We give putatively optimal arrangements for n = 4, ..., 130.
Arrangements of points on a sphere that maximize volume of convex hull
Copyright R. H. Hardin, N. J. A. Sloane & W. D. Smith, Feb 1994
dim npts volume 3 4 0.513200239280 3 5 0.866025403784 3 6 1.333333333333 3 7 1.585094193825 3 8 1.815716104224 3 9 2.043750115900 3 10 2.218711131545 3 11 2.354634495069 3 12 2.536150710120 3 13 2.612834152060 3 14 2.720977899349 3 15 2.804379381835 3 16 2.886455392275 3 17 2.947522984808 3 18 3.009613252523 3 19 3.063216277916 3 20 3.118538793195 3 21 3.164441616789 3 22 3.208239995882 3 23 3.246942024437 3 24 3.283995205283 3 25 3.316263522595 3 26 3.349359872494 3 27 3.380416038275 3 28 3.407379722734 3 29 3.430953110213 3 30 3.455125752062 3 31 3.479801809531 3 32 3.504874080794 3 33 3.519303997395 3 34 3.538169676056 3 35 3.555094309522 3 36 3.572449099048 3 37 3.590011474856 3 38 3.604998357150 3 39 3.620272988726 3 40 3.634130342837 3 41 3.646959646081 3 42 3.659352012406 3 43 3.670906343186 3 44 3.682575909408 3 45 3.692596781224 3 46 3.702525744299 3 47 3.712685744883 3 48 3.722885381000 3 49 3.731437691862 3 50 3.740940879707 3 51 3.749284500867 3 52 3.757164601859 3 53 3.765209637370 3 54 3.772894966748 3 55 3.780272402090 3 56 3.787220285366 3 57 3.794247440640 3 58 3.800829234260 3 59 3.807286456970 3 60 3.813835126445 3 61 3.819438572350 3 62 3.825219246599 3 63 3.831117276830 3 64 3.836635206435 3 65 3.841686359525 3 66 3.846805685666 3 67 3.852292843052 3 68 3.856927771692 3 69 3.861573754368 3 70 3.866188741683 3 71 3.870719066523 3 72 3.875747022839 3 73 3.879282211393 3 74 3.883165521330 3 75 3.887309632004 3 76 3.891226481843 3 77 3.895410053722 3 78 3.899220139562 3 79 3.902548465510 3 80 3.905816863628 3 81 3.909170684677 3 82 3.912532626114 3 83 3.915830784717 3 84 3.919054567834 3 85 3.922246536636 3 86 3.925355534186 3 87 3.928338092280 3 88 3.931363959336 3 89 3.934183118141 3 90 3.936990804382 3 91 3.939692027675 3 92 3.942475019121 3 93 3.944937865176 3 94 3.947576552975 3 95 3.950038708743 3 96 3.952480450024 3 97 3.954845708742 3 98 3.957286716496 3 99 3.959500907186 3 100 3.961753339062 3 101 3.963998828033 3 102 3.966095849792 3 103 3.968239491293 3 104 3.970332396848 3 105 3.972342837242 3 106 3.974376834046 3 107 3.976382883939 3 108 3.978376856735 3 109 3.980246024126 3 110 3.982163979344 3 111 3.984096951965 3 112 3.985897840693 3 113 3.987620040021 3 114 3.989331393252 3 115 3.991037623026 3 116 3.992730465570 3 117 3.994353426523 3 118 3.995989690701 3 119 3.997650241274 3 120 3.999201806749 3 121 4.000855279149 3 122 4.002559429605 3 123 4.003820576996 3 124 4.005226779889 3 125 4.006752164329 3 126 4.008106676873 3 127 4.009640708140 3 128 4.010947167446 3 129 4.012321591333 3 130 4.013655508770