Gray Codes for Reflection Groups

J.H. Conway1, N.J.A. Sloane2 and Allan R. Wilks2

1 Mathematics Department, Princeton University, Princeton, NJ 08540, USA
2 Mathematical Sciences Research Center, AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

Abstract. Let G be a finite group generated by reflections. It is shown that the elements of G can be arranged in a cycle (a "Gray code") such that each element is obtained from the previous one by applying one of the generators. The case $G = S_n$ yields a conventional binary Gray code. These generalized Gray codes provide an efficient way to run through the elements of any finite reflection group.

1. Introduction

The classical version of a Gray code is a Hamiltonian circuit through the 2^n vertices of the n-cube, or equivalently an ordering of the 2^n binary vectors of length n such that each pair of adjacent vectors (including the first and last) differ in a single position. For the extensive literature see the bibliography. The first appearance of the "Gray code" that we have located is in 1872 [29].

As we will show, the classical version is the special case $G = S_n$ of the following.

Theorem. Let G be a finite group generated by reflections R_1, \ldots, R_m. Then there is a Hamiltonian circuit in the Cayley diagram for G corresponding to these generators. In other words the $g = |G|$ elements of G can be arranged in order

$$\{a_0, a_1, \ldots, a_{g-1}\}$$

so that for each i ($0 \leq i \leq g - 1$) there is j so that $a_{i+1} = a_i R_j$ (where $a_g = a_0$).

We call (1) a Gray code for G.

It is well-known that any group generated by reflections can be described by a Coxeter diagram [7, 14, 15, 31]. The finite reflection groups for which the Coxeter diagram is a connected graph are ([7], p. 193, Theorem 1) the groups S_n ($n \geq 1$), B_n ($n \geq 2$), D_n ($n \geq 4$), E_6, E_7, E_8, F_4, G_2, H_3, H_4 and J_m ($m = 5$ or $m > 7$).* These are the irreducible reflection groups. Figure 1 shows their Coxeter diagrams,

* We follow Grove and Benson [31] in using script letters for these groups, to distinguish them from the Lie groups and Euclidean lattices with similar names.