiod91d] construction of lattice packings
from the Mordell-Weil groups of elliptic curves over function fields. These lattices
have a greater density than any previously known in dimensions from about 80 to
4096, and provide the following new entries for Table 1.3 of Chap. 1:

n 54 64 80 104 128
log, & > 15.88  24.71 40.14 67.01 97.40
reference  [Elki]  [Elki]  [Shi7] [Shi7] [Elki]

n 256 512 1024 2048 4096
log,d > 294.80 797.12 20182 4891 11527
reference  [Elki]  [Elki] [Elki] [Elki] [Elki]

In this Introduction we will use MW, to denote an n-dimensional Mordell-Weil
lattice. For further information about this construction see Shioda [Shiod88]-
[Shiod91e], Oguiso and Shioda [OgS91], Dummigan [Dum94]-[Dum96], Gow [Gow89]
[Gow89a], Gross [Gro90], [Gro96], Oesterlé [Oes90], Tiep [Tiep91]-[Tiep9Th].

Several other new record packings will be mentioned later in this Introduction.
Because of this, it seems worthwhile to include two new tables. (The latest versions
of these two tables are also available electronically [NeSl].)

A new table of densest packings. Table I.1 gives the densest (lattice or non-
lattice) packings and Table 1.2 the highest kissing numbers presently known in
dimensions up to 128. These tables update and extend Table 1.2 and part of Table
1.3 of Chapter 1, to which the reader is referred for more information about most
of these packings. Others are described later in this Introduction. There are several
instances in Table 1.1 where the highest known density is achieved by a nonlattice
packing: these entries are enclosed in parentheses.
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At dimension 32, ()32 denotes the Quebbemann lattice constructed on page
220 (although the Mordell-Weil lattice M W35 or Bachoc’s lattice Bzz [Baco95],
[Baco97] have the same density). The lattices Qas, ..., Q4o were constructed by
Elkies [Elki] by laminating Q32 (or M W34 or Bsz) above certain half-lattice points.
Each putative deep hole of norm 4 (two-thirds the minimal norm of the lattice)
is surrounded by 576 lattice points. For n < 8 we obtain a lattice 324, with
center density § = 2724316+0:57 /\ /3 " and kissing number 261120 + 5767, where
An and 7, are respectively the determinant and kissing number of A, (cf. Tables
6.1, 6.3). At the present time Q33 and ()34 are the densest packings known in those
dimensions, and @32, . . ., Q40 have the highest kissing numbers presently known for
lattice packings. The lattices @3¢ and (37 will be found on page 220. The lattice
P,g, mentioned at dimension 48 is the extremal lattice found by Nebe [Nebe98].

A new table of kissing numbers. Table 1.2 gives the highest kissing numbers
presently known in dimensions n < 128. If a dimension n is not mentioned in the
appropriate column, let m be the next lowest dimension that is mentioned, and use
the sum of the entries for m and n — m. For more information about most of these
packings see Tables 1.2 and 1.3. (Parenthesized entries indicate that higher kissing
numbers can be obtained from nonlattice packings.)

The kissing number of the Mordell-Weil lattice M W44 was computed by G. Nebe
(personal communication), and that of M Wias by Elkies [Elki]. However, a simple
construction using binary codes yields higher kissing numbers [EdRS98].

A. Vardy has pointed out to us that by using the Nordstrom-Robinson code
as inner code, and the Vladuts-Katsman-Tsfasman algebraic-geometry codes as
outer codes, as in [TsV91], Theorem 3.4.16, one obtains a polynomial-time con-
struction for a family of nonlinear binary codes with d/n > 0.25 and rate R =
k/n=2/15 (14 o(1)) as n — co. Thus there is a polynomial-time construction for
nonlattice packings with kissing number

7 = 90.1333n(140(1))
a considerable improvement over Eq. (56) of Chap. 2. No polynomial-time con-
struction is presently known however for a sequence of lattices in which the kissing
number grows exponentially with dimension. See also [Alon97].

[CSLDL3] contains a simple and self-contained proof of the classification of per-
fect lattices in dimensions n < 4 and hence of the determination of the densest
lattice packings in these dimensions (cf. Table 1.1 of Chap. 1). The main goal of
[CSLDL3] is to study the perfect lattices in dimensions n < 7 found by Korkine
and Zolotareff [Kor3], Voronoi [Vorl], Barnes [Bar6] — [Bar9], Scott [Scol], [Sco2],
Stacey [Stal], [Sta2], and others, and to determine their automorphism groups, or-
bits of minimal vectors, and eutactic coefficients. It is shown that just 30 of the
33 seven-dimensional perfect lattices are extreme. Jaquet [Jaq93] has now shown
that this list of 33 seven-dimensional perfect lattices is complete. See also [Anz91],
[BatMa94] and especially Martinet [Mar96].

[CoSI195] describes an especially interesting imperfect 11-dimensional lattice,
which we call anabasic: it is generated by its minimal vectors, but no set of 11
minimal vectors forms a basis.

Several important books have appeared that deal with the construction of very
good codes and very dense lattices from algebraic curves and algebraic function fields
(cf. §1.5 of Chap. 1 and §2.11 of Chap. 3): Goppa [Gop88], Tsfasman and Vladuts
[TsV91] and Stichtenoth [Stich93], Lachaud et al. [Lac95]. Garcia and Stichtenoth
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Table T.1(a) Densest packings presently known in dimensions n < 128. The table

gives the center density d, defined on page 13.

3

d (lattice)

0
1/2=10.50000
1/2+/3 =0.28868
1/4v/2=0.17678
1/8=10.12500
1/8v/2 =0.08839
1/8V3=0.07217
1/16=0.06250
1/16=0.06250
9 1/16v/2=0.04419
10 1/16/3 =0.03608
11 1/18v/3=0.03208
12 1/27=0.03704
13 1/18v/3=0.03208
14 1/16v/3=0.03608
15 1/161/2=0.04419
16 1/16=0.06250
17 1/16=0.06250
18 1/8/3=0.07217
19 1/8/2=0.08839
20 1/8=10.12500
21 1/44/2=0.17678
22 1/24/3=0.28868
23 1/2=10.50000
24 1
25  1//2=0.70711

GO =1 O O = W N — O

d (nonlattice)

(5/128 = 0.03906)*
(9/256 = 0.03516)*

(9/256 = 0.03516)*

(39/4° = 0.07508)*
(719/231 = 0.13154)

(0.33254)*

Lattice (nonlattice)

Ag

Ag

A1g (Proc)*

K11 (P114)*

Ko

K3 (P13a)*

A1y

Aqs

Aqs

Az

Avs (B [BiE9S])*
Aqg

Ago (BEO [Vard95])*
Aoy

Ass (A%, [CoSI96])*
Asgs

Aoy

Ags

26 1/v/3=0.57735 Asg, Tas (see Notes on Chap. 18)

*Nonlattice packing.

[GaSt95] have given a fairly explicit construction for an infinite sequence of good
codes over a fixed field GF(q?). Elkies [Elki97a] has worked on finding explicit equa-
tions for modular curves of various kinds that attain the Drinfeld-Vladuts bound.
See also Manin and Vladuts [MaV85], Stichtenoth and Tsfasman [StTs92], Tsfas-
man [Tsf91], [Tsf91a]. The problem of decoding codes constructed from algebraic
geometry is considered by Feng and Rao [FeRa94], Justesen et al. [JuL89], [JuL92],
Pellikaan [Pel89], Skorobogatov and Vladuts [SkV90], Sudan [Suda96], [Suda97],
Vladuts [V1ad90] (see also Lachaud et al. [Lac95]).

Quebbemann [Queb88] uses class field towers and Alon et al. [AIBN92], Sipser
and Spielman [SipS96] and Spielman [Spiel96] use expander graphs to construct
asymptotically good codes. The codes in [SipS96] and [Spiel96] can be decoded in
linear time.

Several important papers have appeared dealing with the construction of dense
lattices in high-dimensional space using algebraic number fields and global fields

(cf. §1.5 of Chap. 1 and §7.4 of Chap. 8) — see Quebbemann [Queb89]-[Queb91al
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Table T.1(b) Densest packings presently known in dimensions n < 128. The table
gives the center density d, defined on page 13.

n d (lattice) d (nonlattice) Lattice (nonlattice)

27 1/v/3=0.57735 (1//2=0.70711)* Bz (627 [Vard98])*

28 2/3=0.66667 (1)* Bag (Bsg [Vard9s])*

29 1/v/3=0.57735 (1//2=0.70711)* Bag (B3g [Vard9s])*

30 3135/222 2 0.65838 (1) Q30 (B3, [Vard9s))*

31 315/9%3:5 = 1.20952 Qs

32 316/224 2.56578 (32 and others

33 3165 /9% = 292203 Q33 [Elki94], [Elki]

34 3165/925-9992203 Q34 [E1ki94], [Elki]

35 2v/2 =2.82843 Bss (p. 234)

36 218/310 = 443943 Ks36 [KsP92]

37 4/\/2 =5.65685 D37

38 8 Dag

39 316/220,/14=10.9718 From Pig,, see p. 167

40 317/222 5=21.7714 From Pygp, see p. 167

41 317/221:5 = 43 5428 From Pjg,

42 318/222 = 92.3682 From Pjg,

43 319/222:5 =195.943 From Pugp,

44 320/223 = 415.657 (1772/2%33%% = 472.799)*  From Pug, (Aaa [CoSI96])*
45 32172235 =881.742 (17%25/2443%% = 974.700)* From Pug, (Aas [CoS196])*
46 3215 /2% =2159.82  (13%3/3%65 = 2719.94)* From Pigp (Ass [CoS196])*
47 323/2%4=5611.37 (3523:5/2703%4 = 5788.81)* From Pus, (Aar [CoSI96])*
48 3247224 = 16834.1 Pign, Pagp, Pisg

54 21588 MW,

56 1. 528 216 38 L56’2(M), E5672(M) [Nebe98]
64 316 = 225.36 Negq [Nebe98], [Nebe98b]
80 240.14 MWSO

128 297'40 Mleg

*Nonlattice packing.

and Rosenbloom and Tsfasman [RoT90], as well as Tsfasman and Vladuts [TsV91].

The results in [Rusl] (see p. 19 of Chap. 1) have been generalized and extended
in [EIKOR91], [Rus89]-[Rus92].

Yudin [Yud91] gives an upper bound for the number of disjoint spheres of radius
r in the n-dimensional torus, and deduces from this a new proof of Levenshtein’s

bound (Eq. (42) of Chap. 1).

When discussing Hermite’s constant v, on page 20 of Chap. 1, we should
have mentioned that it can also be defined as the minimal norm of an n-dimensional
lattice packing of maximal density, when that lattice is scaled so that its determinant
is 1. See also Bergé and Martinet [BerM85].

Let p(A) denote the minimal nonzero norm of a vector in a lattice A. Bergé
and Martinet [BerM89] call a lattice dual-critical if the value of p(A)u(A*) is
maximized (where A* is the dual lattice). They prove that Ay, As, Az, A%, Da, Aus,
A3 are the only lattices in dimensions n < 4 on which the product g(A)p(A*) attains
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Table 1.2(a) Highest kissing numbers 7 presently known for packings in dimensions
n < 128.

n 7 (lattice) 7 (nonlattice) Lattice (nonlattice)

0 0 Ag
1 2 MZAZZ
2 6 Ay = Ay
3 12 A3 = A3= D3
4 24 Ay =Dy
5 40 As = Ds
6 72 As = g
7 126 A7 = Ey
8 240 Ag = Eg
9 272 (306)* Ag (Pog)*
10 336 (500)* Ato (Prob)*
11 438 (582) AT (Prie)*
12 756 (840) K13 (P124)*
13 918 (1130)* Ki3 (P134)*
14 1422 (1582)* Avg (Prap)”
15 2340 Ais
16 4320 Aie
17 5346 A7
18 7398 Ag
19 10668 Ao
20 17400 Asg
21 27720 Agy
22 49896 Aay

* The kissing number in a nonlattice packing may vary from sphere
to sphere — we give the largest value (see Table 1.2)

a local maximum. That Ay, Az, Dy (and Fjg) are the only dual-critical lattices in

dimensions 1, 2, 4 and 8 respectively follows because these are the densest lattices,
and they are unique and isodual. See also [CoSI94], [Mar96], [Mar97].

Fields [Fie2], [Fiel80] and Fields and Nicolich [FiNi80] have found the least
dense lattice packings in dimensions n < 4 that minimize the density under
local variations that preserve the minimal vectors.

For recent work on quasilattices and quasicrystals (cf. §2.1 of Chap. 1), see
for example [BaaJK90], [Bru86], [Hen86], [MRW&7], [O1K89], [RHM&9], [RMWS87],
[RWMS88], [Wills90a], [Wills90b]. Baake et al. [BaaJK90] show that many examples

of quasiperiodic tilings of the plane arise from projections of root lattices.

Spherical codes. There has been considerable progress on the construction of
spherical codes and the Tammes problem (cf. §2.3 of Chap. 1). In particular,
Hardin, Smith and Sloane have computed extensive tables of spherical codes in
up to 24 dimensions. For example, we have found conjecturally optimal packings
of N spherical caps on a sphere in n dimensions for N < 100 and n < 5; and
coverings and maximal volume codes in three dimensions for N < 130 and in four
dimensions for N < 24. A book is in preparation [HSS]. Many of these tables are
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Table 1.2(b) Highest kissing numbers 7 presently known for packings in dimensions
n < 128.

n 7 (lattice) 7 (nonlattice) Lattice (nonlattice)
23 93150 Ass

24 196560 Aay

25 196656 Ass

26 196848 Ass

27 197142 Ay

28 197736 Assg

29 198506 Aag

30 200046 Asp

31 202692 Az

32 261120 (276032)x Q@32 and others ([EdRS98])
33 262272 (294592)x Q33 ([EdRS98))

34 264576  (318020)x Q34 ([EdRS98))

35 268032 (370892) Q35 ([EdRS98])

36 974944  (438872)% 56 ([EARS98))
37 284160 (439016) 57 ([EARS98))

38 302592 (566652) 55 ([EARS98])

39 333696 (714184)% Q39 ([EdRS98])

40 399360  (991792) Q40 ([EARS98])

44 2708112 (2948552) MW ([EdRS98))
48 52416000 Pasn, Pasp, Pasg

64 138458880 (331737984) Ness [Nebe9sb] ([EARS98])

80 1250172000 (1368532064)x Lso [BacoN9g] ([EARS98])
128 218044170240 (8863556495104)x M Wias [Elki] ([EARS98])

* The kissing number in a nonlattice packing may vary from sphere
to sphere — we give the largest value (see Table 1.2)

also available electronically [SIoHP]. The papers by Hamkins and Zeger [HaZe97],
[HaZe97a] show how to construct good spherical codes by (a) “wrapping” a good
lattice packing around a sphere or (b) “laminating” (cf. Chap. 6) a good spherical
code in a lower dimension. Other recent papers dealing with the construction of
spherical codes are Dodunekov, Ericson and Zinoviev [DEZ91], Kolushov and Yudin
[KolY97], Kottwitz [Kott91], Lazié¢, Draji¢ and Senk [LDS86], [LDS87], Melissen
[Mel97].

A series of papers by Boyvalenkov and coauthors [Boy93]-[BoyN95] has investi-
gated (among other things) the best polynomials to use in the linear programming
bounds for spherical codes (cf. Chaps. 9, 13). This has led to small improvements
in the (rather weak) upper bounds on the kissing number in dimensions 19, 21 and
23 given in Table 1.5 [Boy94a]. Coverings of a sphere by equal spherical caps are
also discussed in [Tar5], [Tar6].

Drisch and Sonneborn [DrS96] give a table of upper bounds on kissing numbers
(cf. Table 1.5 of Chap. 1) that extends to dimension 49.

Concerning the numbers of lattice points in or on various regions, (cf. §2.4 of
Chap. 1), see [ArJ79], [Barv90], [BoHW72], [DuS90], [Dye91], [EIkORI1], [GoF87],
[GriW93a], [Kra88], [Levi87], [Ma090], [Sar90].

XXiil



Gritzmann and Wills [GriW93b] give a survey of recent work on finite packings
and coverings (cf. §1.5 of Chap. 1), with particular emphasis on “sausage prob-
lems” and “bin-packing.” The term “sausage problem” arises from the “sausage
catastrophe,” first observed by Wills in 1983 [Wills83]: which arrangement of N
equal three-dimensional spheres has the smallest convex hull? It appears that for
N up to about 55 a sausage-like linear arrangement of spheres is optimal, but for all
larger N except 57, 58, 63 and 64 a three-dimensional cluster is better. In [Wills93]
the notion of parametric density was introduced, permitting a joint theory of fi-
nite and infinite packings, with numerous applications. There are many interesting
papers on the best packings of N balls when N is large and the connection with
the Wulff shape, etc.: see Arhelger et al. [ABB96], Betke and Boroczky [BetB97],
Boroczky and Schnell [BorSch97], [BorSch98], [BorSch98a], Dinghas [Ding43], von
Laue [Laue43], Schnell [Schn98], Wills [Wills90]-[Wills98a]. For the sausage catas-
trophe in dimension 4, see [GaZu92].

Several recent papers have studied the problems of packing N points in a (a)
circle [Fej97], [GraLNO], [Mel94], [Mel97], (b) square [Fej97], [Golb70], [Mel97],
[MolP90], [NuOs97], [PeWMG], [Scha65], [Scha71], [Vall89], (c) triangle [Fej97],
[Gral.95], [Mel97], and (d) torus (Hardin and Sloane, unpublished).

Other papers dealing with finite packings and coverings are [BetG84], [BetG86],
[BetGWS2], [Chow92], [DaZ87], [FGW90], [FGWI1], [GrWS5], [Wills90]-[Wills90b].

The techniques that we use in [HSS] to find spherical codes have also proved
successful in constructing experimental designs for use in statistics, and have
been implemented in a general-purpose experimental design program called Gosset
[HaS193], [HaSI96a]. The name honors both the amateur mathematician Thorold
Gosset (1869 — 1962) (cf. p. 120 of Chap. 8) and the statistician William Seally
Gosset (1876 — 1937).

We have also used the same optimization methods to find good (often optimal)
packings of lines through the origin in R™ (that is, antipodal spherical codes), and
more generally packings of m-dimensional subspaces of R™. These Grassmannian

packings are described in [CoHS96], [ShS98], [CHRSS].

The material in the Appendix to Chapter 1 on planetary perturbations was
obtained in conversations among E. Calabi, J. H. Conway and J. G. Propp about
Conway’s lectures on “Games, Groups, Lattices and Loops” at the University of
Pennsylvania in 1987 — see [Prop88].

For the application of lattices in string theory (cf. §1.4 of Chap. 1), see for
example Gannon and Lam [Gal90].

Finally, we cannot resist calling attention to the remark of Frenkel, Lepowsky
and Meurman, that vertex operator algebras (or conformal field theories) are to
lattices as lattices are to codes (cf. [DGM90]-[DGMI0b], [Frel]-[Fre5], [Godd89],
[Hoehn95], [Miya96], [Miya98]).

Notes on Chapter 2: Coverings, Lattices and Quantizers

Miyake [Miya89, Section 4.9] gives an excellent discussion of the classical result that
the theta function of an integral lattice is a modular form for an appropriate
subgroup of SLy(Z).

The papers [CSLDL6], [CSLDL8] and Chap. 3 of [CoFu97] describe how the
Voronoi cell of a lattice (cf. §1.2 of Chap. 2) changes as that lattice is contin-
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uously varied. We simplify the usual treatment by introducing new parameters
which we call the vonorms and conorms of the lattice. [CSLDL6] studies lattices
in one, two and three dimensions, ending with a proof of the theorem of Fedorov
[Fed85], [Fed91] on the five types of three-dimensional lattices. The main result
of [CSLDL6] (and Chap. 3 of [CoFu97]) is that each three-dimensional lattice is
uniquely represented by a projective plane of order 2 labeled with seven numbers,
the conorms of the lattice, whose minimum is 0 and whose support is not contained
in a proper subspace. Two lattices are isomorphic if and only if the corresponding
labelings differ only by an automorphism of the plane.

These seven “conorms” are just 0 and the six “Selling parameters” ([Sel74],
[Bara80]). However, this apparently trivial replacement of six numbers by seven
numbers whose minimum is zero leads to several valuable improvements in the
theory:

(i) The conorms vary continuously with the lattice. (For the Selling parameters
the variation is usually continuous but requires occasional readjustments.)

(i1) The definition of the conorms makes it apparent that they are invariants of
the lattice. (The Selling parameters are almost but not quite invariant.)

(iii) All symmetries of the lattice arise from symmetries of the conorm function.
(Again, this is false for the Selling parameters.)

[CSLDLE] (summarized in the Afterthoughts to Chap. 3 of [CoFu97]) uses the
same machinery as [CSLDL6] to give a simple proof of the theorem of Delone (=
Delaunay) [Del29], [Del37], as corrected by Stogrin [Sto73], that there are 52 types
of four-dimensional lattices. We also give a detailed description of the 52 types
of four-dimensional parallelotopes (these are also listed by Engels [Eng86]). Erdahl
and Ryskov [ErR87], [RyE88] show that there are only 19 types of different Delaunay
cells that occur in four-dimensional lattices. (See also [RyE89].)

We call a lattice that is geometrically congruent to its dual isodual ([CoS194]).
We have used the methods of [CSLDL6] to determine the densest three-dimensional
isodual lattice [CoSI94]. This remarkable lattice, the m.c.c. (or mean-centered
cuboidal) lattice, has Gram matrix

] 142 1 1
- 1 1+v2 1-2] . (1)
1 1—V2 142

In a sense this lattice is the geometric mean of the f.c.c. and b.c.c. lattices. (Con-
sider the lattice generated by the vectors (fu, +v,0) and (0, +u, +v) for real num-
bers u and v. If the ratio u/v is respectively 1, 21/2 or 21/4 we obtain the f.c.c., b.c.c.
and m.c.c. lattices.) The m.c.c. lattice is also the thinnest isodual covering lattice.
It i1s of course nonintegral. The m.c.c. lattice also recently appeared in a differ-
ent context, as the lattice corresponding to the period matrix for the hyperelliptic
Riemann surface w? = 2% — 1 [BerS197].

A modular lattice is an integral lattice that is geometrically similar to its dual
(the term was introduced by Quebbemann [Queb95]; see also [Queb97]). In other
words, an n-dimensional integral lattice A is modular if there exists a similarity o of
R™ such that o(A*) = A, where A* is the dual lattice. If ¢ multiplies norms by N,
A is said to be N-modular, and so has determinant N”/2. A unimodular lattice is 1-
modular. A modular lattice becomes isodual when rescaled so that its determinant is
1. For example, the sporadic root lattices Eg, Fy (= D), G3 (= As) are respectively
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1-, 2- and 3-modular. In the last two cases the modularity maps short roots to long
roots. The densest lattice packings presently known in dimensions 1, 2, 4, 8, 12, 16,
24, 48 and 56 are all modular.

Root lattices. In [CoSl91a] the Voronoi and Delaunay cells (cf. §1.2 of Chap. 2)
of the lattices A,, D,, E, and their duals are described in a simple geometrical
way. The results for E§ and E% simplify the work of Worley [Worl], [Wor2], and
also provide what may be new space-filling polytopes in dimensions 6 and 7. Pervin
[Per90] and Baranovskii [Bara91] have also studied the Voronoi and Delaunay cells
of B¢, E%. Moody and Patera [MoP92], [MoP92a] have given a uniform treatment
of the Voronoi and Delaunay cells of root lattices that also applies to the hyperbolic
cases.

If a lattice A has covering radius R (cf. §1.2 of Chap. 2) then closed balls of
radius R around the lattice points just cover the space. Sullivan [Sul90] defines the
covering multiplicity C' M (A) to be the maximal number of times the interiors of
these balls overlap. In [CoS192] we show that the least possible covering multiplicity
for an n-dimensional lattice is n if n < 8, and conjecture that it exceeds n in all
other cases. We also determine the covering multiplicity of the Leech lattice and
of the lattices I,,, A,, D,, E, and their duals for small values of n. Although it
appears that CM(I,) = 2"~! if n < 33, it follows from the work of Mazo and
Odlyzko [Ma0O90] that as n — oo we have CM (I,) ~ ¢”, where ¢ = 2.089.... The

results have applications to numerical integration.

The covering problem. Several better coverings of space by spheres have been
found in low dimensions, giving improvements to Table 2.1 and Fig. 2.4 of Chap. 2.
The lattice A,[s] mentioned on p. 116 of Chap. 4 is generated by the vectors of the
translate [s]+ A,, where s is any divisor of n+1, and is the union of the r translates
[i]]+ A, fori = 0,s,2s,...,(r—1)s, where r = (n+1)/s. This is the lattice A}", in
the notation of [CSLDLI1], or A7, in Coxeter’s notation [Cox10]. Tt has determinant
(n+ 1)/r? and minimal norm rs/(n + 1).

Baranovskii [Bara94] shows that A has covering radius v/24/5 and thickness
0 = (2'23%5/5%%)Vy = 1.3158 .. .Vy = 4.3402.. .. ,
whereas Ag, the old record-holder, has thickness

0 = (3*°11*°/2"35%)V, = 1.3306 .. . Vo = 4.3889 ... .

Furthermore, W. D. Smith [Smi88] has shown that A3, and A3 are better cov-
erings than A}, and A%;. Smith finds that the thickness © of A%, is at most

22
V1
21/3 (77) Vo = 27.8839 . ..

and the thickness of A5 is at most

.1 -
2 (—”j) Vos = 15.3218 ... .

For other work on the covering radius of lattices see [CaFR95].
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Integer coordinates for integer lattices. [CSLDL5] is concerned with find-
ing descriptions for integral lattices (cf. §2.4 of Chap. 2) using integer coordinates
(possibly with a denominator). Let us say that an n-dimensional (classically) in-
tegral lattice A is s-integrable, for an integer s, if it can be described by vectors
5_1/2(331, ..., z), with all ; € Z, in a Euclidean space of dimension k£ > n. Equiv-
alently, A is s-integrable if and only if any quadratic form f(z) corresponding to
A can be written as s~! times a sum of k squares of linear forms with integral
coefficients, or again, if and only if the dual lattice A* contains a eutactic star of
scale s. [CSLDL5] gives many techniques for s-integrating low-dimensional lattices
(such as Fg and the Leech lattice). A particular result is that any one-dimensional
lattice can be 1-integrated with k = 4: this is Lagrange’s four-squares theorem.
Let ¢(s) be the smallest dimension n in which there is an integral lattice that is
not s-integrable. In 1937 Ko and Mordell showed that ¢(1) = 6. We prove that
#(2) = 12, ¢(3) = 14, 21 < ¢(4) < 25, 16 < ¢(5) < 22, ¢(s) < 4s+ 2 (s odd),
é(s) < 2mes(1 +0(1)) (s even) and ¢(s) > 2Inins/Inlnlns(1 + o(1)).

Plesken [Plesk94] studies similar embedding questions for lattices from a totally
different point of view. See also Cremona and Landau [CrL90].

Complexity. For recent results concerning the complexity of various lattice- and
coding-theoretic calculations (cf. §1.4 of Chap. 2), see Ajtai [Ajt96], [Ajt97], Downey
et al. [DowFV], Hastad [Has88], Jastad and Lagarias [HaL.90], Lagarias [Laga96],
Lagarias, Lenstra and Schnorr [Lag3], Paz and Schnorr [PaS87], Vardy [Vard97].

In particular, Vardy [Vard97] shows that computing the minimal distance of
a binary linear code is NP-hard, and the corresponding decision problem is NP-
complete. Ajtai [Ajt97] has made some progress towards establishing analogous
results for lattices. Downey et al. [DowFV] show that computing (the nonzero
terms in) the theta-series of a lattice is NP-hard.

For lattice reduction algorithms see also [Schn87], [Val90], [Zas3]. Most of
these results assume the lattice in question is a sublattice of Z™. In this regard the
results of [CSLDL5] mentioned above are especially relevant. Ivanyos and Szanté
[TvSz96] give a version of the LLL algorithm that applies to indefinite quadratic
forms.

Mayer [Maye93], [Maye95] shows that every Minkowski-reduced basis for a lattice
of dimension n < 6 consists of strict Voronoi vectors (cf. [Rys8]). He also answers
a question raised by Cassels ([Cas3], p. 279) by showing that in seven dimensions
(for the first time) the Minkowski domains do not meet face to face.

Barvinok [Barv92a] has described a new procedure for finding the minimal norm
of a lattice or the closest lattice vector to a given vector that makes use of theta
functions (cf. [Barv90], [Barv91], [Barv92]).

The isospectral problem for planar domains was solved by Gordon, Webb
and Wolpert in 1992 ([GWW92], [Kac66] see also [BuCD94]). A particularly simple
solution appears in Chap. 2 of [CoFu97]. This has aroused new interest in other
isospectrality problems, for instance that of finding the largest n such that any pos-
itive definite quadratic form of rank n i1s determined by its representation numbers.
Equivalently, what is the smallest dimension in which there exist two inequivalent
lattices with the same theta series? We shall call such lattices isospectral: they are
the subject of Chap. 2 of [CoFu97]. As mentioned in §2.3 of Chap. 2, Witt [Wit4],
Kneser [Kneb] and Kitaoka [Kit2] found isospectral lattices in dimensions 16, 12
and 8 respectively. Milnor [Mil64] pointed out the connection with the isospectral
manifold problem.
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In 1986 one of the present authors observed that pairs of isospectral lattices in
6 and 5 dimensions could be obtained from a pair of codes with the same weight
enumerator given by the other author [Slo10]. These lattices are mentioned on
p. 47, and have now been published in [CoS192a]. One lattice of the six-dimensional
pair is a scaled version of the cubic lattice Is. The five-dimensional pair have Gram
matrices

2.0 0 2 2 2 10 2 2
020 20 120 2 2
0020 2|, (006 4 4 (2)
2 2 0 8 4 2 2 4 8 4
2 0 2 4 8 2 2 4 4 8

and determinant 96 (and are in different genera).

The first pair of isospectral 4-dimensional lattices was found in 1990 by Schie-
mann [Schi90], by computer search, and we have been informed by Schulze-Pillot
(personal communication) that Schiemann has since found at least a dozen such
pairs. Another pair has been given by Earnest and Nipp [EaN91]. The main result
of [CoS192a] is to give a simple 4-parameter family of pairs of isospectral lattices,
which includes many of the known examples (including Schiemann’s first pair) as
special cases. The typical pair of this family is

Bw—z—y—2z, wH+3z+y—2z, w—zr+3y+z, wt+zr—y+3z)
and
(F3w—z—y—2, w—3e+y—2z2, w—r—-3y+z, wtzr—y—3z),

where w, z,y, z are orthogonal vectors of distinct lengths, and the pointed brackets
mean “lattice spanned by.”

Schiemann [Schi97] has now completed the solution to the original problem by
showing that any three-dimensional lattice is determined by its theta series. Thus
n-dimensional isospectral lattices exist if and only if n is at least 4. For more about
these matters see [CoFu97].

Lattice quantizers. Coulson [Coul91] has found the mean squared error G for
the perfect (and isodual) six-dimensional lattice P? = A2 (defined in §6 of Chap. 8

6
and studied in [CSLDL3]). He finds G = 0.075057, giving an additional entry for
Table 2.3 of Chap. 2. Viterbo and Biglieri [ViBi96] have computed G for the lattices

of Egs. (1) and (2), the Dickson lattices of page 36, and other lattices.

Agrell and Eriksson [AgEr98] have found 9- and 10-dimensional lattices with
G = 0.0716 and 0.0708, respectively, and show that the nonlattice packings DF
and D; have G = 0.0727 and 0.0711, respectively. These values are all lower (i.e.
better) than the previous records.

Notes on Chapter 3: Codes, Designs and Groups

Lattice codes. Several authors have studied the error probability of codes for the
Gaussian channel that make use of constellations of points from some lattice as
the signal set — see for example Banihashemi and Khandani [BanKh96], de Buda
[Bud2], [Bud89], Forney [Forn97], Linder et al. [LiSZ93], Loeliger [Loel97], Poltyrev
[Polt94], Tarokh, Vardy and Zeger [TaVZ], Urbanke and Rimoldi [UrB98].
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Urbanke and Rimoldi [UrB98], completing the work of several others, have shown
that lattice codes bounded by a sphere can achieve the capacity !/2log,(1 4+ P/N)
(where P is the signal power and N is the noise variance), using minimal-distance
decoding. This is stronger than what can be deduced directly from the Minkowski-
Hlawka theorem ([Bud2], [Cas2], [Grula], [Hlal], [Rog7]), which is that a rate of
1/21og,(P/N) can be achieved with lattice codes.

There has been a great deal of activity on trellis codes (cf. §1.4 of Chap. 3) —
see for example [BDMS], [Cal91], [Ca090], [Forn88], [Forn88a], [Forn89a], [Forn91],
[FoCa89], [FoWe89], [LaVa95], [LLaVa95a], [LaVa96], [TaVa97], [VaKs96].

Another very interesting question is that of finding trellis representations
of the standard codes and lattices: see Forney [Forn94], [Forn94a], Feigenbaum et
al. [FeFMMV], Vardy [Vard98a] and many related papers: [BanBl96], [BanKh97],
[BITa96], [FoTr93], [KhEs97], [TaBI96], [TaBl96a).

We have already mentioned recent work on Goppa codes and the construction
of codes and lattices from algebraic geometry (cf. §2.11 of Chap. 3) under §1.5 of
Chap. 1.

Tables of codes. Verhoeff’s table [Verl] of the best binary linear codes (cf. §2.1
of Chap. 3) has been greatly improved by Brouwer [BrVe93], [Bro98]. For other
tables of codes see [BrHOS], [BrSSS], [Lits98], [SchW92].

For recent work on the covering radius of codes see the book by Cohen et al.
[CHLL] as well as the papers [BrL.P98], [CaFR95], [CLLM97], [DaDr94], [EtGr93],
[EtGh93], [EtWZ95], [Habs94]-[Habs97], [LeLi96], [LiCh94], [Stru94], [Stru94a],
[Tiet91], [Wee93], [Wille96].

Spherical ¢t-designs. The work of Hardin and Sloane on constructing experimen-
tal designs mentioned under Chap. 1 has led to new results and conjectures on the
existence of spherical 4-designs (cf. §3.2 of Chap. 3). In three dimensions, for exam-
ple, we have shown that spherical 4-designs containing M points exist for M = 12,
14 and M > 16, and we conjecture that they do not exist for M = 9,10, 11, 13 and
15 [HaS192]. Similarly, we conjecture that in four dimensions they exist precisely
for M > 20; in five dimensions for M > 29; in six dimensions for M = 27, 36
and M > 39; in seven dimensions for M > 53; and in eight dimensions for M > 69
[HaS192]. The connections between experimental designs and spherical designs have
become much clearer thanks to the work of Neumaier and Seidel [NeS92].

Other recent papers dealing with spherical designs and numerical integration
on the sphere are [Atk82], [Baj91], [Baj9la], [Baj91b], [Baj92], [Bajo8], [Boy95],
[BoyDN], [BoyN94], [BoyN95], [KaNe90], [Kea87], [Keal], [LySK91], [NeS88], [Neut83],
[NeSJ85], [Rezn95], [Sei90], [Yud97]. Several of J. J. Seidel’s papers (including in
particular the joint papers [Del15], [Del16]) have been reprinted in [Sei91].

Finite matrix groups. For a given value of n there are only finitely many noni-
somorphic finite groups of n x n integer matrices. This theorem has a long history
and 1s associated with the names Jordan, Minkowski, Bieberbach and Zassenhaus
(see [Mil5], [Bro10]). For n = 2 and 3 these groups were classified in the past cen-
tury, because they are needed in crystallography (see also [AuC91], [John91]). The
maximal finite subgroups of GL(4,7Z) were given by Dade [Dad1], and the complete
list of finite subgroups of GL(4,7Z) by Biilow, Neubiiser and Wondratschek [Biill]
and Brown et al. [Brol0]. The maximal irreducible finite subgroups of GL(5,7Z)
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were found independently by Ryskov [Rys4], [Rys5], and Biilow [Bil2]. That work
was greatly extended by Plesken & Pohst [Pleb], who determined the maximal ir-
reducible subgroups of GL(n,Z) for n = 6,7,8,9, and by Plesken [Ple3], who dealt
with n = 11,13, 17,19, 23.

In these papers the subgroups are usually specified as the automorphism groups
of certain quadratic forms. In [CSLDL2] we give a geometric description of the
maximal irreducible subgroups of GL(n,Z) for n = 1,...,9, 11,13,17,19,23, by
exhibiting lattices corresponding to these quadratic forms (cf. §4.2(i) of Chap. 3):
the automorphism groups of the lattices are the desired groups. By giving natural
coordinates for these lattices and determining their minimal vectors, we are able to
make their symmetry groups clearly visible. There are 176 lattices, many of which
have not been studied before (although they are implicit in the above references

and in [Con16]).

The book by Holt and Plesken [HoPl89] contains tables of perfect groups of
order up to 10%, and includes tables of crystallographic space groups in dimensions
up to 10.

Nebe and Plesken [NeP195] and Nebe [Nebe96], [Nebe96a] (see also [Plesk96],
[Nebe98a]) have recently completed the enumeration of the maximal finite irre-
ducible subgroups of GL(n,Q) for n < 31, together with the associated lattices.
This 1s an 1impressive series of papers, which contains an enormous amount of in-
formation about lattices in dimensions below 32.

Notes on Chapter 4: Certain Important Lattices and Their
Properties

Several recent papers have dealt with gluing theory (cf. §3 of Chap. 4) and related
techniques for combining lattices: [GaL91]-[GaL92a], [Gers91], [Sig90], [Xul]. Gan-
non and Lam [GaL.92], [Gal.92a] also give a number of new theta-function identities

(cf. §4.1 of Chap. 4).

Scharlau and Blaschke [SchaB96] classify all lattices in dimensions n < 6 in
which the root system has full rank.

Professor Coxeter has pointed out to us that, in the last line of the text on
page 96, we should have mentioned the work of Bagnera [Bag05] along with that of
Miller.

For recent work on quaternionic reflection groups (cf. §2 of Chap. 4) see Cohen

[Coh91].

Hexagonal lattice A;. The number of inequivalent sublattices of index N in A,
is determined in [BerS197a], and the problems of determining the best sublattices
from the points of view of packing density, signal-to-noise ratio and energy are
considered. These questions arise in cellular radio. See also [BaaP195].

Kiihnlein [Kuhn96] has made some progress towards establishing Schmutz’s con-
jecture [Schmu95] that the distinct norms that occur in A are strictly smaller than
those in any other (appropriately scaled) two-dimensional lattice. See also Schmutz
[Schmu93], Schmutz Schaller [Schmu95a], Kiithnlein [Kuhn97]. A related idea (the

Erdés number) is discussed in the Notes on Chapter 15.
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Leech lattice. A very simple construction for the Leech lattice As4 was discovered
by Bonnecaze and Solé ([BonS94], see also [BonCS95]): lift the binary Golay code
to Z4 (the ring of integers mod 4), and apply “Construction A4”. The details are
as follows.

The [23,12, 7] Golay code may be constructed as the cyclic code with generator
polynomial gs(z) = 2! 4+ 2° + 27 + 2% + 2° + 2 + 1, a divisor of %3 — 1 (mod 2).
By Hensel-lifting this polynomial (using say Graeffe’s root-squaring method, cf.
[HaKCSS], p. 307) to Z4 we obtain

9—1@7—1‘6—1‘5—}—2334—1—1‘—1,

ga(z) =zt 42210 — 2
a divisor of 2% — 1 (mod 4). By appending a zero-sum check symbol to the cyclic
code generated by g4(z), we obtain a self-dual code of length 24 over Z4. Applying
Construction Ay (cf. Chapter 5), that is, taking all vectors in Z?* which when read
mod 4 are in the code, we obtain the Leech lattice.

In this version of the Leech lattice the 196560 minimal vectors appear as 4.16.759
of shape 22180'*, 2.24.2576 of shape 211120, 32.759 of shape 1'%08 and 48 of shape
4102,

The general setting for this construction is the following ([BonCS95], Theorem
4.1). Define the Euclidean norms of the elements of Z4 by N(0) = 0, N(x1) = 1,
N(2) = 4, and define N(u), u = (u1,...,u,) € Z%, by N(u) = Y N(u;). Then
if C' is a self-dual code over Z4 in which the Euclidean norm of every codeword is
divisible by 8, Construction A4 produces an n-dimensional even unimodular lattice.

J. Young and N. J. A. Sloane showed (see [CaS197]) that the other eight doubly-
even binary self-dual codes of length 24 can also be lifted to codes over Z,4 that give
the Leech lattice (see also Huffman [Huff98al).

[CaS195] considers the codes obtained by lifting the Golay code (and others)
from Zs to Z4 to Zg to .. ., finally obtaining a code over the 2-adic integers Z5. For
more about codes over Z, see the Notes on Chapter 16.

For other recent results on the Leech lattice and attempts to generalize it see
Bondal et al. [BKT87], Borcherds [Borch90], Conway and Sloane [CoS194a], Deza
and Grishukhin [DezG96], Elkies and Gross [ElkGr96], Harada and Lang [HaLa89],
[HaLa90], Koike [Koik86], Kondo and Tasaka [Kon2], [KoTa87], Kostrikin and Tiep
[KoTi94], Ozeki [Oze91], Seidel [Sei90b].

Lindsay [Lin88] describes a 24-dimensional 5-modular lattice associated with the
proper central extension of the cyclic group of order 2 by the Hall-Janko group Js
(cf. Chap. 10). The density of this lattice is about a quarter of that of the Leech
lattice.

Napias [Napa94] has found some new lattices by investigating cross-sections of
the Leech lattice, the 32-dimensional Quebbemann lattice and other lattices.

Shadows and parity (or characteristic) vectors. The notion of the “shadow”
of a self-dual code or unimodular lattice, introduced in [CoSI90], [CoSI90a], has
proved useful in several contexts, and if we were to rewrite Chapter 4 we would
include the following discussion there. We will concentrate on lattices, the treatment
for codes being analogous.

Let A be an n-dimensional odd unimodular (or Type I) lattice, and let Ag be
the even sublattice, of index 2. The dual lattice Af, is the union of four cosets of
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Ag, say
A=A UAL UA3 UA3

where A = Ag U As. Then we call S := A; UA3 = Af\ A the shadow of A. If A is
even (or Type IT) we define its shadow S to be A itself. The following properties
are easily established [CoSI190].

IfseSandx e A, thens-x € Zifx € Ag, s -z € %Z\Zif&:EAl. In fact
the set 25 = {2s : s € S} is precisely the set of parity vectors for A, that is, those
vectors u € A such that

u-z=z-z (mod 2) forall ze€A.

Such vectors have been studied by many authors, going back at least as far as Braun
[Brau40] (we thank H.-G. Quebbemann for this remark). They have been called
characteristic vectors [Blij59], [Borl], [Elki95], [Elki95a], [Mil7], canonical elements
[Serl], and test vectors. We recommend “parity vector” as the standard name for
this concept.

The existence of a parity vector u also follows from the fact that the mapz — z-z
(mod 2) is a linear functional from A to F3. The set 25 of all parity vectors forms
a single class u + 2A in A/2A. If A is even this is the zero class.

We also note that for any parity vector u, u -4 = n (mod 8).

Gerstein [Gers96] gives an explicit construction for a parity vector. Let vy, ..., v,
be a basis for A and v1,...,v), the dual basis. Then Y ¢;v; is a parity vector if and

only if ¢; = v} - v} (mod 2) for all .

Elkies [Elki95], [Elki95a] shows that the minimal norm p(A) of any parity vector
for A satisfies p(A) < n, and p(A) = n if and only if A = Z”. Furthermore, if
p(A) = n— 8 then A = Z" " @ M,, where M, is one of the fourteen unimodular
lattices whose components are Fg, Dis, E? Ais, Dg, A1 Fs, Dg’, Ag, A%D5, Di,
A, AL A22 043 (using the notation of Chapter 16).

The shadow may also be defined for a more general class of lattices. If A is
a 2-integral lattice (i.e. u-v € Z5, the 2-adic integers, for all u,v € A), and
Ag={u€A : u-u€&22Z,5} is the even sublattice, we define the shadow S(A) of A
as follows [RaS198a]. If A is odd, S(A) = (Ag)* \ A*, otherwise S(A) = A*. Then

SA)={veA®Q:2u-v=u-u (mod 22;) forall ueA}.
This includes the first definition of shadow as a special case. The theta series of the
shadow (for both definitions) is related to the theta series of the lattice by
nwi/4 1
) = (det A)1/2 (£ Or(1-=) . 3
s(a)(2) = (det A) 7 A p (3)

Tt is also shown in [RaSI98a] that if A has odd determinant, then for u € S(A),

dim A

oddity A (mod 225) 4)

o] =

Uu-u=

(compare Chap. 15). In particular, if A is an odd unimodular lattice with theta
series

[n/8]
Ou(z) = 3 arfa(2)" " As(e)" (5)

r=0
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(as in Eq. (36) of Chap. 7), then the theta series of the shadow is given by

/S gy
Os(z)= > o a,04(22)05(2)" 5" . (6)

=0

<

For further information about the shadow theory of codes and lattices see
[CoSI190], [CoSI90a], [CoSI98], [Rain98], [RaSI98], [RaS198a]. See also [Douds]-
[DoHa97].

Coordination sequences. Crystallographers speak of “coordination number”
rather than “kissing number.” Several recent papers have investigated the following
generalization of this notion ([BaaGr97], [BrLa7l], [GrBS], [MeMoT79], [O'Ke91],
[O'Ke95]). Let A be a (possibly nonlattice) sphere packing, and form an infinite
graph I' whose nodes are the centers of the spheres and which has an edge for every
pair of touching spheres. The coordination sequence of I' with respect to a node
P €T is the sequence S(0), S(1), S(2),..., where S(n) is the number of nodes in T
at distance n from P (that is, such that the shortest path to P contains n edges).

If A is a lattice then the coordination sequence is independent of the choice of
P. In [CSLDLT], extending the work of O’Keeffe [0'Ke91], [O"Ke95], we determine
the coordination sequences for all the root lattices and their duals. Ehrhart’s reci-
procity law ([Ehr60]-[Ehr77], [Stan80], [Stan86]) is used, but there are unexpected
complications. For example, there are points @ in the 11-dimensional “anabasic”
lattice of [CoS195], mentioned in the Notes to Chapter 1, with the property that 2Q
is closer to the origin than @ (in graph distance).

We give two examples. For a d-dimensional lattice A it is convenient to write the
generating function S(z) = Yoo, S(n)z"™ as Py(z)/(1 — x)?, where we call Py(2)
the coordinator polynomial. For the root lattice A4 it turns out that

Py(zx) = kzi% (:)2;& ,

and for Fg we have
Ps(z) = 142322 47228274 553842 + 13351021+ 1072242° + 245082° + 23227 + 25 .

Thus the coordination sequence of Fg begins 1, 240, 9120, 121680, 864960, . ... For
further examples see [BaHVe97], [BaHVe98], [CSLDLT], [GrBS], [SIoEIS]. We do

not know the coordination sequence of the Leech lattice.

In [CSLDL7] we also show that among all the Barlow packings in three dimen-
sions (those obtained by stacking As layers, cf. [CoSl95a]) the hexagonal close
packing has the greatest coordination sequence, and the face-centered cubic lattice
the smallest. More precisely, for any Barlow packing,

10n? +2 < S(n) < [21n%/2]+2 (n>0) .

For any n > 1, the only Barlow packing that achieves either the left-hand value or
the right-hand value for all choices of central sphere is the face-centered cubic lattice
or hexagonal close-packing, respectively. This interesting result was conjectured by
O’Keeffe [0’Ke95]; it had in fact already been established (Conway & Sloane 1993,
unpublished notes). There is an assertion on p. 801 of [Hsi93] that is equivalent
to saying that any Barlow packing has S(2) = 44, and so is plainly incorrect: as
shown in [CoSl195a], there are Barlow packings with S(2) = 42, 43 and 44. [CSLDL7]
concludes with a number of open problems related to coordination sequences.
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Notes on Chapter 5: Sphere Packing and Error-Correcting
Codes

The Barnes-Wall lattices ([Barl8], §6.5 of Chap. 5, §8.1 of Chap. 8) are the
subject of a recent paper by Hahn [Hahn90].

On p. 152 of Chap. 5 we remarked that it would be nice to have a list of the
best cyclic codes of length 127. Such a list has now been supplied by Schomaker
and Wirtz [SchW92]. Unfortunately this does not improve the n = 128 entry of
Table 8.5. Perhaps someone will now tackle the cyclic codes of length 255.

The paper by Ozeki mentioned in the postscript to Chap. 5 has now appeared
[Oze87].

Construction B*. The following construction is due to A. Vardy [Vard95], [Vard98]
(who gives a somewhat more general formulation). Tt generalizes the construction
of the Leech lattice given in Egs. (135), (136) of Chap. 4 and §4.4 of Chap. 5, and
we refer to it as Construction B* since it can also be regarded as a generalization
of Construction B of §3 of Chap.5

Let 0=0...0and 1 =1...1, and let B and C be (n, M, d) binary codes (in the
notation of p. 75) such that ¢- (1 4+56) =0 for all b € B, ¢ € C. Let A be the sphere
packing with centers

04+2b+4x, 1+ 2¢+4y,

where z (resp. y) is any vector of integers with an even (resp. odd) sum, and b € B,
¢ € C. (We regard the components of b and ¢ as real 0’s and 1’s rather than elements
of Fy.) In general A is not a lattice.

The most interesting applications arise when d is 7 or 8, in which case it is easily
verified that A has center density M 7%/2/4" (if d = 7 and n > 20) or M/2"/? (if
d =8 and n > 24).

Vardy [Vard95], [Vard98] uses this construction to obtain the nonlattice packings
B, and Bj; — B3, shown in Table I.1. In dimension 20 he uses a pair of (20,2°,7)
codes, but we will not describe them here since the same packing will be obtained
more simply below. For dimensions 28 and 30 he takes B = C* to be the [28, 14, 8]
or [30, 15, 8] double circulant codes constructed by Karlin (see [Mac6], p. 509). Both
codes contain 1, are not self-dual, but are equivalent to their duals.

For n = 27 we shorten the length 28 code to obtain a [27,13, 8] code A and set
B =1+ A, C= even weight subcode of AL. Similarly for n = 29.

Once n exceeds 31, we may use Construction D (see Chap. 8, §8) instead of
Construction B*, obtaining a lattice packing from an [n, k, 8] code. In particular,
using codes with parameters [37,31, 8] and [38, 22, 8] (Shearer [Shea88]) we obtain
the lattices D37 and D3g mentioned in Table I.1.

As far as is known at the present time, codes with parameters [32, 18, 8], [33, 18, 8],
[34,19,8],...,[38,23,8], [39, 23, 8] might exist. If any one of these could be con-
structed, a new record for packing density in the corresponding dimension would
be obtained for using Construction D.

Bierbrauer and Edel [BiEd98] pointed out that Construction B* also yields a
new record 18-dimensional nonlattice packing, using the [18,9, 8] quadratic residue
code and its dual. This packing has center density (3/4)° = 0.07508 .. ..

An alternative construction of Vardy’s 20-dimension packing was given in [CoS196].
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This construction, which we call the antipode construction, also produces new
records (denoted by A, in Table I.1) in dimensions 22 and 44-47. Tt is an analogue
of the “anticode” construction for codes ([Mac6], Chap. 17, Sect. 6). The common
theme of the two constructions is that instead of looking for well-separated points,
which is what most constructions do, now we look for points somewhere else that
are close together and factor them out.

Let A be a unimodular lattice (the construction in [CoSI96] is slightly more
general) of minimal norm g in an n-dimension Euclidean space W. Let U,V be
respectively k- and [-dimensional subspaces with W = U &V, n = k + [, such
that ANU = K and ANV = L are k- and [-dimensional lattices. Then the
projections 7wy (A), my (A) are the dual lattices K*, L*. Suppose we can find a
subset S = {u1,...,u,} C K* such that dist?(u;, u;) < B for all ¢, j. Then

A(S) = {mv(w) :w e A, my(w) € S}

is an [-dimensional packing of minimal norm g — # and center density equal to

§ =s(p— p)/?271/\/det L.
In dimension 20 we take A = Aga, I = Asg, K = /2D, K* = 2_1/2DZ,
S=27"1%{0000, 1111, 2000, 111 =1}, B=1/,

which produces Vardy’s packing Az = B3, of center density 719/23! = 0.13154 and
kissing number 15360.

In dimension 22 we take A = Aqy, K = /245, K* = 2_1/2A§, S = three equally
spaced vectors in K* with # = 1/3, obtaining a packing Az with center density
2723371051111 — (.33254 and kissing number 41472. To obtain explicit coordinates
for this packing, take those vectors of As4 in which the first three coordinates have
the form 2=2%(a,a,a,...), 2715(a + 2,a,a,...) or 271%(a,a — 2,a,...) and replace
them by their respective projections 2715(a, a, a,...), 27 % (a+2/3, a+2/3,a+ /3, . ..)
and 271%(a — %/3,a — 23,0 — 2/s,...).

In dimensions 44-47, we take A = Pag;,, for example, and as on p. 168 find sub-
spaces U in R*® such that K* is respectively 371/2A% 3-1/24% 3-1/24% 3-1/2D3.
In these four lattices we can find s = 2,3, 4,4 points, respectively, for which 8 = 1/,
2/9, 1/3, 1/3, obtaining the packings A44—A47 mentioned in Table I.1.

Notes on Chapter 6: Laminated Lattices

In 1963 Musés ([Cox18], p. 238; [Mus97], p. 7) discovered that the highest possible
kissing number for a lattice packing in dimensions n = 0 through 8 (but presumably
for no higher n) is given by the formula

2n
o (a+]%]) ™)
where [z] is the smallest integer > z (cf. Table 1.1).

All laminated lattices A, in dimensions n < 25 are known, and their kissing
numbers are shown in Table 6.3. In dimensions 26 and above, as mentioned on
pp- 178-179, the number of laminated lattices seems to be very large, and although
they all have the same density, we do not at present know the range of kissing
numbers that can be achieved.

In the mid-1980’s the authors computed the kissing numbers of one particular
sequence of laminated lattices in dimensions 26-32, obtaining values that can be seen
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in Table 1.2. Because of an arithmetical error, the value we obtained in dimension
31 was incorrect. Museés [Mus97] independently studied the (presumed) maximal
kissing numbers of laminated lattices (finding the correct value 202692 in dimension
31) and has discovered the formulae analogous to (7).

In the Appendix to Chapter 6, on page 179, third paragraph, it would have
been clearer if we had said that, for n < 12, the integral laminated lattice A, {3} of
minimal norm 3 consists of the projections onto v* of the vectors of A, ;1 having
even inner product with v, where v € A, 41 is a suitable norm 4 vector. For n < 10,
K,{3} is defined similarly, using K,y instead of A,;1. Also A,{3}*, K,{3}*
denote the lattices orthogonal to these in Aq3{3}.

A sequel to Plesken and Pohst [Ple6] has appeared — see [Plesk92].

Notes on Chapter 7: Further Connections Between Codes and
Lattices

Upper bounds. The upper bounds on the minimal norm g of a unimodular lattice
and the minimal distance d of a binary self-dual code stated in Corollary 10 of
Chapter 7 have been strengthened. In [RaS198a] it is shown that an n-dimensional
unimodular lattice has minimal norm

n

24} +2, (8)

p<2 [
unless n = 23 when g < 3. The analogous result for binary codes (Rains [Rain98])
is that minimal distance of a self-dual code satisfies

d<4|]+4, (9)

unless n = 22 (mod 4) when the upper bound must be increased by 4.

These two bounds are obtained by studying the theta series (or weight enumer-
ator) of the shadow of the lattice (or code) — see Notes on Chapter 4, especially
equations (5), (6).

In [RaSI98] and [RaSI98a] it is proposed that a lattice or code meeting (8) or
(9) be called extremal. This definition coincides with the historical usage for even
lattices and doubly-even codes, but for odd lattices extremal has generally meant
p# = [n/8] + 1 and for singly-even codes that d = 2[n/8] 4+ 2. In view of the new
bounds in (8) and (9) the more uniform definition seems preferable. A lattice or
code with the highest possible minimal norm or distance is called optimal. An
extremal lattice or code is a priori optimal.

By using (5) and (6) it is often possible to determine the exact values of the
highest minimal norm or minimal distance — see Table 1.3, which is (essentially)
taken from [CoSI90] and [CoS190a]. The extremal code of length 62 mentioned in
the table was recently found by Harada [Hara98a].

In the years since the manuscript of [CoSI90a] was first circulated, over 50 sequels
have been written, supplying additional examples of codes in the range of Table I.3.
In particular, codes with parameters [70, 35, 12] (filling a gap in earlier versions of
the table) were found independently by W. Scharlau and D. Schomaker [ScharS]
and M. Harada [Hara97]. Other self-dual binary codes are constructed in [BrP91],
[DoGH97a], [DoHa97], [Hara96], [Hara97], [KaT90], [PTL92], [Ton89], [ToYo96],
[Tsa91], but these are just a sampling of the recent papers (see [RaSI98]).

XXXV1



Table 1.3 Highest minimal norm (p,) of an n-dimensional integral unimodular
lattice, and highest minimal distance (ds,) of a binary self-dual code of length 2n.

n Hn d2n n Hn d2n

1 1 2 19 2 8

2 1 2 20 2 8

3 1 2 21 2 8

4 1 4 22 2 8

5 1 2 23 3 10

6 1 4 24 4 12

7T 1 4 25 2 10

8 2 4 26 3 10

9 1 4 27 3 10
10 1 4 28 3 12
1 1 6 29 3 10
12 2 8 30 3 12
13 1 6 31 3 12
14 2 6 32 4 12
15 2 6 33 3 12
16 2 8 34 3-—-4 12
17 2 6 3 3—4 12-14
18 2 8 36 4 12 -16

For ternary self-dual (and other) codes see [Hara98], [HiN88], [Huff91], [KsP92],
[0ze87], [Oze89b], [VALI3].

The classification of Type I self-dual binary codes of lengths n < 30 given in
[Ple12] (cf. p. 189 of Chap. 7) has been corrected in [CoPS92] (see also [Yor89]).

Lam and Pless [LmP90] have settled a question of long standing by showing that
there is no [24, 12, 10] self-dual code over Fy. The proof was by computer search, but
required only a few hours of computation time. Huffman [Huff90] has enumerated
some of the extremal self-dual codes over 4 of lengths 18 to 28.

We also show in [CoSI90], [CoSI90a], [CoSI98] that there are precisely five Type
I optimal (i.e. g = py,) lattices in 32 dimensions, but more than 8 x 10?2 optimal
lattices in 33 dimensions; that unimodular lattices with g = 3 exist precisely for
n > 23, n # 25; that there are precisely three Type I extremal self-dual codes of
length 32; etc.

Nebe [Nebe98] has found an additional example of an extremal unimodular
lattice (Pasp) in dimension 48, and Bachoc and Nebe [BacoN98] contruct two ex-
tremal unimodular lattices in dimension 80. One of these (Lgg) has kissing number
1250172000 (see Table 1.2). The existence of an extremal unimodular lattice in
dimension 72 (or of an extremal doubly-even code of length 72) remains open.

Several other recent papers have studied extremal unimodular lattices, especially
in dimensions 32, 40, 48, etc. Besides [CoSI90], [CoSI98], which we have already
mentioned, see Bonnecaze et al. [BonCS95], [BonS94], [BonSBM], Chapman [Chap
96], Chapman and Solé [ChS96], Kitazume et al. [KiKM], Koch [Koch86], [Koch90],
Koch and Nebe [KoNe93], Koch and Venkov [KoVe89], [KoVe91], etc. Other lattices

are constructed in [JuL8&8].

For doubly-even binary self-dual codes, Krasikov and Litsyn [KrLi97] have
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recently shown that the minimal distance satisfies
d <0.166315...n 4+ o(n), n— oo . (10)

No comparable bound is presently known for even unimodular lattices.

For a comprehensive survey of self-dual codes over all alphabets, see Rains and

Sloane [RaS198].

[RaSI98a] also gives bounds, analogous to (8), for certain classes of modular
lattices (see Notes to Chapter 2), and again there is a notion of extremal lattice.
(Scharlau and Schulze-Pillot [SchaS98] have proposed a somewhat different defini-
tion of extremality for modular lattices.) Bachoc [Baco95], [Baco97] has constructed
a number of examples of extremal modular lattices with the help of self-dual codes
over various rings. Further examples of good modular lattices can be found in
Bachoc and Nebe [BacoN98], Martinet [Mar96], Nebe [Nebe96], Plesken [Plesk96],
Tiep [Tiep97al, etc.

For generalizations of the theorems of Assmus-Mattson and Venkov (cf. §7 of

Chap. 7), see [CaD92], [CaD92a], [CaDS91], [Koch86], [Koch90], [KoVe89].

Several papers are related to multiple theta series of lattices. Peters [Pet90],
extending the work of Ozeki [Oze4], has investigated the second-order theta series of
extremal Type IT (or even) unimodular lattices (cf. §7 of Chap. 7). [Pet89] studies
the Jacobi theta series of extremal lattices. See also Bocherer and Schulze-Pillot

[BocS91], [BocS97].

The connections between multiple weight enumerators of self-dual codes and
Siegel modular forms have been investigated by Duke [Duke93], Ozeki [Oze76],
[Ozed], [0ze97] and Runge [Rung93]-[Rung96]. Borcherds, Freitag and Weissauer
[BorchF98] study multiple theta series of the Niemeier lattices.

Ozeki [Oze97] has recently introduced another generalization of the weight enu-
merator of a code C, namely its Jacob: polynomial. For a fixed vector v € F”, this
is defined by

Jacecy(z,z) = Z gUt(®) pwt(une)
ueC
These polynomials have been studied in [BanMO96], [BanO96], [BonMS97]. They
have the same relationship to Jacobi forms [EiZa85] as weight enumerators do to
modular forms.

Pigq and Pug,. G. Nebe informs us that the automorphism groups of Pugq and
Pjgp are in fact SL,(47) and SLy(23) x S3. We have modified page 195 accordingly.
In the first paragraph on page 195, it would have been clearer if we had said that
the vectors of these two lattices have the same coordinate shapes.

Notes on Chapter 8: Algebraic Constructions for Lattices

As we discuss in §7 of Chap. 8, there are several constructions for lattices that are
based on algebraic number theory. The article by Lenstra [Len92] and the books
by Bach and Shallit [BacSh96], Cohen [CohCNT] and Pohst and Zassenhaus [PoZ89]
describe algorithms for performing algebraic number theory computations. (See also
Fieker and Pohst [FiP96].) The computer languages KANT, PARI and MAGMA
(see the beginning of this Introduction) have extensive facilities for performing such
calculations.

XXX V1l



The papers [BoVRB, BoV98] give algebraic constructions for lattices that can
be used to design signal sets for transmission over the Rayleigh fading channel.

Corrections to Table 8.1. There are four mistakes in Table 8.1. The entry
headed wrg — (GJH) should read

-1 -2 0 0 0

o 0O 0 0 2

0 0O 0 0 0
-7 =2 0 0 2

and the entry headed wyr — (GK H) should read

-1 =2 0 0 0
-7 =2 0 0 2

o 0O 0 0 2

0 0O 0 0 0

Further examples of new packings. Dimensions 25 to 30. As mentioned at
the beginning of Chapter 17, the 25-dimensional unimodular lattices were classified
by Borcherds [Borl]. All 665 lattices (cf. Table 2.2) have minimal norm 1 or 2.

In dimension 26, Borcherds [Bor1] showed that there is a unique unimodular lat-
tice with minimal norm 3. This lattice, which we will denote by Ss6, was discovered
by J. H. Conway in the 1970’s.

The following construction of Ss6 is a modification of one found by Borcherds.
We work inside a Lorentzian lattice P which is the direct sum of the unimodular
Niemeier lattice Aﬁ and the Lorentzian lattice I, 1 (cf. Chaps. 16 and 24). Thus
P = Iy1. Let p = (—2,—1,0,1,2) denote the Weyl vector for A4, so that p/ =
pBpDpdp is the Weyl vector for A§, of norm 60, and let v/ = (4,2 ] 9) € I51. Then
Sa¢ 1s the sublattice of P that is perpendicular to v = p’ & v/ € P. Sy can also
be constructed as a complex 13-dimensional lattice over Q[(1 + v/5)/2] ([Con16],
p. 62).

Here are the properties of Sss. It is a unimodular 26-dimensional lattice of
minimal norm 3, center density § = 332726 = .0237... (not a record), kissing
number 3120 (also not a record), with automorphism group of order 28.32.5%.13 =
18720000, isomorphic to Sp4(5) (cf. [Conl6], p. 61; [Nebe96a]). The minimal norm
of a parity vector is 10, and there are 624 such vectors. The group acts transitively
on these vectors. The theta series begins

1+ 3120¢° 4+ 102180¢* + 1482624¢° + - - - .
We do not know the covering radius.

There is a second interesting 26-dimensional lattice, Thg, an integral lattice of
determinant 3, minimal norm 4 and center density 1/v/3. This is best obtained by
forming the sublattice of Th7 (see below) that is perpendicular to a norm 3 parity
vector. Thyg is of interest because it shares the record for the densest known packing
in 26 dimensions with the (nonintegral) laminated lattices Agg. The kissing number
is 117936 and the group is the same as the group of Ty7 below.

Bacher and Venkov [BaVe96] have classified all unimodular lattices in dimensions
27 and 28 that contain no roots, i.e. have minimal norm > 3. In dimension 27 there
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are three such lattices. In two of them the minimal norm of a parity vector is 11.
These two lattices have theta series

1+ 2664¢°% + 101142¢* + 1645056¢° + - - -

and automorphism groups of orders 7680 and 3317760, respectively. The third,
found in [Conl16], we shall denote by T57. It has a parity vector of norm 3, theta
series

1+ 1640¢° + 119574¢* + 1497600¢° + - - -

and a group of order 2'3357213 = 1268047872, which is isomorphic to the twisted
group 2 x (3D4(2) : 3) ([Conl6], p. 89; [Nebe96a]). That this is the unique lattice
with a parity vector of norm 3 was established by Borcherds [Borl].

The following construction of T7 is based on the descriptions in [Con16], p. 89
and [Borl]. Let V be the vector space of 3 x 3 Hermitian matrices

a C B
y=|C b A| =(abc|ABC) abc real,
B A ¢
over the real Cayley algebra with units ico = 1, %9, ..., %, in which i, thy1 — 1,
int2 = J, inpa — k generate a quaternion subalgebra (for n = 0,...,6). V has

real dimension 3 4+ 8 x 3 = 27. We define an inner product on V by Norm(y) =
>~ Norm(y;;). The lattice Ty7 is generated by the 3 x 3 identity matrix and the 819
images of the norm 3 vectors

1 0 0 1.0 0 0 s 5

0 -1 0 0 0 1 s —lfy 1y

0 —1| > 0 1 0f ° s 1y =1/
48) (768)

where s = (i + 20 + - - + i) /4, under the group generated by the maps taking
(a,b,c| A, B,C) to (a,b,c|iAi,iB,iC), (b,c,a| B,C,A) and (a,c,b| A, —C,—B),
respectively, where i € {%i, ..., tig}. These 820 norm 3 vectors and their nega-
tives are all the minimal vectors in the lattice.

The identity matrix and its negative are the only parity vectors in 757 of norm
3. Taking the sublattice perpendicular to either vector gives Thg, which therefore
has the same group as Tyy.

In 28 dimensions Bacher and Venkov [BaVe96] show that there are precisely 38
unimodular lattices with no roots. Two of these have a parity vector of norm 4 and
theta series

1+ 1728¢3 + 106472¢% + - - |

while for the other 36 the minimal norm of a parity vector is 12 and the theta series
1+ 2240¢° + 98280¢"* + - - - .

One of these 36 is the exterior square of Eg, which has group 2 x G.2, where
G = OF(2) (whereas Eg itself has group 2.G.2). One of these 36 lattices also
appears in Chapman [Chap97].

Bacher [Bace96] has also found lattices Byz, Bas, Bag in dimensions 27-29 which
are denser than the laminated lattices As7—A4g, and are the densest lattices presently
known in these dimensions (although, as we have already mentioned in the Notes
to Chapter 5, the densest packings currently known in dimensions 27 to 31 are all
nonlattice packings).
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Bsg can be obtained by taking the even sublattice Sy of Sy, which has deter-
minant 4 and minimal norm 4, and finding translates ro 4+ Sg, 71 + Sg, 72 + Sp with
rg + r1 + r9 € Sy and such that the minimal norm in each translate is 3. We then
glue Sy to a copy of Aj scaled so that the minimal norm is 4, obtaining a lattice
Bsg with determinant 3, minimal norm 4, center density 1/\/3 and kissing number
112458. This is a nonintegral lattice since the r; are not elements of the dual quo-
tient S§/So. Bag is obtained in the same way from Th7, and has determinant 3,
minimal norm 4, center density 1/4/3 and kissing number 109884.

Dimensions 32, 48, 56. Nebe [Nebe98] studies lattices in dimension 2(p — 1)
on which SLy(p) acts faithfully. For p = 1 (mod 4) these are cyclotomic lattices
over quaternion algebras. The three most interesting examples given in [Nebe98]
are a 32-dimensional lattice with determinant 17*, minimal norm g = 6, center
density § = 27163161772 = 2.2728 .. ., kissing number 7 = 233376; a 56-dimensional
lattice with det = 1, p = 6, § = (3/2)?® = 85222.69..., 7 = 15590400; and a 48-
dimensional even unimodular lattice with minimal norm 6 that is not isomorphic to
either Pyg, or Pyg,, which we will denote by Pyg,,. Its automorphism group contains
a subgroup S7L3(13) whose normalizer in the full group is an absolutely irreducible

group (SL2(13) @ SL2(5)).22.

Dimensions 36 and 60. Kschischang and Pasupathy [KsP92] combine codes
over [F3 and TF4 to obtain lattice packings Ks3g, Ksgg with center densities § given
by

log, 6 = 2.1504 (in 36 dimensions),

log, 6 = 17.4346 (in 60 dimensions),

respectively, thus improving two entries in Table 1.3. Their construction is easily
described using the terminology of §8 of Chap. 7. If £ denotes the Eisenstein
integers, there are maps

Tyt E-EJE - Ty
T3 : 28 — 2E/26E — 5 |

where § = \/=3. If C; is an [n, k1, d;] code over Fy, and Cs is an [n, ks, ds] code
over FF3, we define A to be the complex n-dimensional Eisenstein lattice spanned
by the vectors of (20€)", 7;'(C1) and 73'(C2). The real version of A (cf. §2.6
of Chap. 2) is then a 2n-dimensional lattice with determinant 227~ 4k1337—2k2 apd
minimal norm = min{12,dy,4ds}. In the case n = 18 Kschischang and Pasupathy
take C; to be the [18,9, 8] code Sig of [Mac4] and Cy to be the [18,17, 2] zero-sum
code; and for n = 30 they take C; to be the [30, 15, 12] code Q30 of [Mac4] and Cs
to be a [30, 26, 3] negacyclic code. Christine Bachoc (personal communication) has
found that Ks3zs has kissing number 239598.

Elkies [Elki] points out that the densities of Craig’s lattices (§6 of Chap. 8)
can be improved by adjoining vectors with fractional coordinates. However, these
improvements do not seem to be enough to produce new record packings, at least in

dimensions up to 256. The Craig lattices (among others) have also been investigated
by Bachoc and Batut [BacoB92].

Lattices from representations of groups. Of course nearly every lattice in
the book could be described under this heading. We have already mentioned the
lattices obtained by Nebe and Plesken [NeP195] and Nebe [Nebe96], [Nebe96a] from
groups of rational matrices. See also Adler [Adle81].
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Scharlau and Tiep [SchaT96], [SchaT96a] have studied lattices arising from rep-
resentations of the symplectic group Spa,(p). Among other things, [SchaT96] de-
scribes “p-analogues” of the Barnes-Wall lattices.

The concept of a “globally irreducible” lattice was first investigated by Thomp-
son [Tho2], [Tho3], [Thomp76] in the course of his construction of the sporadic
finite simple group Th. The construction involves a certain even unimodular lat-
tice 248-dimensional lattice T'Sa4g with minimal norm 16 (the Thompson-Smith
lattice), with Aut(7TSass) = 2 x Th. (For more about this lattice see also Smith
[Smith76], Kostrikin and Tiep [KoTi94].) This lattice shares with 7, Eg and the
Leech lattice the property of being globally irreducible: A/pA is irreducible for
every prime p.

However, Gross [Gro90] remarks that over algebraic number rings such lattices
are more common. He gives new descriptions of several familiar lattices as well
as a number of new families of unimodular lattices. Further examples of globally
irreducible lattices have been found by Gow [Gow89], [Gow89a]. See also Dummigan
[Dum97], Tiep [Tiep91]-[Tiep97h].

Thompson and Smith actually constructed their lattice by decomposing the
Lie algebra of type Fg over C into a family of 31 mutually perpendicular Cartan
subalgebras. Later authors have used other Lie algebras to obtain many further
examples of lattices, including infinite families of even unimodular lattices. See
Abdukhalikov [Abdu93], Bondal, Kostrikin and Tiep [BKT87], Kantor [Kant96],
and especially the book by Kostrikin and Tiep [KoTi94].

Lattices from tensor products. Much of the final chapter of Kitaoka’s book
[Kita93] is concerned with the properties of tensor products of lattices. The minimal
norm of a tensor product L ® M clearly cannot exceed the product of the minimal
norms of L and M, and may be less. Kitaoka says that a lattice L is of E-type if,
for any lattice M, the minimal vectors of L ® M have the form u ® v for u € L,
v € M. (This implies min(L @ M) = min(L) min(M).) Kitaoka elegantly proves
that every lattice of dimension n < 43 is of E-type.

On the other hand the Thompson-Smith lattice T'Sa4g is not of E-type. (Thomp-
son’s proof: Let I, = TSssg, and consider L ® L. = Hom(L,L). The element
of L ® L corresponding to the identity element of Hom(L, L) is easily seen to have
norm 248, which is less than the square of the minimal norm of L.) Steinberg
([Mil7], p. 47) has shown that there are lattices in every dimension n > 292 that
are not of E-type.

If an extremal unimodular lattice of dimension 96 (with minimal norm 10) could
be found, or an extremal 3-modular lattice in dimension 84 (with minimal norm
16), etc., they would provide lower-dimensional examples of non-E-type lattices.

Coulangeon [Cogn98] has given a generalization of Kitaoka’s theorem to lattices
over imaginary quadratic fields or quaternion division algebras. Such tensor prod-
ucts provide several very good lattices. Bachoc and Nebe [BacoN98] take as their
starting point the lattice Lag described on p. 39 of [Conl6]. This provides a 10-
dimensional representation over Z[a], @ = (14+/=T7)/2 for the group 2. M23.2. (Lag
is an extremal 7-modular lattice with minimal norm 8 and kissing number 6160.)
Bachoc and Nebe form the tensor product of Lsg with A% over Z[a] and obtain a
40-dimensional extremal 3-modular lattice with minimal norm 8, and of Lsg with
Fg to obtain an 80-dimensional extremal unimodular lattice Lgg with minimal norm
8 and kissing number 1250172000 (see Notes on Chapter 1).
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Lattices from Riemann surfaces. The period matrix of a compact Riemann
surface of genus g determines a real 2g-dimensional lattice. Buser and Sarnak
[BuSa94] have shown that from a sphere packing point of view these lattices are
somewhat disappointing: for large g their density is much worse than the Minkowski
bound, neither the root lattices Fg, Fg nor the Leech lattice can be obtained, and so
on. Nevertheless, for small genus some interesting lattices occur [BerS197], [Quin95],

[QuZh95], [RiR092], [Sar95], [TrTr84].

One example, the m.c.c. lattice, has already been mentioned in the Notes on
Chapter 1. The period matrix of the Bring curve (the genus 4 surface with largest
automorphism group) was computed by Riera and Rodriguez, and from this one
can determine that the corresponding lattice is an 8-dimensional lattice with deter-
minant 1, minimal norm 1.4934. .. and kissing number 20 (see [NeSl]).

Lattices and codes with no group. Etsuko Bannai [Bann90] showed that the
fraction of n-dimensional unimodular lattices with trivial automorphism group ap-
proaches 1 as n — co. Some explicit examples were given by Mimura [Mimu90].
Bacher [Bace94] has found a Type I lattice in dimension 29 and a Type II lattice in
dimension 32 with trivial groups {£1}. Both dimensions are the lowest possible.

Concerning codes, Orel and Phelps [OrPh92] proved that the fraction of binary
self-dual codes of length n with trivial group approaches 1 as n — oco. A self-
dual code with trivial group of length 34 (conjectured to be the smallest possible
length) is constructed in [CoSI90a], and a doubly-even self-dual code of length 40
(the smallest possible) in [Ton89]. See also [BuTo90], [Hara96], [Huff98], [LePRI3],

and [Leo8] (for a ternary example).

Notes on Chapter 9: Bounds for Codes and Sphere Packings

Samorodnitsky [Samo98] shows that the Delsarte linear programming bound for
binary codes is at least as large as the average of the Gilbert-Varshamov lower
bound and the McEliece-Rodemich-Rumsey-Welch upper bound, and conjectures
that this estimate is actually the true value of the pure linear programming bound.

Krasikov and Litsyn [KrLi97a] improve on Tietavainen’s bound for codes with

n/2—d = o(n'/?).

Laihonen and Litsyn [LaiL98] derive a straight-line upper bound on the minimal
distance of nonbinary codes which improves on the Hamming, linear programming
and Aaltonen bounds.

Levenshtein [Lev87], [Lev91], [Lev92] and Fazekas and Levenshtein [FaL.95] have
obtained new bounds for codes in finite and infinite polynomial association schemes

(cf. p. 247 of Chap. 9).

There have been several recent improvements to the table of bounds on A(n, d)
given in Table 9.1 — a revised version appears below in the section “Patch for p.
248.” A table of lower bounds on A(n,d) extending to n < 28 (cf. Table 9.1 of
Chap. 9) has been published by Brouwer et al. [BrSSS] (see also [Lits98]). The main
purpose of [BrSSS], however, is to present a table of lower bounds on A(n,d, w) for

n < 28 (cf. §3.4 of Chap. 9).
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Notes on Chapter 10: Three Lectures on Exceptional Groups

Curtis [Cur89a], [Cur90] discusses further ways to generate the Mathieu groups M
and May4 (cf. Chaps. 10, 11).

Hasan [Has89] has determined the possible numbers of common octads in two
Steiner systems S(5, 8, 24) (cf. §2.1 of Chap. 10). The analogous results for S(5, 6, 12)
were determined by Kramer and Mesner in [KrM74].

Figure 10.1 of Chap. 10 classifies the binary vectors of length 24 into orbits under
the Mathieu group Mas4. [CoSI90b] generalizes this in the following way. Let C be
a code of length n over a field IF, with automorphism group G, and let C,, denote
the subset of codewords of C of weight w. Then we wish to classify the vectors of
F? into orbits under 7, and to determine their distances from the various subcodes
Cy. [CoSI90b] does this for the first-order Reed-Muller, Nordstrom-Robinson and
Hamming codes of length 16, the Golay and shortened Golay codes of lengths 22,
23, 24, and the ternary Golay code of length 12.

For recent work on the subgroup structure of various finite groups (cf. Postscript
to Chap. 10) see Kleidman et al. [KIL88], [KIPW89], [KIW8&7], [KIW90], [KIW90a],
Leibeck et al. [LPS90], Linton and Wilson [LiW91], Norton and Wilson [NoW89],
Wilson [Wil88], [Wil89]. The “modular” version of the ATLAS of finite groups
[Con16] has now appeared [JaLPW].

On page 289, in the proof of Theorem 20, change “z -y = y -y = 64”7 to
“r-xz =y -y =064". On page 292, 8th line from the bottom, change “{i}” to “{j}”

Borcherds points out that in Table 10.4 on page 291 there is a third orbit of type
10 vectors, with group Ma5.2. (Note that [Conl6], p. 181, classifies the vectors up
to type 16.)

Notes on Chapter 11: The Golay Codes and the Mathieu
Groups
For more about the MOG (cf. §5 of Chap. 11) see Curtis [Cur89).

The cohomology of the groups Mi1, M5 and J; has been studied in [BenCa87],
[AdM91] and [Cha82], respectively.

Notes on Chapter 13: Bounds on Kissing Numbers

Drisch and Sonneborn [DrS96] have given an upper bound on the degree of the best
polynomial to use in the main theorem of §1 of Chap. 13.

Notes on Chapter 15: On the Classification of Integral Quadratic
Forms

A recent book by Buell [Bue89] is devoted to the study of binary quadratic forms
(cf. §3 of Chap. 15). See also Kitaoka’s book [Kita93] on the arithmetic theory of
quadratic forms (mentioned already in the Notes on Chapter 8). Hsia and Icaza
[HsIc97] give an effective version of Tartakovsky’s theorem.

For an interpretation of the “oddity” of a lattice, see Eq. (4) of the Notes on
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Chapter 4.

Tables. Nipp ([Nip91] has constructed a table of reduced positive-definite integer-
valued four-dimensional quadratic forms of discriminant < 1732. A sequel [Nip91a]
tabulates five-dimensional forms of discriminant < 256. These tables, together with
a new version of the Brandt-Intrau [Bral] tables of ternary forms computed by
Schiemann can also be found on the electronic Catalogue of Lattices [NeSl].

Universal forms. The 15-theorem. Conway and Schneeberger [Schnee97], [CoSch98]
(see also [CoFu97]) have shown that for a positive-definite quadratic form with in-
teger matrix entries to represent all positive integers it suffices that it represent the
numbers 1, 2, 3, 5, 6, 7, 10, 14, 15. Tt is conjectured (the 290-conjecture) that

for a positive-definite quadratic form with integer values to represent all positive
integers it suffices that it represent the numbers 1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17,

19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290.

The 15-theorem is best-possible in the sense that for each of the nine critical
numbers ¢ there is a positive-definite diagonal form in four variables that misses
only ¢. For example 2w? 4 322 + 4y? 4+ 522 misses only 1, and w? + 22 + 5y + 522
misses only 15. For the other ¢ in the 290-conjecture the forms are not diagonal
and sometimes involve five variables. For example a form that misses only 290 is

2 1 0 0 0
Uy 4 1y 0 0
0 % 1 0 0
0 0 0 29 141,
0 0 0 141 29

For other work on universal forms see Chan, Kim and Raghavan [ChaKR], Earnest

and Khosravani [EaK97], [EaK97b], Kaplansky [Kapl95].

M. Newman [Newm94] shows that any symmetric matrix A of determinant d
over a principal ideal ring R is congruent to a tridigonal matrix

C1 dl 0 0
d1 (2] d2 0

0 dz C3 d3

dn—2 Cn—1 dn—l
0 dn—l Cn

in which d; divides d for 1 < i < n — 2. In particular, the Gram matrix for a
unimodular lattice can be put into tridiagonal form where all off-diagonal entries
except perhaps the last one are equal to 1.

[CSLDLI] extends the classification of positive definite integral lattices of small
determinant begun in Tables 15.8 and 15.9 of Chap. 15. Lattices of determinants 4
and 5 are classified in dimensions n < 12, of determinant 6 in dimensions n < 11,
and of determinant up to 25 in dimensions n < 7.

The four 17-dimensional even lattices of determinant 2 (cf. Table 15.8) were
independently enumerated by Urabe [Ura89], in connection with the classification
of singular points on algebraic varieties. We note that in 1984 Borcherds [Borl, Ta-
ble —2] had already classified the 121 25-dimensional even lattices of determinant 2.
Even lattices of dimension 16 and determinant 5 have been enumerated by Jin-Gen
Yang [Yan94], and other lattice enumerations in connection with classification of
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singularities can be found in [Tan91], [Ura87], [Ura90], [Wan91]. For the connec-
tions between lattices and singularities, see Eberling [Ebe87], Kluitmann [Klu89],

Slodowy [Slod80], Urabe [Ura93], Voigt [Voi85].

Kervaire [Kerv94] has completed work begun by Koch and Venkov and has shown
that there are precisely 132 indecomposable even unimodular lattices in dimension
32 which have a “complete” root system (i.e. the roots span the space). Only 119
distinct root systems occur.

Several recent papers have dealt with the construction and classifications of lat-
tices, especially unimodular lattices, over rings of integers in number fields,; etc. See
for example Bayer-Fluckiger and Fainsilber [BayFa96], Benham et al. [BenEHH],
Hoffman [Hof91], Hsia [Hsia89], Hsia and Hung [HsH89], Hung [Hun91], Takada
[Tak85], Scharlau [Scha94], Zhu [Zhu91]-[Zhu95b].

Some related papers on class numbers of quadratic forms are Earnest [Earn88]—
[Earn91], Earnest and Hsia [EaH91], Gerstein [Gers72], Hashimoto and Koseki
[HaK86].

Hsia, Jochner and Shao [HJS], extending earlier work of Friedland [Fri89], have
shown that for any two lattices A and M of dimension > 2 and in the same genus
(cf. §7 of Chap. 15), there exist isometric primitive sublattices A’ and M’ of codi-
mension 1.

Frohlich and Thiran [FrTh94] use the classification of Type I lattices in studying
the quantum Hall effect.

Erdds numbers.  An old problem in combinatorial geometry asks how to place a
given number of distinct points in n-dimensional Euclidean space so as to minimize
the total number of distances they determine ([Chu84], [Erd46], [ErGH89], [SkSL]).
In 1946 Erdés [Erd46] considered configurations formed by taking all the points of
a suitable lattice that lie within a large region. The best lattices for this purpose
are those that minimize what we shall call the Erdds number of the lattice, given
by
E = Fd'/",

where d is the determinant of the lattice and F', its population fraction, is given by

F = lim 2@

T —00 x

if n>3,

where P(z) is the population function of the corresponding quadratic form, i.e. the
number of values not exceeding z taken by the form.? The Erdés number is the
population fraction when the lattice is normalized to have determinant 1. It turns
out that minimizing £ is an interesting problem in pure number theory.

In [CoSI91]] we prove all cases except n = 2 (handled by Smith [Smi91]) of the
following proposition:

The lattices with minimal Erdés number are (up to a scale factor)
the even lattices of minimal determinant. For n = 0, 1,2, ... these
determinants are

1,2,3,4,4,4,3,2,1,2,3,4,4, 4, ...,

this sequence continuing with period 8.

2For n < 2 these definitions must be modified. For n = 0 and 1 we set & = 1, while for n = 2
we define F' by F' = limg 00 z‘_lP(r.)x/logz.
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For n < 10 these lattices are unique:
AOaAlaA2aA3 :D3JD4aD5:E6aE7aESaE8@AIJES@Azﬁ

with Erdés numbers

-1/2
1,1, 2732314 T (1— %) = 0.5533,

=iz > P
11 41/4 41/5 31/6
— 43 =072 — =0. 1, — =0. — =0.
7 0.7276, 2 0.7071, 2 0.6598, 2 0.6005,
91/7 91/9 91/10

1 2

5 = 0.5520, 3 5 = 0.5400, = 0.5581,
(rounded to 4 decimal places), while for each n > 11 there are two or more such
lattices. The proof uses the p-adic structures of the lattices (cf. Chap. 15). The
three-dimensional case is the most difficult. The crucial number-theoretic result
needed for our proof was first established by Peters [Pet80] using the Generalized
Riemann Hypothesis. The dependence on this hypothesis has been removed by
Duke and Schulze-Pillot [DuS90].

Notes on Chapter 16: Enumeration of Unimodular Lattices

Recent work on the classification of lattices of various types has been described in
the Notes on Chapter 15.

The mass formula of H. J. S. Smith, H. Minkowski and C. L. Siegel (cf. §2 of
Chap. 16) expresses the sum of the reciprocals of the group orders of the lattices in
a genus in terms of the properties of any one of them. In [CSLDL4] we discuss the
history of the formula and restate it in a way that makes it easier to compute. In
particular we give a simple and reliable way to evaluate the 2-adic contribution. Our
version, unlike earlier ones, is visibly invariant under scale changes and dualizing.
We then use the formula to check the enumeration of lattices of determinant d < 25
given in [CSLDL1]. [CSLDIL4] also contains tables of the “standard mass,” values
of the L-series (2 )m™* (m odd), and genera of lattices of determinant d < 25.

Eskin, Rudnick and Sarnak [ERS91] give a new proof of the mass formula using
an “orbit-counting” method. Another proof is given by Mischler [Misch94].

The classification of the Niemeier lattices is rederived by Harada, Lang and
Miyamoto [Hal.aM94]. Montague [Mont94] constructs these lattices from ternary
self-dual codes of length 24, and Bonnecaze et al. [BonGHKS] construct them from
codes over Z4 using Construction As.

Codes over Zas. The glue code for the Niemeier lattice with components A§
(cf. Table 16.1 of Chap. 16) is a certain linear code (the octacode) of length 8 over
the ring Z4 of integers mod 4. This code may be obtained from the code generated
by all cyclic shifts of the vector (3231000) by appending a zero-sum check symbol.
The octacode contains 256 vectors and is self-dual with respect to the standard
inner product z -y = > z;4; (mod 4). Tt is the unique self-dual code of length 8
and minimal Lee weight 6 [CoS193].

In [FoST93] it is shown that if the octacode is mapped to a binary code of twice
the length using the Gray map:
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000, 101, 2—11, 310, (11)

then we obtain the (nonlinear) Nordstrom-Robinson code (mentioned in §2.12 of
Chapter 2).

Furthermore, if we apply “Construction A4” (see Notes on Chapter 4) to the
octacode, we obtain the Eg lattice [BonS94], [BonCS95].

The octacode may also be obtained by Hensel-lifting the Hamming code of length
7 from G'F(2) to Z4. If the same process is applied to an arbitrary binary Hamming
code of length 22™+! —1 (m > 1) we obtain the (nonlinear) Preparata and Kerdock
codes [HaKCSS]. If this process is applied to the binary Golay code of length 23,
then as already mentioned in the Notes on Chapter 4, we obtain a code over Z4
that lifts by Construction A4 to the Leech lattice [BonS94], [BonCS95].

Many other nonlinear binary codes also have a simpler description as Z4 codes.
Consider, for example, the (10,40, 4) binary nonlinear code found by Best [Besl],
which leads via Construction A to the densest 10-dimensional sphere packing presently
known (Chapter 5, p. 140). This code now has the following simple description
[CoS194b]: take the 40 vectors of length 5 over Z4 obtained from

(e—d,bye,d,b+e), bede{+1,-1},

and its cyclic shifts, and apply the Gray map (11). Litsyn and Vardy [LiV94] have
shown that the Best code is unique.

In some cases the Zgs-approach has also led to (usually nonlinear) binary codes
that are better than any previously known: see Calderbank and McGuire [CaMc97],
Pless and Qian [P1Q96], Shanbhag, Kumar and Helleseth [ShKH96], etc.

For other recent papers dealing with codes over Z4 see [DoHaS97], [Huff98a],
[Rain98a], [RaSI98g].

Bannai et al. [BanDHO97] investigate self-dual codes over Zgj and their rela-
tionship with unimodular lattices.

Notes on Chapter 17: The 24-Dimensional Odd Unimodular
Lattices

The chapter has been completely retyped for this edition, in order to describe the
enumeration process more clearly, and to correct several errors in the tables.

Neighbours. Borcherds uses Kneser’s notion of neighboring lattices [Kned], [Ven2],
defined as follows. Two lattices L and I’ are neighbors if their intersection L N L'/
has index 2 in each of them. We note the following properties.

(1) Let L be a unimodular lattice. Suppose v € L, 1/ u ¢ L and u - u € 47Z. Let
Ly={z€L:z-u=0(mod 2)} and L* = (Ly, 12 u). Then L* is a unimodular
neighbor of L, all unimodular neighbors of L arise in this way, and u,u’ produce
the same neighbor if and only if 1/ v = 1/2 v/ mod L,.

(i1) Let L be an even unimodular lattice. Suppose u € L, /2 u € L and
u-u € 4Z. Then LY is an even unimodular lattice if and only if u-u € 8Z. If
Yo u=1/3 4 mod L then L¥ = L* and 1 u = 14 u' (mod L,).
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(iii) Define the integral part of an arbitrary lattice M to be
M]=MnM*"={leM:l-MCZ}. (12)

If L is unimodular, and u € L, Yo u & L, u - u € 47, then the neighbor L* is also
equal to

[(L, 1fau)]. (13)

The proofs are straightforward, and are written out in full in [Wan96]. (Note
that a neighbor of a unimodular lattice need not be unimodular: it must have deter-
minant 1, but need not be integral. Overlooking this point caused some inaccuracies
in the statement of these properties in the second edition.)

For example, if L = Z® and z = (1/2)8, we obtain B = Ej.

As a second example, let L be the Niemeier lattice A?*, which we take in the
form obtained by applying Construction A to Ca4 (see §1 of the previous chapter).
Any a € A?* has the shape g=1/2 (2¢+4z) for ¢ € Caa, z € Z**. There are just two
inequivalent choices for z. If z = 8_1/2(224) then L is the odd Leech lattice Oay,
with minimal norm 3 (see the Appendix to Chap. 6). If z = 8~/2(—6,223) then L
1s the Leech lattice Aoy 1tself. In fact A%‘l is the unique even neighbor of Ags (see
Fig. 17.1).

Eq. (5) can be used to construct new lattices even if z does not satisfy (1). For
example many years ago Thompson [Tho7] showed that the Leech lattice can be
obtained from Dy4 by

Azq = [(D24, z)] (14)

0 1 23
I—(E,E,...,E) . (15)

But since the intersection Agq N Doy has index 47 in each of them, As4 and Doy are
not neighbors in our sense.

where

Notes on Chapter 18: Even Unimodular 24-Dimensional Lat-
tices

An error in Venkov’s proof was found and corrected by Wan [Wan96].

There are also two tiny typographical errors on page 435. In line 13, change
“rs” to “z4”, and in line 18 from the bottom, change “z; = (0,0,1,1,—-2,-2)" to
“e1 =(0,0,1,1,2,-2)”.

Scharlau and Venkov [SchaV94] use the method of Chapter 17 to classify all
lattices in the genus of BWig.

Notes on Chapter 20: Finding Closest Lattice Point

The following papers deal with techniques for finding the closest lattice point to a
given point (cf. Chap. 20), and with the closely related problem of “soft decision”
decoding of various binary codes. Most of these are concerned with the Golay code
and the Leech lattice. [AdB88], [Agr96], [Allc96], [Amr93], [Amr94], [BeeSh91],
[BeeSh92], [Forn89], [FoVa96], [LaLo89], [RaSn93], [RaSn95], [RaSn98], [SnBed9],
[Vard94], [Vard95a], [VaBe91], [VaBe93].
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Notes on Chapter 21: Voronoi Cells of Lattices and Quanti-
zation Errors

Because of an unfortunate printer’s error, the statement of one of the most impor-
tant theorems on Voronoi cells (Theorem 10 of Chap. 21) was omitted from the
first edition. This has now been restored at the top of page 474. Concerning the
previous theorem (Theorem 9), Rajan and Shende [RaSh96] have shown that the
conditions of the theorem are necessary and sufficient for the conclusion, and also
that the only lattices whose relevant vectors are precisely the minimal vectors are
the root lattices (possibly rescaled). Geometrically, this assertion is just that the
root lattices are the only lattices whose Voronoi cells have inscribed spheres.

Viterbo and Biglieri [ViBi96] give an algorithm for computing the Voronoi cell
of a lattice. A recent paper by Fortune [Fort97] surveys techniques for computing
Voronoi and Delaunay regions for general sets of points.

Notes on Chapter 23: The Covering Radius of the Leech Lat-
tice

Deza and Grishukhin [DezG96] claim to give a simpler derivation of the covering
radius of the Leech lattice, obtained by a refinement of Norton’s argument of Chap-
ter 22. However, as the reviewer in Math. Reviews points out (MR98b: 11074),
there 1s a gap in their argument. A correction will be published in Mathematika.

Notes on Chapter 25: The Cellular Structure of the Leech
Lattice

On page 520, in Fig. 25.1(b) the shaded node closest to the top of the page should
not be shaded.

Notes on Chapter 27: The Automorphism Group of the 26-
Dimensional Lorentzian Lattice

Borcherds [Borch90] has generalized some of the results of Chap. 27, by showing
that, besides the Leech lattice, several other well-known lattices, in particular the
Coxeter-Todd lattice K15 and the Barnes-Wall lattice BWi¢, are related to Coxeter
diagrams of reflection groups of Lorentzian lattices.

Borcherds (personal communication) remarks that some of the questions on the
last page of the chapter can now be answered.

(i1) There is a proof of the main result of this chapter that does not use the
covering radius of the Leech lattice on page 199 of [Borch95a], but it is very long
and indirect.

(iv) The group is transitive for II331,... . This follows from Corollary 9.7 of
[Borch87].

(v) The answer is yes: see Notes on Chapter 30.

Kondo [Kon97] has made use of the results in this chapter and in [Borch87] in
determining the full automorphism group of the Kummer surface associated with a



generic curve of degree 2.

Notes on Chapter 28: Leech Roots and Vinberg Groups

A lattice A in Lorentzian space R™? is called reflexive if the subgroup of Aut(A)
generated by reflections has finite index in Aut(A). Esselmann [Ess90] (extending
the work of Makarov [Mak65], [Mak66], Vinberg [Vinl1]-[Vin13], Nikulin [Nik3],
Prokhorov [Pro87] and the present authors, see Chap. 28) shows that for n = 20
and n > 22 reflexive lattices do not exist, and that for n = 21 the example found
by Borcherds (the even sublattice of I5; 1 of determinant 4) is essentially the only
one.

Allcock ([Allc97], [Allc97a]) found several new complex and quaternionic hyper-
bolic reflection groups, the largest of which behave rather like the reflection group
of IIa5 1 described in Chapter 27.

Two other recent papers dealing with the Lorentzian lattices and related topics

are Scharlau and Walhorn [SchaW92], [SchaW92a].

Notes on Chapter 30: A Monster Lie Algebra?

The Lie algebra of this chapter is indeed closely related to the Monster simple
group. In order to get a well behaved Lie algebra it turns out to be necessary to
add some imaginary simple roots to the “Leech roots.” This gives the fake Monster
Lie algebra, which contains the Lie algebra of this chapter as a large subalgebra.
See [Borch90a] for details (but note that the fake Monster Lie algebra is called the
Monster Lie algebra in this paper). The term “Monster Lie algebra” is now used
to refer to a certain “Z/2Z-twisted” version of the fake Monster Lie algebra. The
Monster Lie algebra is acted on by the Monster simple group, and can be used to
show that the Monster module constructed by Frenkel, Lepowsky, and Meurman
satisfies the moonshine conjectures; see [Borch92al.

For other recent work on the Monster simple group (Chap. 29) and related
Lie algebras see [Borch86]-[BorchR96], [Con93], [Fre5], [Tva90], [Iva92], [Tva92al,
[Lep88], [Lep91], [Nor90], [Nor92].

For further work on “Monstrous Moonshine” see Koike [Koik86], Miyamoto
[Miya95], the conference proceedings edited by Dong and Mason [DoMa96], and
the Cummins bibliography [Cumm)].

Errata for the Low-Dimensional Lattices papers [CSLDL1] —
[CSLDLT7]

[CSLDL1]. On page 37, in line 8 from the bottom, the second occurrence of
p =1 should be p = —1.

[CSLDL2]. On page 41, in Table 1, the first occurrence of @Q23(4)%* should be
Q23(4)*>.

[CSLDL3]. On page 56, in Table 1, the entry for P2 should have p = 2 (not 4).
On page 62, at about line 10, “78&.” should be “78¢;”. On page 68, in the entry
for p32, the third neighbor should be changed from “p2®” to “p2”. In the entry for

li



pi3, the six neighbors should read, in order, “p%l,p?,p%,py,p%,p%”. On page 70, in

the entry for pt”, the second neighbor should be changed from “p}5” to “pZ”.

[CSLDLA4]. In line 1 of page 273, change “7” to “3”.

lii
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Patch for p. 14

Figure 1.5. The densest sphere packings known in dimensions n < 48. The vertical
axis gives log, § + n(24 — n)/96, where ¢ is the center density. The A,, are laminated
lattices, the K, are described in Chap. 6, K15 is the Coxeter-Todd lattice, the crosses
are nonlattice packings (Chap. 5, §§2.6,4.3), and @32, Bss and Pagg are described
in Table 1.3a. The upper bound is Rogers’ bound (39), (40). (See also Table I.1 of
the Introduction.)



Patch for p. 15

Table 1.2. Sphere packings in up to 24 dimensions. (See Tables 1.1, 1.2 of the
Introduction for recent improvements.)

Patch for p. 16

Table 1.3. Sphere packings in more than 24 dimensions. (See Tables 1.1, 1.2 of the
Introduction for recent improvements.)

n Name log,d  Bound Kissing no. Ch., §
32 A 0 5.52 208320 6,7
BWs, 0 146880 8,8.2f
Cis: 1 249280 8,8.2h
@32 1.359 261120 8,4
36 Py,  —1 8.63 42840 5,5.5
Ass 1 234456 5,5.3
Bsg 2 8,8.2d
48 Ags 12 15.27 6,7
Pas, 14.039 52416000 5,5.7
Pag, 14.039 52416000 5,5.7
60  Psop 16.548  27.85 3908160 5,5.5
64 BWe 16 31.14 9694080  8,8.2f
Qs4 18.719 2611200 8,2
Pesac 22 8,8.2¢
80 n(Es) 36 49.90 8,10c
96 n(Pasg) 52078  70.96 8,10g
104  n(Bs) 60 80.20 8,10c
128 BWiys 64 118.6 1260230400 88.2f
Py 85 5,6.6
n(Es) 88 8,10c
136 n(Bs) 100 129.4 8,10c
150 Al 11306 153.2 8.6
180 n(Az) 133 206.7 8,10c
ALY 15412 8,6




Patch for p. 17

Table 1.3 (cont.)

n Name log., 6 Bound Ch., §
192 n(As4) 156 230.0  8,10e
ALS) 171.44 8,6
256 BWase 192 357.0  8,8.2f
B256 250 8,82g
A 270.89 8,6
508 ALY 742.66 948.1 8,6
512 Bspo 698 957.4  88.2g
520 ALY 767.46 980.1 8,6
1020 A 1922 2406 8,6
1030 A% 1947 2439 8,6
2052 AU 4755 5871 8,6
4096  n(Are) 11344 13750 8,10c
4008 AZY) 11279 13758 8,6
8184 n(Aza) 26712 31547 8,10e
8190 ALY 26154 31573 8,6
8208 n(Ay) 26808 31655 8,10e
16380 APLY 59617 71325 8,6
16392 1n(Az4) 61608 71387 8,10e
32784 n(Aa) 139488 159154 8,10e
65520 n(Ass) 311364 350788 8,10e
65544  1(A2a) 311496 350932 8,10e
131088 73(A2d) 664962 767395 8,10f
262152 n3(Ass) 1.475-10° 1.666-10° 8,10f
524304 73(Asa)  3.178-10° 3.594-107 8,10f
1048584  73(Asq)  6.918-10° 7.711-107 8,10f

Patch for p. 37

Figure 2.4. The thickness of various lattice coverings in dimensions n < 24. The
values for A1z to Aj5 and Aj7 to Asz are lower bounds. (They are computed using
the subcovering radius of Chap. 6.) See Notes on Chapter 2 for recent improvements.
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Table 2.1. Coverings in up to 24 dimensions. (See Notes on Chapter 2 for recent
improvements.)

Patch for p. 61

Table 2.3. Bounds for GG,, the mean squared error of the optimal n-dimensional
quantizer. (92) is our conjectured lower bound. (See also Introduction to Third
Edition.)

Patch for p. 114

where i, j, k, £ are integers with i + j + k = 0 [Slo19]. With the first definition
the Voronoi cells have volume 1/\/5, minimal norm = 1, 7 = 12, minimal vectors =
(£1,0,0), (£1/2,4v/3/2,0), (0,—1/+/3,4/2/3) and (£1/2,1/V/12,++/2/3), p =
1/2, A = 7r/3\/§ =0.7405...,and R = p\/§ = 1/\/2 There are two kinds of holes,
deep or octahedral holes such as (0, 1/\/3, 1/\/6) and shallow or tetrahedral holes
such as (1/2,1/1/12,1/1/24). Theta series:

Patch for p. 117

Then det = 4, minimal norm = 2, kissing number 7 = 2n(n — 1), minimal vectors =
all permutations of (+£1,+1,0,...,0), h = 2n — 2, packing radius p = 1/4/2, center
density § = 2=(*+2)/2 and covering radius R = pv/2 (n = 3) or py/n/2 (n > 4).
There are two kinds of hole, deep holes such as the glue vectors [2] (if n < 4) or [1]
(if n > 4), and shallow holes such as the glue vectors [1] (if n < 4) or [2] (if n > 4).
For n = 4 there is only one kind of hole. The Voronoi cell is given in Chap. 21, and
the Delaunay cells in §4.2 of Chap. 5. Glue vectors:

Patch for p. 119

maps the first version into the second. ((90) also defines the dual lattice D} —
see §7.4 — showing that Dy = D}.) Using the definition (86), det = 4, minimal
norm = 2, 7 = 24, minimal vectors = all permutations of (+1,+1,0,0), h = 6,
p=1/vV2, A =n%/16 = 0.6169... (§ = 1/8), R = pv/2 = 1, typical deep holes
= (&£ 1/2, £ 1/2, £/, £1/) and (0,0,0,41), © = 72/4 = 2.4674 .. .. The Voronoi cell
is the regular 4-dimensional polytope known as the 24-cell or {3,4,3} (Chap. 21,
[Cox20, §8.2]). The three nonzero cosets Dy + [7], i = 1,2, 3, are equivalent. Theta
series

Op,(2) = 1a(03(2)" + 0a(2)") = 02(22)" + 03(22)° (92)



(cf. Eq. (89) of Chap. 7). D4 is the unique lattice with this density.

Using the second definition, (90), D4 consists of the vectors (a,b,c,d) with a,
b, ¢, d all in Z or all in Z + 1/2, and therefore may be regarded as the lattice of
Hurwitz integral quaternions ([Cox8], [Cox18, p. 25], [Harh, §20.6], [Hurl]). This
gives the lattice points the structure of a skew domain. As an Eisenstein lattice,

Dy is generated by (2,0) and (1, 6).

Patch for p. 121

holes such as ((1/6)7,5/6), surrounded by 9 lattice points (see Fig. 21.8). E} = Fg,
so there is no glue (or more precisely the only glue is [0] = (08)).

Patch for p. 148

and from Construction Bg, if d. and d, are respectively the minimal even and odd
distances between codewords,

p = min{3/V2, \/d., Yfor/d, + 3} , (8)
§ = Mpr2713™". (9)

Patch for p. 195

Pugq and Pagp have det = 1, minimal norm = 6, 7 = 52416000, their minimal
vectors are described in Table 5.3, p = +/3/2, A = 0.00000002318 ... (6 = (3/2)** =
16834.112...), and the covering radii R are not known, but R > 2, corresponding to
putatively deep holes ¢(2'%,0%%). We have Aut(Pagq) = SL2(47), and Aut(Pagp) =
SL2(23) x Sg [Tho7]. (It is because there is no suitable group containing both
L2(23) and L4(47) that we know these lattices are inequivalent.) Theta series: see
Eq. (68) and Eq. (57) of Chap. 2, Table 7.1. For cross sections see Corollary 8 of
Chap. 6.

Patch for p. 227

(c)  The lattices A,({”). Craig’s lattices A;m) described in §6 were originally con-
structed in [Crab] as the lattices A(A), where A is the ideal ((1 — (,)™) in the
cyclotomic field Q(¢,) and p = n + 1 is a prime.



Patch for p. 248

Table 9.1. The best codes: bounds for A(n,d) (a: [Besl], b: [Pul82], ¢: [Rom1], d:
[Ham88], e: [Kaik98], g: Etzion [CHLL], p. 58, k: [KiHa98], o: [Ost98]).

n d=14 d==6 d=238 d=10
6 4 2 1 1

7 8 2 1 1

8 16 2 2 1

9 20 4 2 1
10 40 6 2 2
11 72° 12 2 2
12 144° 24 4 2
13 256 32 4 2
14 512 64 8 2
15 1024 128 16 4
16 2048 256 32 4
17 2720°-3276 256-340 36-37 6
18 53129-6552 512-680 64-72° 10
19 10496-13104 1024-1288 | 128-144 20
20 | 20480°-26208 2048-2372 | 256-279 40
21 36864-43690 2560-4096 512 42¢-48°
22 73728-87380 4096-6942 1024 50°-88°
23 | 147456-173784 | 8192-13774 2048 76°-150
24 | 294912-344308% | 16384-24106 4096 128-280

Patch for p. 282

(12 13 14)(21 7 18)(17 1 20)(2 19 15)(6 3 11)(c0 5 10)(16 0 9)(4 22 8),

Patch for p. 293

A pretty series of subgroups of -0 arises in the following way [Tho7]. The centralizer
of a certain element z of order 3 in -0 has the form (z) x 2Ag, the 2Ag being the Schur
double cover of Ag, and containing a natural sequence of subgroups 2A,,(2 < n < 9).
The centralizers B,, of 2A, are, for n = 2,3,...,9, groups -0, 65Suz, 2G3(4), 2HJ,
2U5(3), 2L3(2), 2A4, Cs, where HJ (also called .J3) is the Hall-Janko simple group
[Hal4] and Swuz is Suzuki’s sporadic simple group [Suzl]. Tt follows that H.J has
a multiplier of order divisible by 2, and Suz a multiplier of order divisible by 6,
and also that HJ has a 6-dimensional projective representation that can be written
over Q(v/—3,v/=5), while Suz has a 12-dimensional projective representation over
Q(+/=3). The latter can be obtained as follows. Take an element w of order 3 with
no fixed point, and so satisfying (as a matrix) the equation w? + w + 1 = 0. Then,
in the ring of 24 x 24 matrices, w generates a copy of the complex numbers in which
it is identified with €27/3. If we define, for z € A, z(a + be%i/?’) = azr + b(zw),
the Leech lattice becomes the compler Leech lattice Ac (see Chap. 7, Example 12),



a 12-dimensional lattice (or module) over the ring Z[e>™/3] of Eisenstein integers,
and the automorphism group of A¢ is the group 6Suz. The complex Leech lattice

has a natural coordinate system that displays a

Patch for p. 363 is on the next page



Table 15.2b. Reduced indefinite binary forms.

Forms

{172}, {355%736}
{17359%4}, {26826}, {45}
{174°7%}, {27}

{1753952} {356}
{176%5},{273%10}

{177}, {2510%4}, {45548}
{1781763}, {274°8%6}
{17926473}, {2611°37}
{17103572}
{1711%4}, {2512}, {36827°5}, {456}
{1712537459455} {2765}
{171352}

{1714}, {277}, {3°936}

0%}, 081}, 082}, 0337550, 084}, 0868}, 03754}, 038}

{15}, {278}, { 74510}, {5°8%7%}
{182}, {3°10*5%6}

{18376572972}

{184},{28},{468i}

{18574511°3}, {27106}
{186%9°5}, {28377}

{18755%1172}

{198}, {2%4}, {3°12}, {4°9°7"8}, {6°}
{18918738}, {2712°476°83}
{1%10%7°}, {2%57}

{181136}, {271353}, {5°10}
{18124568297384}, {2%6410°4}
{1%13%477}, {2714}
{181433},{28756}

{181572}, (3857659473107)

{1816}, {288}, {45115}, {48}, {8*}

0°},0°1}, 092}, 093}, 094780, 09569385790, 0°6}, 0°9}

{19}, {289}, (371146%)

{192}

{1°3},{2810%85}, {4512}, {4%7°}
{1°4792}, {2°}, {5°1273875}, {"” 76510}
{1°55104731182}

{196}, {2°3)

{1°975948}, {2812%684}, {45137388}, {486}
{1°8758}, {294710385}

{199}, {3°}, {2813°5}, {6°9°}
{1°101983714}, {2°5611%677}
{1°11285784}, {281454}
{1°123741174°3}, {26}
{1°13%6857921083715%2}

{1°14°5}, {2°7°10}
{1°1554},{3%5%12}, {2%16}, {438}, {65108}
{1°167381138%941, {2°876°1274°}
{1°1782}, {77}

{1918}, {2°9}, {3%6}, (537°93107)

010}, 0101}’ 0102}’ 010381247100’ 0104}’ 0105}’ 01068},



Patch for p. 408

The glue codes for the Niemeier lattices Eg, DS, Al? A?* are respectively the
tetracode C4, the hexacode Cg, and the Golay codes Cia, Cas (8§2.5.1, 2.5.2, 2.8.5,
2.8.2 of Chap. 3). The glue codes for A%2 and A1y Dy Eg are given in full in Chap. 24.
For A§ the group G2(A$§) is isomorphic to PG Ly(5) acting on {00, 0,1,2,3,4}. For
AS§ the group G2(A$) is isomorphic to 23. PSLy(7) acting on the extended Hamming
code of length 8 over the integers modulo 4. The glue codes are also described (often
using different coordinates) by Venkov in Chap. 18. Other references dealing with
the Niemeier lattices are [Erol]-[Ero3].

Patch for p. 483

On the other hand, if V4, ..., V, are a set of fundamental roots corresponding to
an extended diagram, there are positive integers ¢, ..., ¢, such that X ¢V; =0
([Boul], [Cox20, p. 194], [Hum1, p. 58]). These integers are shown in Fig. 23.1. If
this diagram occurs as a subgraph of a hole diagram, vy, .. ., v,, are the correspond-
ing vertices and c is the center of the hole, then X ¢;(v; — ¢) = 0. Thus the center
can be found from

Patch for p. 514

Table 25.1. A list of all 307 holes in the Leech lattice. The first 23 entries are
the deep holes. The entries give the name of a hole P;, the order g(P;) of its
automorphism group, its scaled volume

svol(P;) = vol(P;) - 24!,

the norm s(P;) of its Weyl vector, and the determinant d(P;) of the Cartan matrix.
The volume formula then becomes

> svol(P;)/g(P;) = 241/|Coo| = T4613 .

)

The name of a hole indicates the orbits of its automorphism group on the compo-
nents of the diagram. Thus the hole a2aaza? has two components of type a7 that
are equivalent under the automorphism group, also two equivalent components of
type a1, and three components of type agz, only two of which are equivalent.



Patch for p. 529

Figure 27.3. A convenient set of 35 Leech roots, representing the Leech lattice
points closest to a deep hole of type As4. The coordinates of the points are as
follows: 4 : (0%, 41, —1,0237%0) for 0 < i < 23; 24 : (—1/2,(1/2)*3,3/2|5/2); 25 :
(—12,0%%]0); 26 : (07, 1154); 27 : ((1/2)'2, (3/2)'2[11/2); 28 : ((1/2)7, (3/2)]9/2);
29 @ (022,13[1); 30 : (05,1%%,2516); 31 : (010,114 2/4); 32 : (0%, 111, 2107); 33 -
(1/2)%, (3/2)17, (5/2°[15/2); 34 : (014, 111]3).

10
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The 24-Dimensional
Odd Unimodular Lattices

R. E. Borcherds

This chapter completes the classification of the 24-dimensional unimodular lattices
by enumerating the odd lattices. These are (essentially) in one-to-one correspon-
dence with neighboring pairs of Niemeier lattices.

1. Introduction

The even unimodular lattices in 24 dimensions were classified by Niemeier [Nie2]
and the results are given in the previous chapter, together with the enumeration
of the even and odd unimodular lattices in dimensions less than 24. There are
twenty-four Niemeier lattices, and in the present chapter they will be referred to by
their components Day, DigFsg, ... (with the Leech lattice being denoted by As4),
and also by the Greek letters o, 3, ... (see Table 16.1).

The odd unimodular lattices in 24 and 25 dimensions were classified in [Borl]. In
this chapter we list the odd 24-dimensional lattices. Only those with minimal norm
at least 2 are given, i.e. those that are strictly 24-dimensional, since the others can
easily be obtained from lower dimensional lattices (see the summary in Table 2.2 of
Chapter 2).

Tables of all the 665 25-dimensional unimodular lattices and the 121 even 25-
dimensional lattices of determinant 2 are available electronically from [BorchHP].

The 665 25-dimensional unimodular lattices are also available from the electronic
Catalogue of Lattices [NeSl].

Two lattices are called neighbors if their intersection has index 2 in each of them
[Kned], [Ven2] (see Introduction to Third Edition for a discussion of this concept).

We now give a brief description of the algorithm used in [Borl] to enumerate
the 25-dimensional unimodular lattices.

The first step is to observe that there is a one-to-one correspondence between
25-dimensional unimodular lattices (up to isomorphism) and orbits of norm —4
vectors in the even Lorentzian lattice Ilz5 1: the lattice A corresponds to the norm
—4 vector v if and only if the sublattice of even vectors of A is isomorphic to the
lattice v1. So we can classify 25-dimensional unimodular lattices if we can classify
negative norm vectors in Ils ;.

We classify orbits of vectors of norm —2n < 0 in I35 ; by induction on n as
follows. First of all the primitive norm 0 vectors correspond to the Niemeier lattices
as in Section 1 of Chapter 26. So there are exactly 24 orbits of primitive norm 0



vectors, and any norm 0 vector can be obtained from a primitive one by multiplying
it by some constant.

Suppose we have classified all orbits of vectors of norms —2m with 0 > —2m >
—2n, and that we have a vector v of norm —2n. We fix a fundamental Weyl chamber
for the reflection group of Ils5 1 containing v, as in Chapter 26. We look at the root
system of the lattice v+, and find that one of the following three things can happen:

1. There is a norm 0 vector z with (z,v) = 1. Tt turns out to be trivial to
classify such norm —2n vectors v: there is one orbit corresponding to each
orbit of norm 0 vectors. They correspond to lattices v+ which are the sum of
a Niemeier lattice and a 1-dimensional lattice generated by a vector of norm
2n.

2. There is no norm 0 vector z with (z,9) = 1 and the root system of v1 is
nonempty. In this case we choose a component of the root system of v and
let r be its highest root. Then the vector u = v 4 r has norm —2(n — 1), and
the assumption about no norm 0 vectors z with (z,v) = 1 easily implies that
u is still in the Weyl chamber of Ils5 ;. Hence we have reduced v to some
known vector u of norm —2(n — 1), and with a little effort it is possible to
reverse this process and construct v from u.

3. Finally suppose that there are no roots in v%. As v is in the Weyl chamber
this implies that (v, r) < —1 for all simple roots r. By Theorem 1 of Chapter
27 there is a norm 0 (Weyl) vector wys with the property that (wqs,r) = —1
for all simple roots r. Therefore the vector u = v — ws5 has the property that
(u,7) < 0 for all simple roots r. So u is in the Weyl chamber, and has norm
—2n — (u, wes) which is larger than —2n unless v is a multiple of was. So we
can reconstruct v from the known vector v as v = u + wss.

In every case we can reconstruct v from known vectors, so we get an algorithm
for classifying the norm —2n vectors in IIs5:. (This algorithm breaks down in
higher-dimensional Lorentzian lattices for two reasons: it is too difficult to classify
the norm 0 vectors, and there is usually no analogue of the Weyl vector was.)

We now apply the algorithm above to find the 121 orbits of norm —2 vectors
from the (known) norm 0 vectors, and then apply it again to find the 665 orbits of
norm —4 vectors from the vectors of norm 0 and —2.

The neighbors of a strictly 24 dimensional odd unimodular lattice can be found
as follows. If a norm —4 vector v € Ils5; corresponds to the sum of a strictly 24
dimensional odd unimodular lattice A and a 1-dimensional lattice, then there are
exactly two norm-0 vectors of Ils5; having inner product —2 with v, and these
norm 0 vectors correspond to the two even neighbors of A.

The enumeration of the odd 24-dimensional lattices. Figure 17.1 shows
the neighborhood graph for the Niemeier lattices, which has a node for each Niemeier
lattice. If A and B are neighboring Niemeier lattices, there are three integral lattices
containing AN B, namely A, B, and an odd unimodular lattice C' (cf. [Kned]). An
edge is drawn between nodes A and B in Fig. 17.1 for each strictly 24-dimensional
unimodular lattice arising in this way. Thus there is a one-to-one correspondence
between the strictly 24-dimensional odd unimodular lattices and the edges of our
neighborhood graph. The 156 lattices are shown in Table 17.1. Figure 17.1 also
shows the corresponding graphs for dimensions 8 and 16.

For each lattice A in the table we give its components (in the notation of the
previous chapter) and its even neighbors (represented by 2 Greek letters as in Table
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16.1). The final column gives the orders gy - g2 of the groups G1(A), G2(A) defined
as follows. We may write Aut(A) = Go(A).G1(A).G2(A) where Gy is the reflection
group. The group G is the subgroup of Aut(A) of elements fixing a fundamental
chamber of the Weyl group and not interchanging the two neighbors. The group
G2(A) has order 1 or 2 and interchanges the two neighbors of A if it has order 2.
(Tt turns out that G3(A) has order 2 if and only if the two components of A are
isomorphic.) The components are written as a union of orbits under G1(A), with
parentheses around two orbits if they fuse under G2(A).

The first lattice in the table is the odd Leech lattice O34, which is the only one
with no norm 2 vectors. The number of norm 2 vectors is given by the formula

8h(A) + 8h(B) — 16

where h(A) and h(B) are the Coxeter numbers of the even neighbors of the lattice.
These Coxeter numbers satisfy the inequality h(B) < 2h(A) — 2 and the lattices for
which equality holds are indicated by a thick line in Figure 17.1. The Weyl vector
p(A) of the lattice A has norm given by the formula p(A)? = h(A)h(B).
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Table 17.1a

Components g192
.1 224 w Y 22 My
2 ATOq6 W | 103219202
3 A%fGOlg (Y% 190080
4 ;411008 Yo 43008
5 A5A7° 010 X X 2880 - 2
6 4A%4 T 138240
7 A3A30s X ¢ 384
8 ASA8Og X U 240
9 A%fiPOG ¢ ¢ 3842
10 A3A3ASO; ¢ ¢ 48 -2
11 A8Og ¢ ¢ 336-2
12 ASATO, X O 384
13 A2ASAT06 o v 16
14 ALA30, oT 384
15 z;{gA‘llA‘fOzl oo 48
16 A2A3ALA205 oo 16
17 A4A3A§A‘%O5 v 8-2
18 AgA%A%OG v U 16 -2
19 A3AL04 o p 24
20 ASO5 vr 240
21 A2ASAT04 vo 16
22 A4A%A3A%A%05 v o 4
23 A3AZAT0, o T 32
Zil AiA%fl%AjOzl vp 4
25 D32 A8 TT 576 - 2
26 D4A§A‘%O4 T O 48
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Table 17.1b

Components g192
27 A5 (A3A3)A§A104 oo 8-2
28 AZ(AgAg)Ag(AlAl)OE, g o 4-2
30 4A3A10, oo | 16-2
31 D4A4A204 g o 122
32 A8 b& | 384
33 A2ZA4A3AZA203 vr | 4
34 A2A§O4 v T 16
35 A5A4A3A3A2A2A104 g p 2
36 A3ATO, cp 24
37 A3A30; vo 12
38 D3 A30,4 T 32
39 A5AZA3A3A104 o T 4
40 AZAZAZAZA20, on| 8
41 A5D4A%A3A%A103 o T 4
42 D4AZA4A%O4 o T 4
43 AgABA304 pp | 62
44 AZA2A204 pp | 4-2
46 A3A20, vV 16
47 AgAz}AgA%Og g o 4
48 A6A4A4A3A2A1A103 p T 2
49 AZA2A204 pm 4
50 DiAs TE| 48
51 AZD4AZA20, o | 8
52 A5A5A31A303 o Vv 4
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Table 17.1c

Components g192
53 AZD4AZATO, cv | 4
54 A6A5A4A3A2A103 p o 2
55 A6D4(A4A4)A204 T 2.2
56 D5A4(A4A4)(A2A2)O3 T 2.2
57 A7(AZA2)AY0, T | 82
58 AZD3A204 mw | 8-2
59 D5A5 (A3A3)A3(A1A1)A102 T 2.2
60 D5D4A§03 T 8-2
61 A0, p& | 24
62 AZAZA20, pv 4
63 A6A5A5A3A203 pv 2
64 AR AT ou | 48
65 AgA5D4A3A101 oA 4
66 A3A4A3A%03 m™o 4
67 A7 A2A205 rol| 4
68 D5A§D4A%O3 7T£ 4
69 D2A0, r&| 16
70 A6D5A4A4A203 TV 2
71 A7A5D4A3A1A1A102 m™V 2
72 A7A5A421A103 m™V 4
73 A7 AZA205 00 | 4:2
74 DS T 48
75 A6A6A5A4A102 pP A 2
76 A7A6A5A2A103 ov 2
77 AgA2A20, ov | 4
78 AZAZ20, pK 4
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Table 17.1d

Components 9192
79 DZAZAZ0, T 8
80 A6A6D5A403 ™A 2
81 A7D5D4A3A302 ™A 2
82 D5D5A§A%02 ™A 4
83 A7D5A5A3A1A1A101 ™A 2
84 Dg D3 A €162
85 D AZA20, v | 4
86 Ag(AsAs)AgOg vv 2.2
87 D6AgA%02 vv 4.2
88 AZD4(A2A2)0, v | 4.2
89 AZ2A30, T K 4
90 A8A6A5A2A102 oA 2
91 A%DZOQ Tl 8
92 A7D2A%0, T 4
93 A8A7A4A302 O K 2
94 D0, Ep | 48
95 D D5 A205 EX| 4
96 A8A6D5A203 v A 2
97 A7D6A5A3A102 v A 2
98 A9A5D4A3A1A101 v A 2
99 A?Og 0t 12
100 A$D5D401 ol 4
101 A9A6A5A202 V K 2
102 AgA%Oz VK 4
103 AZDg A20, vi| 4
104 DID2AY cu | 4
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Table 17.1e

Components g192
105 AZD2 T 8
106 AgA20, o 4
107 E6D5AgA%01 H A 4
108 Eg(AsAg) A0y AN |22
109 | A7EsD4(A3A5)01 | AN | 2.2
110 | Ag(DsDs)(A1A1)A105 | A A | 2-2
111 | D7(AsA5)AsA:0; | A A | 2-2
112 A10A6A5A102 AK 2
113 A9A8A502 v 2
114 A9D6A5A301 v 2
115 AZA70, oC | 4
116 D7A7D5A302 AL 2
117 AgA%Oz kK |42
118 D2Dg Dy A2 En| 2
119 A9A7D6A101 v 2
120 A9A7D6A101 v C 2
121 A11D5D4A30, A6 2
122 AgD7As A1 A104 Ad 2
123 DsDj te | 4-2
124 A11A8A302 k0 2
125 E2D20, un| 8
126 A9E6D6A102 A n 2
127 D7A7E6A301 A n 2
128 A19EsAgO5 AC | 2
129 A1 D As A1 01 AC| 2
130 D} e | 8
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Table 17.1f

Components 192
131 DSA%OQ L 0 4
132 A12A7A401 K C 2
133 | DgDIAZAZ | vy | 2
134 A11D7D501 Ae 2
135 A2,0, K€ 4
136 Dy A20, on | 4
137 | A13DeA3A101 | 6 ¢ | 2
138 DiD? L€ 2
139 E7D6D6D4A1 nn -2
140 A9E7A701 n C 2
141 A12A1101 Ko 2
142 A11D9A301 0 e 2
143 | DyoD2A? ne | 2
144 A15A801 66 2
145 D3 Ly 6
146 D2Ds LB 2
147 | Aj6A704 ¢ | 2
148 A15D504 03| 2
149 DgE2A? ny | 2
150 D10E7D6A1 n /3 1
151 | AisEqA100 | CB| 2
152 D12D8D4 € ﬂ 1
153 EsD} vB | 2
154 D2, €« 2
155 A2301 0« 2
156 D16Dg ﬂ « 1

429




FIGURE 17.1 (copy from page 423) GOES SOMEWHERE HERE!
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Supplementary Bibliography (1988-1998)

This supplementary bibliography covers the period 1988—1998, and also includes
some earlier references that should have been included in the first edition. Besides
the journal abbreviations used in the main bibliography, we also use

DCC Designs, Codes and Cryptography

DCG = Discrete and Computational Geometry

EJC European Journal of Combinatorics

JNB Journal de Théorie des Nombres de Bordeaux
(formerly Sém. Théor. Nombres Bordeaux)

Most (although not all) of these references are mentioned in the Preface to the
Third Edition. (We apologize if we have overlooked any relevant papers, or, having
listing them here, have failed to mention them in the Preface. No disrespect was

intended.)
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