OA(72, 2^7 3^7 6^5 12^1)
OA(72, 2^15 3^7 4^1 6^5)
OA(72, 2^8 3^8 4^1 6^5)
OA(72, 2^6 3^7 4^1 6^6)
OA(72, 2^6 3^3 6^6 12^1)
OA(72, 2^14 3^3 4^1 6^6)
OA(72, 2^7 3^4 4^1 6^6)
OA(72, 2^5 3^3 4^1 6^7)
OA(96, 2^12 4^20 24^1)
OA(96, 2^18 4^22 12^1)
OA(96, 2^26 4^23)
OA(96, 2^19 3^1 4^23)
OA(96, 2^17 4^23 6^1)
This is an array of size N by k, with entries from 0 to s-1, with the property that in any t columns you see each of the s^t possibilities equally often.
We normally write OA(N, sk, 2) to specify such an orthogonal array, or simply OA(N, sk) if it has strength 2.
We normally write OA(N, s1k1 s1k1 ... ) to specify such an orthogonal array.
Note: Every good OA with up to 100 runs known to me is listed here, although many are not yet given explicitly. (Further contributions are welcomed.)
On the other hand, as mentioned above, some of the OAs given here are dominated by others.
There are errors in the 72-run OAs in the printed version of the paper in Discrete Math. (2001) by Yingshan Zhang et al., but with Zhang's help they have been corrected here.
Arrays with 4 runs:
OA(4, 2^3), (see the book, Chapter 1 and also Sections 2.3, 3.4, 5.3, 5.5, 6.3)
Arrays with 6 runs:
MA(6, 2^1 3^1), Complete factorial: see Note (c)
Arrays with 8 runs:
MA.8.2.4.4.1, Hadamard: see Note (h)
Arrays with 9 runs:
OA(9, 3^4), Sections 2.2, 3.2, 3.4, 5.3, 5.5, 5.12, 6.3
Arrays with 10 runs:
MA(10, 2^1 5^1), Complete factorial: see Note (c)
Arrays with 12 runs:
OA(12, 2^{11}), Section 4.4 Table 7.15
MA.12.2.4.3.1, Example 9.2
MA.12.2.2.6.1, Trivial: see Note (t)
MA(12, 3^1 4^1), Complete factorial: see Note (c)
Arrays with 14 runs:
OA(14, 2^1 7^1), Complete factorial: see Note (c)
Arrays with 15 runs:
OA(15, 3^1 5^1), Complete factorial: see Note (c)
Arrays with 16 runs:
OA(16, 2^8 8^1), Hadamard: see Note (h)
MA.16.2.6.4.3
OA(16, 4^5), Sections 3.2, 3.4, 5.3, 5.5, 6.2, 6.3; Taguchi 1987
Arrays with 18 runs:
MA.18.3.6.6.1, Example 9.19
Arrays with 20 runs:
OA(20, 2^{19}), Section 7.5
MA.20.2.8.5.1, Wang and Wu 1992, Dey and Midha 1996
MA.20.2.2.10.1, Trivial: see Note (t)
Arrays with 24 runs:
OA(24, 2^{20} 4^1), Example 9.17 Wang and Wu, 1991
MA.24.2.13.3.1.4.1, Wang and Wu, 1991
OA(24, 2^{12} 12^1), Hadamard: see Note (h)
OA(24, 2^{11} 4^1 6^1), Wang and Wu, 1991
Arrays with 25 runs:
OA(25, 5^6), Sections 3.2, 3.4, 5.3, 5.5, 6.3; Taguchi, 1987
Arrays with 27 runs:
OA(27, 3^9 9^1), Example 9.19
Arrays with 28 runs:
OA(28, 2^{27}), Table 7.19
MA.28.2.12.7.1 (from Dey and Midha, 1996; Suen, Comm. Stat.-Theory Meth., 1989)
MA.28.2.2.14.1, Trivial: see Note (t)
Arrays with 32 runs:
OA(32, 2^{16} 16^1), Hadamard: see Note (h)
OA(32, 4^8 8^1), Example 9.19
Arrays with 36 runs:
OA(36, 2^{35}), Table 7.33
MA.36.2.27.3.1, Example 9.30
MA.36.2.20.3.2, Example 9.30
MA.36.2.18.3.1.6.1, Example 9.30
MA.36.2.13.6.2 (from H. Xu, 2002)
MA.36.2.13.9.1 (from Dey and Midha, 1996; Suen, Comm. Stat.-Theory Meth., 1989)
MA.36.2.11.3.12 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.11.3.2.6.1, Example 9.30
MA.36.2.10.3.8.6.1 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.10.3.1.6.2 (from H. Xu, 2002)
MA.36.2.9.3.4.6.2 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.9.3.1.6.2, Example 9.30
MA.36.2.8.6.3 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.7.3.2.6.2 (from H. Xu, 2002)
MA.36.2.5.3.3.6.2 (from H. Xu, 2002)
MA.36.2.4.3.13 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.4.3.5.6.1 (from H. Xu, 2002)
MA.36.2.4.3.3.6.1, Example 9.30
MA.36.2.4.3.1.6.3 (from H. Xu, 2002)
MA.36.2.3.3.9.6.1 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.3.3.6.6.1 (from H. Xu, 2002)
MA.36.2.3.3.2.6.3 (from H. Xu, 2002)
MA.36.2.2.3.12.6.1 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.2.3.5.6.2 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.2.3.2.6.2, Example 9.30
OA(36, 2^2 18^1), Trivial: see Note (t)
MA.36.2.1.3.8.6.2 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.1.3.3.6.3 (from H. Xu, 2002)
MA.36.2.1.3.1.6.3 (from Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.2.1.6.3 (from Warren Kuhfeld)
MA.36.3.12.12.1 (Example 9.19; Wang and Wu, 1991; Y. Zhang et al., Discrete Math. 238 (2001)
MA.36.3.7.6.3 (from Finney, 1982)
Arrays with 40 runs:
OA(40, 2^{36} 4^1), Example 9.17; Dey and Ramakrishna 1977; Wang and Wu, 1991
OA(40, 2^{25} 4^1 5^1), Wang and Wu, 1991
OA(40, 2^{20} 20^1), Hadamard: see Note (h)
OA(40, 2^{19} 4^1 10^1), Agrawal and Dey 1982; Wang and Wu, 1991
Arrays with 44 runs:
OA(44, 2^{43}), Table 7.33
OA(44, 2^{12} 11^1), Juxtaposition: see Note (j)
MA.44.2.2.22.1, Trivial: see Note (t)
Arrays with 45 runs:
OA(45, 3^9 15^1), Example 9.19
Arrays with 48 runs:
OA(48, 2^{40} 8^1), Dey, 1985, p. 72 Wang and Wu, 1991
OA(48, 2^{33} 3^1 8^1), Wang and Wu, 1991
OA(48, 2^{31} 6^1 8^1), Wang and Wu, 1991
OA(48, 2^{24} 24^1), Hadamard: see Note (h)
OA(48, 4^{12} 12^1), Example 9.19 Suen 1989b; Wang and Wu, 1991
Arrays with 49 runs:
OA(49, 7^8), Sections 3.2, 3.4, 5.3, 5.5
Arrays with 50 runs:
OA(50, 5^{10} 10^1), Example 9.19
Arrays with 52 runs:
OA(52, 2^{51}), Table 7.33
OA(52, 2^{12} 13^1), Juxtaposition: see Note (j)
MA.52.2.2.26.1, Trivial: see Note (t)
Arrays with 54 runs:
OA(54, 3^{20} 6^1 9^1), Wang and Wu, 1991
OA(54, 3^{18} 18^1), Example 9.19
Arrays with 56 runs:
OA(56, 2^{52} 4^1), Example 9.17 (lambda = 7, mu = 1/2, f = 1)
OA(56, 2^{28} 28^1), Hadamard: see Note (h)
Arrays with 60 runs:
OA(60, 2^{59}), Table 7.33
MA.60.2.30.3.1 (from De Cock and Stufken 2000)
OA(60, 2^{22} 5^1), Juxtaposition: see Note (j)
OA(60, 2^{18} 6^1), Juxtaposition: see Note (j)
OA(60, 2^{18} 10^1), Juxtaposition: see Note (j)
MA.60.2.15.3.1.5.1 (from De Cock and Stufken 2000)
OA(60, 2^{13} 15^1), Juxtaposition: see Note (j)
MA.60.2.10.6.1.10.1 (from De Cock and Stufken 2000
OA(60, 2^2 30^1), Trivial: see Note (t)
Arrays with 63 runs:
OA(63, 3^{11} 21^1), Example 9.19
Arrays with 64 runs:
OA(64, 2^{32} 32^1), Hadamard: see Note (h)
OA(64, 2^5 4^{17} 8^1), E. M. Rains, N. J. A. Sloane and J. Stufken, The Lattice of N-Run Orthogonal Arrays [postscript, pdf]
OA(64, 2^5 4^{10} 8^4), E. M. Rains, N. J. A. Sloane and J. Stufken, The Lattice of N-Run Orthogonal Arrays [postscript, pdf]
OA(64, 4^{16} 16^1), Example 9.19; Hedayat, Pu and Stufken, 1992
OA(64, 4^{14} 8^3), E. M. Rains, N. J. A. Sloane and J. Stufken, The Lattice of N-Run Orthogonal Arrays [postscript, pdf]
OA(64, 4^7 8^6), E. M. Rains, N. J. A. Sloane and J. Stufken, The Lattice of N-Run Orthogonal Arrays [postscript, pdf]
OA(64, 8^9), Sections 3.2, 3.4, 5.3, 5.5
Arrays with 68 runs:
OA(68, 2^{67}), Table 7.33
OA(68, 2^{13} 17^1), Juxtaposition: see Note (j)
MA.68.2.2.34.1, Trivial: see Note (t)
Arrays with 72 runs:
OA(72, 2^{68} 4^1), Example 9.17 (lambda = 9, mu = 1/2, f = 1)
OA(72, 2^{44} 3^{12} 4^1), Wang and Wu, 1991
OA(72, 2^{37} 3^{13} 4^1), Wang and Wu, 1991
OA(72, 2^{36} 36^1), Hadamard: see Note (h)
OA(72, 2^{35} 3^{12} 4^1 6^1), Wang and Wu, 1991
MA.72.2.20.3.24.4.1 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.19.3.20.4.1.6.1 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.18.3.16.4.1.6.2 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.17.3.12.4.1.6.3 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.16.3.8.4.1.6.4 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.13.3.25.4.1 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.12.3.24.12.1 (from Zhang et al. Discrete Math. 238 (2001))
MA.72.2.12.3.21.4.1.6.1 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.11.3.24.4.1.6.1 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.11.3.20.6.1.12.1 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.11.3.17.4.1.6.2 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.10.3.20.4.1.6.2 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.10.3.16.6.2.12.1 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.10.3.13.4.1.6.3 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.9.3.16.4.1.6.3 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.9.3.12.6.3.12.1 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.9.3.9.4.1.6.4 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.8.3.12.4.1.6.4 (From Zhang et al., Discrete Math. 238 (2001))
MA.72.2.8.3.8.6.4.12.1 (First discovered by Mandeli, JSPI 47 (1995); this version taken from Zhang et al., Discrete Math. 238 (2001))
MA.72.2.7.3.8.4.1.6.5 (From Zhang et al., Discrete Math. 238 (2001))
OA(72, 2^7 3^7 6^5 12^1), Wang, 1996a
OA(72, 2^6 3^3 6^6 12^1), Wang, 1996a
MA.72.3.24.24.1 (Example 9.19; Zhang et al. Discrete Math. 238 (2001))
Arrays with 75 runs:
OA(75, 5^7 15^1), Example 9.19
Arrays with 76 runs:
OA(76, 2^{75}), Table 7.33
OA(76, 2^{13} 19^1), Juxtaposition: see Note (j)
MA.76.2.2.38.1, Trivial: see Note (t)
Arrays with 80 runs:
OA(80, 2^{61} 5^1 8^1), Wang, 1996b
OA(80, 2^{55} 8^1 10^1), Wang and Wu, 1989
OA(80, 2^{51} 4^3 20^1), Dey, 1985 Wang and Wu, 1989
OA(80, 2^{40} 40^1), Hadamard: see Note (h)
OA(80, 4^8 20^1), Example 9.19
Arrays with 81 runs:
OA(81, 3^{27} 27^1), Example 9.19
OA(81, 9^{10}), Sections 3.2, 3.4, 5.3, 5.5
Arrays with 84 runs:
OA(84, 2^{83}), Table 7.32
MA.84.2.28.3.1 (from De Cock and Stufken 2000)
OA(84, 2^{27} 7^1), Juxtaposition: see Note (j)
OA(84, 2^{26} 6^1), Juxtaposition: see Note (j)
OA(84, 2^{18} 14^1), Juxtaposition: see Note (j)
MA.84.2.15.3.1.7.1 (from De Cock and Stufken 2000)
OA(84, 2^{13} 21^1), Juxtaposition: see Note (j)
MA.84.2.12.3.1.14.1 (from De Cock and Stufken 2000)
MA.84.2.11.6.1.7.1 (from De Cock and Stufken 2000)
MA.84.2.8.6.1.14.1 (from De Cock and Stufken 2000)
OA(84, 2^2 42^1), Trivial: see Note (t)
Arrays with 88 runs:
OA(88, 2^{84} 4^1), Example 9.17
OA(88, 2^{44} 44^1), Hadamard: see Note (h)
Arrays with 90 runs:
OA(90, 3^{30} 30^1), Example 9.19
Arrays with 92 runs:
OA(92, 2^{91}), Table 7.32
OA(92, 2^{13} 23^1), Juxtaposition: see Note (j)
MA.92.2.2.46.1, Trivial: see Note (t)
Arrays with 96 runs:
OA(96, 2^{80} 16^1), Dey and Midha, 1996 Wang and Wu, 1989
OA(96, 2^{77} 8^1 12^1), Wang and Wu, 1989
OA(96, 2^{73} 3^1 16^1), Wang and Wu, 1989
OA(96, 2^{71} 6^1 16^1), Wang and Wu, 1989
OA(96, 2^{48} 48^1), Hadamard: see Note (h)
OA(96, 2^{46} 3^1 4^{11} 6^1 8^1), Wang, 1996b (DOES NOT EXIST! 18 does not divide 96)
OA(96, 2^{44} 4^{14} 6^1), Wang and Wu, 1991 Wang, 1996b
OA(96, 2^{43} 4^{15} 8^1), Wang, 1996b
OA(96, 2^{43} 4^{12} 6^1 8^1), Wang, 1996b
OA(96, 2^{40} 3^1 4^{16}), Wang and Wu, 1991 Wang, 1996b
OA(96, 2^{39} 3^1 4^{14} 8^1), Wang, 1996b
OA(96, 2^{36} 4^{12} 24^1), Dey and Midha, 1996
OA(96, 4^{16} 24^1), Example 9.19
Arrays with 98 runs:
OA(98, 7^{14} 14^1), Example 9.19
Arrays with 99 runs:
OA(99, 3^{11} 33^{1}), Example 9.19
Arrays with 100 runs:
OA(100, 2^{99}), Table 7.32
OA(100, 2^{18} 10^1), Juxtaposition: see Note (j)
MA.100.2.17.10.2 (from De Cock and Stufken 2000)
OA(100, 2^{13} 25^1), Juxtaposition: see Note (j)
OA(100, 2^2 50^1), Trivial: see Note (t)
OA(100, 5^{20} 20^1), Example 9.19
OA(100, 5^8 10^3), Mandeli 1995 Wang, 1996a
OA(100, 10^4), Theorem 8.28 Mandeli, 1995
where the si are relatively prime, there is a complete factorial OA(N, s11 s21 . . . sa1) consisting of all possible runs in which the first factor takes any level between 0 and s1-1, the second factor takes any level between 0 and s2-1, etc. (Of course this is simply the direct product of the appropriate number of trivial orthogonal arrays.)
then
u | A |
u | -A |
is an OA( 2n, n1 2n). The Hadamard matrices used can be found in the accompanying table.