lj.3.4

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.4 contains the coords of the putatively optimal arrangement of 4 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.5

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.5 contains the coords of the putatively optimal arrangement of 5 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.6

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.6 contains the coords of the putatively optimal arrangement of 6 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.7

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.7 contains the coords of the putatively optimal arrangement of 7 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.8

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.8 contains the coords of the putatively optimal arrangement of 8 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.9

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.9 contains the coords of the putatively optimal arrangement of 9 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.10

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.10 contains the coords of the putatively optimal arrangement of 10 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.11

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.11 contains the coords of the putatively optimal arrangement of 11 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.12

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.12 contains the coords of the putatively optimal arrangement of 12 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.13

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.13 contains the coords of the putatively optimal arrangement of 13 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.14

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.14 contains the coords of the putatively optimal arrangement of 14 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.15

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.15 contains the coords of the putatively optimal arrangement of 15 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.16

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.16 contains the coords of the putatively optimal arrangement of 16 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.17

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.17 contains the coords of the putatively optimal arrangement of 17 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.18

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.18 contains the coords of the putatively optimal arrangement of 18 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.19

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.19 contains the coords of the putatively optimal arrangement of 19 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.20

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.20 contains the coords of the putatively optimal arrangement of 20 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.21

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.21 contains the coords of the putatively optimal arrangement of 21 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.22

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.22 contains the coords of the putatively optimal arrangement of 22 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.23

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.23 contains the coords of the putatively optimal arrangement of 23 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.24

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.24 contains the coords of the putatively optimal arrangement of 24 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.25

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.25 contains the coords of the putatively optimal arrangement of 25 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.26

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.26 contains the coords of the putatively optimal arrangement of 26 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.27

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.27 contains the coords of the putatively optimal arrangement of 27 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.28

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.28 contains the coords of the putatively optimal arrangement of 28 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.29

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.29 contains the coords of the putatively optimal arrangement of 29 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.30

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.30 contains the coords of the putatively optimal arrangement of 30 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.31

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.31 contains the coords of the putatively optimal arrangement of 31 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.32

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.32 contains the coords of the putatively optimal arrangement of 32 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.33

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.33 contains the coords of the putatively optimal arrangement of 33 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.34

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.34 contains the coords of the putatively optimal arrangement of 34 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.35

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.35 contains the coords of the putatively optimal arrangement of 35 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.36

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.36 contains the coords of the putatively optimal arrangement of 36 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.37

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.37 contains the coords of the putatively optimal arrangement of 37 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.38

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.38 contains the coords of the putatively optimal arrangement of 38 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.39

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.39 contains the coords of the putatively optimal arrangement of 39 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.40

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.40 contains the coords of the putatively optimal arrangement of 40 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.41

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.41 contains the coords of the putatively optimal arrangement of 41 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.42

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.42 contains the coords of the putatively optimal arrangement of 42 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.43

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.43 contains the coords of the putatively optimal arrangement of 43 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.44

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.44 contains the coords of the putatively optimal arrangement of 44 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.45

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.45 contains the coords of the putatively optimal arrangement of 45 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.46

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.46 contains the coords of the putatively optimal arrangement of 46 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.47

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.47 contains the coords of the putatively optimal arrangement of 47 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.48

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.48 contains the coords of the putatively optimal arrangement of 48 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.49

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.49 contains the coords of the putatively optimal arrangement of 49 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.50

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.50 contains the coords of the putatively optimal arrangement of 50 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.51

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.51 contains the coords of the putatively optimal arrangement of 51 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.52

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.52 contains the coords of the putatively optimal arrangement of 52 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.53

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.53 contains the coords of the putatively optimal arrangement of 53 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.54

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.54 contains the coords of the putatively optimal arrangement of 54 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.55

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.55 contains the coords of the putatively optimal arrangement of 55 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.56

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.56 contains the coords of the putatively optimal arrangement of 56 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.57

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.57 contains the coords of the putatively optimal arrangement of 57 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.58

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.58 contains the coords of the putatively optimal arrangement of 58 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.59

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.59 contains the coords of the putatively optimal arrangement of 59 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.60

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.60 contains the coords of the putatively optimal arrangement of 60 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.61

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.61 contains the coords of the putatively optimal arrangement of 61 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.62

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.62 contains the coords of the putatively optimal arrangement of 62 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.63

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.63 contains the coords of the putatively optimal arrangement of 63 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.64

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.64 contains the coords of the putatively optimal arrangement of 64 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.65

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.65 contains the coords of the putatively optimal arrangement of 65 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.66

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.66 contains the coords of the putatively optimal arrangement of 66 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.67

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.67 contains the coords of the putatively optimal arrangement of 67 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.68

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.68 contains the coords of the putatively optimal arrangement of 68 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.69

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.69 contains the coords of the putatively optimal arrangement of 69 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.70

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.70 contains the coords of the putatively optimal arrangement of 70 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.71

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.71 contains the coords of the putatively optimal arrangement of 71 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.72

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.72 contains the coords of the putatively optimal arrangement of 72 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.73

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.73 contains the coords of the putatively optimal arrangement of 73 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.74

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.74 contains the coords of the putatively optimal arrangement of 74 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page

lj.3.75

Found in 1994 by R. H. Hardin & N. J. A. Sloane .
lj.3.75 contains the coords of the putatively optimal arrangement of 75 points in 3 dimensions that minimizes the Lennard-Jones potential.
For more information | Reference | Return to my home page